1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
//
// phylosupertreeunlinked.cpp
// tree
//
// Created by Minh Bui on 2/5/18.
//
#include "phylosupertreeunlinked.h"
#include "utils/MPIHelper.h"
#include "utils/timeutil.h"
extern ostream cmust;
PhyloSuperTreeUnlinked::PhyloSuperTreeUnlinked(SuperAlignment *alignment)
: PhyloSuperTree(alignment, true)
{
}
void PhyloSuperTreeUnlinked::readTree(istream &in, bool &is_rooted) {
for (iterator it = begin(); it != end(); it++) {
(*it)->rooted = Params::getInstance().is_rooted;
(*it)->readTree(in, (*it)->rooted);
is_rooted |= (*it)->rooted;
}
}
void PhyloSuperTreeUnlinked::setAlignment(Alignment *alignment) {
ASSERT(alignment->isSuperAlignment());
SuperAlignment *saln = (SuperAlignment*)alignment;
ASSERT(saln->partitions.size() == size());
for (int i = 0; i < size(); i++)
at(i)->setAlignment(saln->partitions[i]);
}
/**
* setup all necessary parameters (declared as virtual needed for phylosupertree)
*/
void PhyloSuperTreeUnlinked::initSettings(Params& params) {
PhyloSuperTree::initSettings(params);
for (auto it = begin(); it != end(); it++)
((IQTree*)(*it))->initSettings(params);
}
void PhyloSuperTreeUnlinked::mapTrees() {
// do nothing here as partition trees are unlinked
}
int PhyloSuperTreeUnlinked::computeParsimonyTree(const char *out_prefix, Alignment *alignment, int *rand_stream) {
SuperAlignment *saln = (SuperAlignment*)alignment;
int score = 0;
int i;
ASSERT(saln->partitions.size() == size());
for (i = 0; i < size(); i++) {
score += at(i)->computeParsimonyTree(NULL, saln->partitions[i], rand_stream);
}
if (out_prefix) {
string file_name = out_prefix;
file_name += ".parstree";
try {
ofstream out;
out.open(file_name.c_str());
for (i = 0; i < size(); i++) {
at(i)->printTree(out, WT_NEWLINE);
}
out.close();
} catch (...) {
outError("Cannot write to file ", file_name);
}
}
return score;
}
int PhyloSuperTreeUnlinked::wrapperFixNegativeBranch(bool force_change) {
// Initialize branch lengths for the parsimony tree
int numFixed = 0;
for (auto tree = begin(); tree != end(); tree++) {
numFixed += (*tree)->fixNegativeBranch(force_change);
(*tree)->resetCurScore();
}
return numFixed;
}
bool PhyloSuperTreeUnlinked::isBifurcating(Node *node, Node *dad) {
for (auto it = begin(); it != end(); it++)
if (!(*it)->isBifurcating())
return false;
return true;
}
string PhyloSuperTreeUnlinked::getTreeString() {
stringstream tree_stream;
for (iterator it = begin(); it != end(); it++)
(*it)->printTree(tree_stream, WT_TAXON_ID + WT_BR_LEN + WT_SORT_TAXA);
return tree_stream.str();
}
void PhyloSuperTreeUnlinked::readTreeString(const string &tree_string) {
stringstream str;
str << tree_string;
str.seekg(0, ios::beg);
for (iterator it = begin(); it != end(); it++) {
(*it)->freeNode();
(*it)->readTree(str, rooted);
(*it)->assignLeafNames();
(*it)->resetCurScore();
}
}
void PhyloSuperTreeUnlinked::saveCheckpoint() {
for (iterator it = begin(); it != end(); it++) {
checkpoint->startStruct((*it)->aln->name);
(*it)->saveCheckpoint();
checkpoint->endStruct();
}
}
void PhyloSuperTreeUnlinked::restoreCheckpoint() {
for (iterator it = begin(); it != end(); it++) {
checkpoint->startStruct((*it)->aln->name);
(*it)->restoreCheckpoint();
checkpoint->endStruct();
}
}
/**
* save branch lengths into a vector
*/
void PhyloSuperTreeUnlinked::saveBranchLengths(DoubleVector &lenvec, int startid, PhyloNode *node, PhyloNode *dad) {
int totalBranchNum = 0;
iterator it;
for (it = begin(); it != end(); it++) {
totalBranchNum += (*it)->branchNum * (*it)->getMixlen();
}
lenvec.resize(startid + totalBranchNum);
for (iterator it = begin(); it != end(); it++) {
(*it)->saveBranchLengths(lenvec, startid);
startid += (*it)->branchNum * (*it)->getMixlen();
}
}
/**
* restore branch lengths from a vector previously called with saveBranchLengths
*/
void PhyloSuperTreeUnlinked::restoreBranchLengths(DoubleVector &lenvec, int startid, PhyloNode *node, PhyloNode *dad) {
for (iterator it = begin(); it != end(); it++) {
(*it)->restoreBranchLengths(lenvec, startid);
startid += (*it)->branchNum * (*it)->getMixlen();
}
}
void PhyloSuperTreeUnlinked::setRootNode(const char *my_root, bool multi_taxa) {
// DOES NOTHING
}
void PhyloSuperTreeUnlinked::computeBranchLengths() {
// DOES NOTHING
}
void PhyloSuperTreeUnlinked::printTree(ostream &out, int brtype) {
for (iterator tree = begin(); tree != end(); tree++)
(*tree)->printTree(out, brtype);
}
void PhyloSuperTreeUnlinked::printResultTree(string suffix) {
if (MPIHelper::getInstance().isWorker()) {
return;
}
if (params->suppress_output_flags & OUT_TREEFILE)
return;
string tree_file_name = params->out_prefix;
tree_file_name += ".treefile";
if (suffix.compare("") != 0) {
tree_file_name += "." + suffix;
}
ofstream out;
out.open(tree_file_name.c_str());
for (iterator tree = begin(); tree != end(); tree++)
(*tree)->printTree(out, WT_BR_LEN | WT_BR_LEN_FIXED_WIDTH | WT_SORT_TAXA | WT_NEWLINE);
out.close();
if (verbose_mode >= VB_MED)
cout << "Best tree printed to " << tree_file_name << endl;
}
double PhyloSuperTreeUnlinked::treeLength(Node *node, Node *dad) {
double len = 0.0;
for (iterator tree = begin(); tree != end(); tree++)
len += (*tree)->treeLength();
return len;
}
double PhyloSuperTreeUnlinked::treeLengthInternal( double epsilon, Node *node, Node *dad) {
double len = 0.0;
for (iterator tree = begin(); tree != end(); tree++)
len += (*tree)->treeLengthInternal(epsilon);
return len;
}
pair<int, int> PhyloSuperTreeUnlinked::doNNISearch(bool write_info) {
int NNIs = 0, NNI_steps = 0;
double score = 0.0;
#pragma omp parallel for schedule(dynamic) num_threads(num_threads) if (num_threads > 1) reduction(+: NNIs, NNI_steps, score)
for (int i = 0; i < size(); i++) {
IQTree *part_tree = (IQTree*)at(part_order[i]);
Checkpoint *ckp = new Checkpoint;
getCheckpoint()->getSubCheckpoint(ckp, part_tree->aln->name);
part_tree->setCheckpoint(ckp);
auto num_NNIs = part_tree->doNNISearch(false);
NNIs += num_NNIs.first;
NNI_steps += num_NNIs.second;
score += part_tree->getCurScore();
#pragma omp critical
{
getCheckpoint()->putSubCheckpoint(ckp, part_tree->aln->name);
getCheckpoint()->dump();
}
delete ckp;
part_tree->setCheckpoint(getCheckpoint());
}
setCurScore(score);
cout << "Log-likelihood: " << score << endl;
return std::make_pair(NNIs, NNI_steps);
}
double PhyloSuperTreeUnlinked::doTreeSearch() {
double tree_lh = 0.0;
string bestTree;
cout << "--------------------------------------------------------------------" << endl;
cout << "| SEPARATE TREE SEARCH FOR PARTITIONS |" << endl;
cout << "--------------------------------------------------------------------" << endl;
if (part_order.empty())
computePartitionOrder();
int saved_flag = params->suppress_output_flags;
params->suppress_output_flags |= OUT_TREEFILE + OUT_LOG;
VerboseMode saved_mode = verbose_mode;
verbose_mode = VB_QUIET;
bool saved_print_ufboot_trees = params->print_ufboot_trees;
params->print_ufboot_trees = false;
#pragma omp parallel for schedule(dynamic) num_threads(num_threads) if (num_threads > 1) reduction(+: tree_lh)
for (int i = 0; i < size(); i++) {
IQTree *part_tree = (IQTree*)at(part_order[i]);
Checkpoint *ckp = new Checkpoint;
getCheckpoint()->getSubCheckpoint(ckp, part_tree->aln->name);
part_tree->setCheckpoint(ckp);
double score = part_tree->doTreeSearch();
tree_lh += score;
#pragma omp critical
{
getCheckpoint()->putSubCheckpoint(ckp, part_tree->aln->name);
getCheckpoint()->dump();
cmust << "Partition " << part_tree->aln->name
<< " / Iterations: " << part_tree->stop_rule.getCurIt()
<< " / LogL: " << score
<< " / Time: " << convert_time(getRealTime() - params->start_real_time)
<< endl;
}
delete ckp;
part_tree->setCheckpoint(getCheckpoint());
}
verbose_mode = saved_mode;
params->suppress_output_flags= saved_flag;
params->print_ufboot_trees = saved_print_ufboot_trees;
if (tree_lh < curScore)
cout << "BETTER TREE FOUND: " << tree_lh << endl;
curScore = tree_lh;
bestTree = getTreeString();
addTreeToCandidateSet(bestTree, getCurScore(), false, MPIHelper::getInstance().getProcessID());
printResultTree();
intermediateTrees.update(bestTree, getCurScore());
candidateTrees.saveCheckpoint();
return curScore;
}
void PhyloSuperTreeUnlinked::summarizeBootstrap(Params ¶ms) {
for (auto tree = begin(); tree != end(); tree++)
((IQTree*)*tree)->summarizeBootstrap(params);
}
void PhyloSuperTreeUnlinked::writeUFBootTrees(Params ¶ms) {
// IntVector tree_weights;
int i, j;
string filename = params.out_prefix;
filename += ".ufboot";
ofstream out(filename.c_str());
for (auto tree = begin(); tree != end(); tree++) {
MTreeSet trees;
trees.init(((IQTree*)*tree)->boot_trees, (*tree)->rooted);
for (i = 0; i < trees.size(); i++) {
NodeVector taxa;
// change the taxa name from ID to real name
trees[i]->getOrderedTaxa(taxa);
for (j = 0; j < taxa.size(); j++)
taxa[j]->name = aln->getSeqName(taxa[j]->id);
if (removed_seqs.size() > 0) {
// reinsert removed seqs into each tree
trees[i]->insertTaxa(removed_seqs, twin_seqs);
}
// now print to file
for (j = 0; j < trees.tree_weights[i]; j++)
if (params.print_ufboot_trees == 1)
trees[i]->printTree(out, WT_NEWLINE);
else
trees[i]->printTree(out, WT_NEWLINE + WT_BR_LEN);
}
}
cout << "UFBoot trees printed to " << filename << endl;
out.close();
}
/**
Test all branches of the tree with aLRT SH-like interpretation
*/
int PhyloSuperTreeUnlinked::testAllBranches(int threshold, double best_score, double *pattern_lh,
int reps, int lbp_reps, bool aLRT_test, bool aBayes_test,
PhyloNode *node, PhyloNode *dad)
{
int id;
int num_low_support = 0;
double *ptn_lh[size()];
ptn_lh[0] = pattern_lh;
for (id = 1; id < size(); id++)
ptn_lh[id] = ptn_lh[id-1] + at(id-1)->getAlnNPattern();
#ifdef _OPENMP
#pragma omp parallel for reduction(+: num_low_support)
#endif
for (int id = 0; id < size(); id++) {
num_low_support += at(id)->testAllBranches(threshold, at(id)->getCurScore(), ptn_lh[id],
reps, lbp_reps, aLRT_test, aBayes_test);
}
return num_low_support;
}
int PhyloSuperTreeUnlinked::testNumThreads() {
#ifdef _OPENMP
// unlinked partitions scales well with many cores
int bestProc = min(countPhysicalCPUCores(), params->num_threads_max);
bestProc = min(bestProc, (int)size());
cout << "BEST NUMBER OF THREADS: " << bestProc << endl << endl;
setNumThreads(bestProc);
return bestProc;
#else
return 1;
#endif
}
|