1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
|
//
// discordance.cpp
// tree
//
// Created by Minh Bui on 24/9/18.
//
#include "phylosupertree.h"
#ifdef _OPENMP
#include <omp.h>
#endif
#define PUT_MEANING(value, description) meanings.insert({#value, description})
void PhyloTree::computeSiteConcordance(map<string,string> &meanings) {
BranchVector branches;
getInnerBranches(branches);
#ifdef _OPENMP
#pragma omp parallel
{
int *rstream;
init_random(params->ran_seed + omp_get_thread_num(), false, &rstream);
#pragma omp for
#else
int *rstream = randstream;
#endif
for (auto ii = 0; ii < branches.size(); ii++) {
BranchVector::iterator it = branches.begin()+ii;
computeSiteConcordance((*it), params->site_concordance, rstream);
Neighbor *nei = it->second->findNeighbor(it->first);
double sCF = 0.0;
if (!GET_ATTR(nei, sCF))
continue;
stringstream tmp;
tmp.precision(3);
tmp << sCF;
string sup_str = tmp.str();
Node *node = it->second;
if (Params::getInstance().newick_extended_format) {
if (node->name.empty() || node->name.back() != ']') {
node->name += "[&sCF=" + sup_str + "]";
} else
node->name = node->name.substr(0, node->name.length()-1) + ",!sCF=" + sup_str + "]";
} else {
if (!node->name.empty())
node->name += "/";
node->name += sup_str;
}
}
#ifdef _OPENMP
finish_random(rstream);
}
#endif
PUT_MEANING(sCF, "Site concordance factor averaged over " + convertIntToString(params->site_concordance) + " quartets (=sCF_N/sN %)");
PUT_MEANING(sN, "Number of informative sites averaged over " + convertIntToString(params->site_concordance) + " quartets");
PUT_MEANING(sDF1, "Site discordance factor for alternative quartet 1 (=sDF1_N/sN %)");
PUT_MEANING(sDF2, "Site discordance factor for alternative quartet 2 (=sDF2_N/sN %)");
PUT_MEANING(sCF_N, "sCF in absolute number of sites");
PUT_MEANING(sDF1_N, "sDF1 in absolute number of sites");
PUT_MEANING(sDF2_N, "sDF2 in absolute number of sites");
}
void Alignment::computeQuartetSupports(IntVector &quartet, vector<int64_t> &support) {
// sanity check e.g. when having rooted tree
for (auto q = quartet.begin(); q != quartet.end(); q++)
ASSERT(*q < getNSeq());
for (auto pat = begin(); pat != end(); pat++) {
if (!pat->isInformative()) continue;
bool informative = true;
for (int j = 0; j < quartet.size(); j++)
if (pat->at(quartet[j]) >= num_states) {
informative = false;
break;
}
if (!informative) continue;
if (pat->at(quartet[0]) == pat->at(quartet[1]) && pat->at(quartet[2]) == pat->at(quartet[3]) && pat->at(quartet[0]) != pat->at(quartet[2]))
support[0] += pat->frequency;
if (pat->at(quartet[0]) == pat->at(quartet[2]) && pat->at(quartet[1]) == pat->at(quartet[3]) && pat->at(quartet[0]) != pat->at(quartet[1]))
support[1] += pat->frequency;
if (pat->at(quartet[0]) == pat->at(quartet[3]) && pat->at(quartet[1]) == pat->at(quartet[2]) && pat->at(quartet[0]) != pat->at(quartet[1]))
support[2] += pat->frequency;
}
}
void SuperAlignment::computeQuartetSupports(IntVector &quartet, vector<int64_t> &support) {
for (int part = 0; part < partitions.size(); part++) {
IntVector part_quartet;
for (auto i = quartet.begin(); i != quartet.end(); i++) {
if (taxa_index[*i][part] >= 0)
part_quartet.push_back(taxa_index[*i][part]);
else
break;
}
if (part_quartet.size() != quartet.size())
continue;
if (Params::getInstance().site_concordance_partition) {
vector<int64_t> part_support;
part_support.resize(3, 0);
partitions[part]->computeQuartetSupports(part_quartet, part_support);
for (int j = 0; j < 3; j++) if (part_support[j] > 0) {
ASSERT(support[part*3+3+j] >= 0);
support[part*3+3+j] += part_support[j];
support[j] += part_support[j];
}
} else
partitions[part]->computeQuartetSupports(part_quartet, support);
}
}
void PhyloTree::computeSiteConcordance(Branch &branch, int nquartets, int *rstream) {
vector<IntVector> left_taxa, right_taxa;
//taxa.resize(4);
// extract the taxa from the two left subtrees
left_taxa.resize(branch.first->neighbors.size()-1);
int id = 0;
FOR_NEIGHBOR_DECLARE(branch.first, branch.second, it) {
// 2018-12-11: do not consider internal branch at the root
if (rooted && (*it)->node == root)
return;
getTaxaID(left_taxa[id], (*it)->node, branch.first);
id++;
// if (id > 2)
// outError(__func__, " only work with bifurcating tree");
}
ASSERT(id == left_taxa.size());
// extract the taxa from the two right subtrees
right_taxa.resize(branch.second->neighbors.size()-1);
id = 0;
FOR_NEIGHBOR(branch.second, branch.first, it) {
// 2018-12-11: do not consider internal branch at the root
if (rooted && (*it)->node == root)
return;
getTaxaID(right_taxa[id], (*it)->node, branch.second);
id++;
// if (id > 4)
// outError(__func__, " only work with bifurcating tree");
}
ASSERT(id == right_taxa.size());
// 2018-12-11: remove root taxon from taxa for rooted tree
if (rooted) {
vector<IntVector>::iterator it;
for (it = left_taxa.begin(); it != left_taxa.end(); it++)
for (auto it2 = it->begin(); it2 != it->end(); it2++)
if (*it2 == leafNum-1) {
it->erase(it2);
break;
}
for (it = right_taxa.begin(); it != right_taxa.end(); it++)
for (auto it2 = it->begin(); it2 != it->end(); it2++)
if (*it2 == leafNum-1) {
it->erase(it2);
break;
}
}
double sCF = 0.0; // concordance factor
double sDF1 = 0.0;
double sDF2 = 0.0;
double sN = 0.0;
size_t sum_sites = 0;
double sCF_N = 0, sDF1_N = 0, sDF2_N = 0;
int i;
vector<int64_t> support;
support.resize(3, 0);
// reserve size for partition-wise concordant/discordant sites
if (Params::getInstance().site_concordance_partition && aln->isSuperAlignment()) {
SuperAlignment *saln = (SuperAlignment*)aln;
support.resize(saln->partitions.size()*3+3, 0);
// check for gene trees not decisive for this branch
StrVector taxname;
getTaxaName(taxname);
int part = 0;
for (auto part_aln = saln->partitions.begin(); part_aln != saln->partitions.end(); part_aln++, part++) {
// get the taxa names of the partition tree
StringIntMap name_map;
for (i = 0; i < (*part_aln)->getNSeq(); i++)
name_map[(*part_aln)->getSeqName(i)] = i;
// check that at least one taxon from each subtree is present in partition tree
vector<IntVector>::iterator it;
int left_count = 0, right_count = 0;
for (it = left_taxa.begin(); it != left_taxa.end(); it++) {
for (auto it2 = it->begin(); it2 != it->end(); it2++) {
if (name_map.find(taxname[*it2]) != name_map.end()) {
left_count++;
break;
}
}
}
for (it = right_taxa.begin(); it != right_taxa.end(); it++) {
for (auto it2 = it->begin(); it2 != it->end(); it2++) {
if (name_map.find(taxname[*it2]) != name_map.end()) {
right_count++;
break;
}
}
}
if (left_count < 2 || right_count < 2) {
// not decisive
support[part*3+3] = support[part*3+4] = support[part*3+5] = -1;
break;
}
}
}
Neighbor *nei = branch.second->findNeighbor(branch.first);
for (i = 0; i < nquartets; i++) {
// get a random quartet
IntVector quartet;
quartet.resize(4);
int left_id0 = 0, left_id1 = 1, right_id0 = 0, right_id1 = 1;
if (left_taxa.size() > 2) {
left_id0 = random_int(left_taxa.size(), rstream);
do {
left_id1 = random_int(left_taxa.size(), rstream);
} while (left_id0 == left_id1);
}
if (right_taxa.size() > 2) {
right_id0 = random_int(right_taxa.size(), rstream);
do {
right_id1 = random_int(right_taxa.size(), rstream);
} while (right_id0 == right_id1);
}
quartet[0] = left_taxa[left_id0][random_int(left_taxa[left_id0].size(), rstream)];
quartet[1] = left_taxa[left_id1][random_int(left_taxa[left_id1].size(), rstream)];
quartet[2] = right_taxa[right_id0][random_int(right_taxa[right_id0].size(), rstream)];
quartet[3] = right_taxa[right_id1][random_int(right_taxa[right_id1].size(), rstream)];
support[0] = support[1] = support[2] = 0;
aln->computeQuartetSupports(quartet, support);
size_t sum = support[0] + support[1] + support[2];
sum_sites += sum;
if (sum > 0) {
sCF += ((double)support[0]) / sum;
sDF1 += ((double)support[1]) / sum;
sDF2 += ((double)support[2]) / sum;
sCF_N += support[0];
sDF1_N += support[1];
sDF2_N += support[2];
}
if (params->print_cf_quartets) {
// print sCF for each quartet
stringstream ss;
ss << quartet[0]+1 << '\t' << quartet[1]+1 << '\t' << quartet[2]+1 << '\t' << quartet[3]+1
<< '\t' << (((double)support[0]) / sum) << '\t' << support[0]
<< '\t' << (((double)support[1]) / sum) << '\t' << support[1]
<< '\t' << (((double)support[2]) / sum) << '\t' << support[2]
<< '\t' << sum;
nei->putAttr("q" + convertIntToString(i), ss.str());
}
}
sN = (double)sum_sites / nquartets;
// rounding
sCF = round(sCF / nquartets * 10000)/100;
sDF1 = round(sDF1 / nquartets * 10000)/100;
sDF2 = round(sDF2 / nquartets * 10000)/100;
sCF_N = round(sCF_N / nquartets * 100)/100;
sDF1_N = round(sDF1_N / nquartets * 100)/100;
sDF2_N = round(sDF2_N / nquartets * 100)/100;
PUT_ATTR(nei, sCF);
PUT_ATTR(nei, sN);
PUT_ATTR(nei, sDF1);
PUT_ATTR(nei, sDF2);
PUT_ATTR(nei, sCF_N);
PUT_ATTR(nei, sDF1_N);
PUT_ATTR(nei, sDF2_N);
stringstream s_factors;
s_factors << sCF << "/" << sDF1 << "/" << sDF2;
nei->putAttr("sCF/sDF1/sDF2", s_factors.str());
stringstream s_factors_N;
s_factors_N << sCF_N << "/" << sDF1_N << "/" << sDF2_N;
nei->putAttr("sCF_N/sDF1_N/sDF2_N", s_factors_N.str());
// insert key-value for partition-wise con/discordant sites
string keys[] = {"sC", "sD1", "sD2"};
for (i = 3; i < support.size(); i++) {
if (support[i] >= 0)
nei->putAttr(keys[i%3] + convertIntToString(i/3), (double)support[i]/nquartets);
else
nei->putAttr(keys[i%3] + convertIntToString(i/3), "NA");
}
}
/**
assign branch supports to a target tree
*/
void PhyloTree::computeGeneConcordance(MTreeSet &trees, map<string,string> &meanings) {
StrVector names;
getTaxaName(names);
StringIntMap name_map;
for (auto stri = names.begin(); stri != names.end(); stri++)
name_map[*stri] = stri - names.begin();
BranchVector branches;
vector<Split*> subtrees;
extractQuadSubtrees(subtrees, branches, root->neighbors[0]->node);
IntVector decisive_counts; // number of decisive trees
decisive_counts.resize(branches.size(), 0);
IntVector supports[3]; // number of trees supporting 3 alternative splits
supports[0].resize(branches.size(), 0);
supports[1].resize(branches.size(), 0);
supports[2].resize(branches.size(), 0);
string prefix[3] = {"gC", "gD1", "gD2"};
int treeid, taxid;
for (treeid = 0; treeid < trees.size(); treeid++) {
MTree *tree = trees[treeid];
StrVector taxname;
tree->getTaxaName(taxname);
// create the map from taxa between 2 trees
Split taxa_mask(leafNum);
for (StrVector::iterator it = taxname.begin(); it != taxname.end(); it++) {
if (name_map.find(*it) == name_map.end())
outError("Taxon not found in full tree: ", *it);
taxa_mask.addTaxon(name_map[*it]);
}
// make the taxa ordering right before converting to split system
taxname.clear();
int smallid;
for (taxid = 0, smallid = 0; taxid < leafNum; taxid++)
if (taxa_mask.containTaxon(taxid)) {
taxname.push_back(names[taxid]);
tree->findLeafName(names[taxid])->id = smallid++;
}
ASSERT(taxname.size() == tree->leafNum);
SplitGraph sg;
//NodeVector nodes;
tree->convertSplits(sg);
SplitIntMap hash_ss;
for (auto sit = sg.begin(); sit != sg.end(); sit++)
hash_ss.insertSplit((*sit), 1);
// now scan through all splits in current tree
int id, qid;
for (id = 0, qid = 0; qid < subtrees.size(); id++, qid += 4)
{
Neighbor *nei = branches[id].second->findNeighbor(branches[id].first);
bool decisive = true;
int i;
for (i = 0; i < 4; i++) {
if (!taxa_mask.overlap(*subtrees[qid+i])) {
decisive = false;
break;
}
}
if (!decisive && params->site_concordance_partition) {
for (i = 0; i < 3; i++)
nei->putAttr(prefix[i] + convertIntToString(treeid+1), "NA");
}
if (!decisive) continue;
decisive_counts[id]++;
for (i = 0; i < 3; i++) {
Split this_split = *subtrees[qid]; // current split
this_split += *subtrees[qid+i+1];
Split *subsp = this_split.extractSubSplit(taxa_mask);
if (subsp->shouldInvert())
subsp->invert();
int concordant = 0;
if (hash_ss.findSplit(subsp)) {
supports[i][id]++;
concordant = 1;
}
if (params->site_concordance_partition) {
nei->putAttr(prefix[i] + convertIntToString(treeid+1), concordant);
}
delete subsp;
}
}
}
for (int i = 0; i < branches.size(); i++) {
if (decisive_counts[i] == 0)
continue;
Neighbor *nei = branches[i].second->findNeighbor(branches[i].first);
int gN = decisive_counts[i];
int gCF_N = supports[0][i];
int gDF1_N = supports[1][i];
int gDF2_N = supports[2][i];
int gDFP_N = gN - gCF_N - gDF1_N - gDF2_N;
double gCF = round((double)gCF_N/gN * 10000)/100;
double gDF1 = round((double)gDF1_N/gN * 10000)/100;
double gDF2 = round((double)gDF2_N/gN * 10000)/100;
double gDFP = round((double)gDFP_N/gN * 10000)/100;
PUT_ATTR(nei, gCF);
PUT_ATTR(nei, gDF1);
PUT_ATTR(nei, gDF2);
PUT_ATTR(nei, gDFP);
PUT_ATTR(nei, gN);
PUT_ATTR(nei, gCF_N);
PUT_ATTR(nei, gDF1_N);
PUT_ATTR(nei, gDF2_N);
PUT_ATTR(nei, gDFP_N);
stringstream g_factors;
g_factors << gCF << "/" << gDF1 << "/" << gDF2 << "/" << gDFP;
nei->putAttr("gCF/gDF1/gDF2/gDFP", g_factors.str());
stringstream g_factors_N;
g_factors_N << gCF_N << "/" << gDF1_N << "/" << gDF2_N << "/" << gDFP_N;
nei->putAttr("gCF_N/gDF1_N/gDF2_N/gDFP_N", g_factors_N.str());
stringstream tmp;
tmp.precision(3);
tmp << (double)supports[0][i]/decisive_counts[i]*100;
if (verbose_mode >= VB_MED)
tmp << "%" << decisive_counts[i];
Node *node = branches[i].second;
if (Params::getInstance().newick_extended_format) {
if (node->name.empty() || node->name.back() != ']')
node->name += "[&CF=" + tmp.str() + "]";
else
node->name = node->name.substr(0, node->name.length()-1) + ",!CF=" + tmp.str() + "]";
} else {
if (!node->name.empty())
node->name.append("/");
node->name.append(tmp.str());
}
}
for (vector<Split*>::reverse_iterator it = subtrees.rbegin(); it != subtrees.rend(); it++)
delete (*it);
PUT_MEANING(gCF, "Gene concordance factor (=gCF_N/gN %)");
PUT_MEANING(gDF1, "Gene discordance factor for NNI-1 branch (=gDF1_N/gN %)");
PUT_MEANING(gDF2, "Gene discordance factor for NNI-2 branch (=gDF2_N/gN %)");
PUT_MEANING(gDFP, "Gene discordance factor due to polyphyly (=gDFP_N/gN %)");
PUT_MEANING(gN, "Number of trees decisive for the branch");
PUT_MEANING(gCF_N, "Number of trees concordant with the branch");
PUT_MEANING(gDF1_N, "Number of trees concordant with NNI-1 branch");
PUT_MEANING(gDF2_N, "Number of trees concordant with NNI-2 branch");
PUT_MEANING(gDFP_N, "Number of trees decisive but discordant due to polyphyly");
meanings.insert({"*NOTE*", "(gCF+gDF1+gDF2+gDFP) = 100% and (gCF_N+gDF1_N+gDF2_N+gDFP_N) = gN"});
if (Params::getInstance().print_df1_trees) {
meanings.insert({"treeDF1", "Newick tree for gDF1"});
meanings.insert({"treeDF2", "Newick tree for gDF2"});
}
}
/**
compute quartet internode certainty, similar to Zhou et al (biorxiv)
*/
void PhyloTree::computeQuartetConcordance(MTreeSet &trees) {
outError("Not working yet, need consent from Zhou et al.");
BranchVector branches;
getInnerBranches(branches);
for (auto treeit = trees.begin(); treeit != trees.end(); treeit++) {
}
for (auto it = branches.begin(); it != branches.end(); it++) {
Node *node = it->second;
double sup = computeQuartetConcordance(*it, trees);
string sup_str = convertDoubleToString(sup);
if (Params::getInstance().newick_extended_format) {
if (node->name.empty() || node->name.back() != ']') {
node->name += "[&qCF=" + sup_str + "]";
} else
node->name = node->name.substr(0, node->name.length()-1) + ",!sCF=" + sup_str + "]";
} else {
if (!node->name.empty())
node->name += "/";
node->name += sup_str;
}
}
}
double PhyloTree::computeQuartetConcordance(Branch &branch, MTreeSet &trees) {
vector<IntVector> taxa;
taxa.resize(4);
if (branch.first->degree() != 3 || branch.second->degree() != 3)
outError(__func__, " only work with bifurcating tree");
// extract the taxa from the two left subtrees
int id = 0;
FOR_NEIGHBOR_DECLARE(branch.first, branch.second, it) {
getTaxaID(taxa[id], (*it)->node, branch.first);
id++;
}
// extract the taxa from the two right subtrees
FOR_NEIGHBOR(branch.second, branch.first, it) {
getTaxaID(taxa[id], (*it)->node, branch.second);
id++;
}
double sum_support = 0.0;
int num_quartets = Params::getInstance().site_concordance; // TODO: change name
for (int i = 0; i < num_quartets; i++) {
int j;
// get a random quartet
IntVector quartet;
quartet.resize(taxa.size());
for (j = 0; j < taxa.size(); j++) {
quartet[j] = taxa[j][random_int(taxa[j].size())];
}
int quartetCF[3] = {0, 0, 0};
for (auto tree = trees.begin(); tree != trees.end(); tree++) {
}
int sum = quartetCF[0] + quartetCF[1] + quartetCF[2];
if (sum > 0)
sum_support += ((double)quartetCF[0]) / sum;
}
return sum_support / num_quartets;
}
|