1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
|
/*
* phylotreepars.cpp
*
* Fast implementation of parsimony kernel
*
* Created on: May 18, 2015
* Author: minh
*/
#include "phylotree.h"
//#include "vectorclass/vectorclass.h"
#include "phylosupertree.h"
#if defined (__GNUC__) || defined(__clang__)
#define vml_popcnt __builtin_popcount
#else
// taken from vectorclass library
static inline uint32_t vml_popcnt (uint32_t a) {
// popcnt instruction not available
uint32_t b = a - ((a >> 1) & 0x55555555);
uint32_t c = (b & 0x33333333) + ((b >> 2) & 0x33333333);
uint32_t d = (c + (c >> 4)) & 0x0F0F0F0F;
uint32_t e = d * 0x01010101;
return e >> 24;
}
#endif
/***********************************************************/
/****** optimized version of parsimony kernel **************/
/***********************************************************/
void PhyloTree::computePartialParsimonyFast(PhyloNeighbor *dad_branch, PhyloNode *dad) {
if (dad_branch->partial_lh_computed & 2)
return;
Node *node = dad_branch->node;
int nstates = aln->getMaxNumStates();
int site = 0;
dad_branch->partial_lh_computed |= 2;
vector<Alignment*> *partitions = NULL;
if (aln->isSuperAlignment())
partitions = &((SuperAlignment*)aln)->partitions;
else {
partitions = new vector<Alignment*>;
partitions->push_back(aln);
}
if (node->name == ROOT_NAME) {
ASSERT(dad);
int pars_size = getBitsBlockSize();
memset(dad_branch->partial_pars, 255, pars_size*sizeof(UINT));
size_t nsites = (aln->num_parsimony_sites+UINT_BITS-1)/UINT_BITS;
dad_branch->partial_pars[nstates*nsites] = 0;
} else if (node->isLeaf() && dad) {
// external node
int leafid = node->id;
memset(dad_branch->partial_pars, 0, getBitsBlockSize()*sizeof(UINT));
int max_sites = ((aln->num_parsimony_sites+UINT_BITS-1)/UINT_BITS)*UINT_BITS;
int ambi_aa[] = {2, 3, 5, 6, 9, 10}; // {4+8, 32+64, 512+1024};
// if (aln->ordered_pattern.empty())
// aln->orderPatternByNumChars();
ASSERT(!aln->ordered_pattern.empty());
int start_pos = 0;
for (vector<Alignment*>::iterator alnit = partitions->begin(); alnit != partitions->end(); alnit++) {
int end_pos = start_pos + (*alnit)->ordered_pattern.size();
switch ((*alnit)->seq_type) {
case SEQ_DNA:
for (int patid = start_pos; patid != end_pos; patid++) {
Alignment::iterator pat = aln->ordered_pattern.begin()+ patid;
int state = pat->at(leafid);
int freq = pat->frequency;
if (state < 4) {
for (int j = 0; j < freq; j++, site++) {
dad_branch->partial_pars[(site/UINT_BITS)*nstates+state] |= (1 << (site % UINT_BITS));
}
} else if (state == (*alnit)->STATE_UNKNOWN) {
for (int j = 0; j < freq; j++, site++) {
UINT *p = dad_branch->partial_pars+((site/UINT_BITS)*nstates);
UINT bit1 = (1 << (site%UINT_BITS));
p[0] |= bit1;
p[1] |= bit1;
p[2] |= bit1;
p[3] |= bit1;
}
} else {
state -= 3;
ASSERT(state < 15);
for (int j = 0; j < freq; j++, site++) {
UINT *p = dad_branch->partial_pars+((site/UINT_BITS)*nstates);
UINT bit1 = (1 << (site%UINT_BITS));
for (int i = 0; i < 4; i++)
if (state & (1<<i))
p[i] |= bit1;
}
}
}
//assert(site == aln->num_informative_sites);
// add dummy states
//if (site < max_sites)
// dad_branch->partial_pars[(site/UINT_BITS)*4] |= ~((1<<(site%UINT_BITS)) - 1);
break;
case SEQ_PROTEIN:
for (int patid = start_pos; patid != end_pos; patid++) {
Alignment::iterator pat = aln->ordered_pattern.begin()+ patid;
int state = pat->at(leafid);
int freq = pat->frequency;
if (state < 20) {
for (int j = 0; j < freq; j++, site++) {
dad_branch->partial_pars[(site/UINT_BITS)*nstates+state] |= (1 << (site % UINT_BITS));
}
} else if (state == (*alnit)->STATE_UNKNOWN) {
for (int j = 0; j < freq; j++, site++) {
UINT *p = dad_branch->partial_pars+((site/UINT_BITS)*nstates);
UINT bit1 = (1 << (site%UINT_BITS));
for (int i = 0; i < 20; i++)
p[i] |= bit1;
}
} else {
ASSERT(state < 23);
state = (state-20)*2;
for (int j = 0; j < freq; j++, site++) {
UINT *p = dad_branch->partial_pars+((site/UINT_BITS)*nstates);
UINT bit1 = (1 << (site%UINT_BITS));
p[ambi_aa[state]] |= bit1;
p[ambi_aa[state+1]] |= bit1;
}
}
}
//assert(site == aln->num_informative_sites);
// add dummy states
//if (site < max_sites)
// dad_branch->partial_pars[(site/UINT_BITS)*20] |= ~((1<<(site%UINT_BITS)) - 1);
break;
default:
for (int patid = start_pos; patid != end_pos; patid++) {
Alignment::iterator pat = aln->ordered_pattern.begin()+ patid;
int state = pat->at(leafid);
int freq = pat->frequency;
if (aln->seq_type == SEQ_POMO && state >= (*alnit)->num_states && state < (*alnit)->STATE_UNKNOWN) {
state = (*alnit)->convertPomoState(state);
}
if (state < (*alnit)->num_states) {
for (int j = 0; j < freq; j++, site++) {
dad_branch->partial_pars[(site/UINT_BITS)*nstates+state] |= (1 << (site % UINT_BITS));
}
} else if (state == (*alnit)->STATE_UNKNOWN) {
for (int j = 0; j < freq; j++, site++) {
UINT *p = dad_branch->partial_pars+((site/UINT_BITS)*nstates);
UINT bit1 = (1 << (site%UINT_BITS));
for (int i = 0; i < (*alnit)->num_states; i++)
p[i] |= bit1;
}
} else {
ASSERT(0);
}
}
break;
} // end of switch
start_pos = end_pos;
} // FOR LOOP
ASSERT(site == aln->num_parsimony_sites);
// add dummy states
if (site < max_sites)
dad_branch->partial_pars[(site/UINT_BITS)*nstates] |= ~((1<<(site%UINT_BITS)) - 1);
} else {
// internal node
ASSERT(node->degree() == 3); // it works only for strictly bifurcating tree
PhyloNeighbor *left = NULL, *right = NULL; // left & right are two neighbors leading to 2 subtrees
FOR_NEIGHBOR_IT(node, dad, it) {
PhyloNeighbor* pit = (PhyloNeighbor*) (*it);
if ((*it)->node->name != ROOT_NAME && (pit->partial_lh_computed & 2) == 0) {
computePartialParsimonyFast(pit, (PhyloNode*) node);
}
if (!left) left = pit; else right = pit;
}
// UINT score = left->partial_pars[0] + right->partial_pars[0];
UINT score = 0;
int nsites = aln->num_parsimony_sites;
nsites = (nsites+UINT_BITS-1)/UINT_BITS;
switch (nstates) {
case 4:
#ifdef _OPENMP
#pragma omp parallel for private (site) reduction(+: score) if(nsites>200)
#endif
for (site = 0; site<nsites; site++) {
UINT w;
size_t offset = nstates*site;
UINT *x = left->partial_pars + offset;
UINT *y = right->partial_pars + offset;
UINT *z = dad_branch->partial_pars + offset;
z[0] = x[0] & y[0];
z[1] = x[1] & y[1];
z[2] = x[2] & y[2];
z[3] = x[3] & y[3];
w = z[0] | z[1] | z[2] | z[3];
w = ~w;
score += __builtin_popcount(w);
z[0] |= w & (x[0] | y[0]);
z[1] |= w & (x[1] | y[1]);
z[2] |= w & (x[2] | y[2]);
z[3] |= w & (x[3] | y[3]);
}
break;
default:
#ifdef _OPENMP
#pragma omp parallel for private (site) reduction(+: score) if(nsites > 800/nstates)
#endif
for (site = 0; site<nsites; site++) {
int i;
UINT w = 0;
size_t offset = nstates*site;
UINT *x = left->partial_pars + offset;
UINT *y = right->partial_pars + offset;
UINT *z = dad_branch->partial_pars + offset;
for (i = 0; i < nstates; i++) {
z[i] = x[i] & y[i];
w |= z[i];
}
w = ~w;
score += vml_popcnt(w);
for (i = 0; i < nstates; i++) {
z[i] |= w & (x[i] | y[i]);
}
}
break;
}
dad_branch->partial_pars[nstates*nsites] = score + left->partial_pars[nstates*nsites] + right->partial_pars[nstates*nsites];
// dad_branch->partial_pars[0] = score;
}
if (!aln->isSuperAlignment())
delete partitions;
}
int PhyloTree::computeParsimonyBranchFast(PhyloNeighbor *dad_branch, PhyloNode *dad, int *branch_subst) {
PhyloNode *node = (PhyloNode*) dad_branch->node;
PhyloNeighbor *node_branch = (PhyloNeighbor*) node->findNeighbor(dad);
ASSERT(node_branch);
if (!central_partial_pars)
initializeAllPartialPars();
if ((dad_branch->partial_lh_computed & 2) == 0)
computePartialParsimonyFast(dad_branch, dad);
if ((node_branch->partial_lh_computed & 2) == 0)
computePartialParsimonyFast(node_branch, node);
int site;
int nsites = (aln->num_parsimony_sites + UINT_BITS-1) / UINT_BITS;
int nstates = aln->getMaxNumStates();
int scoreid = ((aln->num_parsimony_sites+UINT_BITS-1)/UINT_BITS)*nstates;
UINT sum_end_node = (dad_branch->partial_pars[scoreid] + node_branch->partial_pars[scoreid]);
UINT score = sum_end_node;
UINT lower_bound = best_pars_score;
if (branch_subst) lower_bound = INT_MAX;
switch (nstates) {
case 4:
#ifdef _OPENMP
#pragma omp parallel for private (site) reduction(+: score) if(nsites>200)
#endif
for (site = 0; site < nsites; site++) {
size_t offset = 4*site;
UINT *x = dad_branch->partial_pars + offset;
UINT *y = node_branch->partial_pars + offset;
UINT w = (x[0] & y[0]) | (x[1] & y[1]) | (x[2] & y[2]) | (x[3] & y[3]);
w = ~w;
score += vml_popcnt(w);
// #ifndef _OPENMP
// if (score >= lower_bound)
// break;
// #endif
}
break;
default:
#ifdef _OPENMP
#pragma omp parallel for private (site) reduction(+: score) if(nsites > 800/nstates)
#endif
for (site = 0; site < nsites; site++) {
size_t offset = nstates*site;
UINT *x = dad_branch->partial_pars + offset;
UINT *y = node_branch->partial_pars + offset;
int i;
UINT w = x[0] & y[0];
for (i = 1; i < nstates; i++) {
w |= x[i] & y[i];
}
w = ~w;
score += vml_popcnt(w);
// #ifndef _OPENMP
// if (score >= lower_bound)
// break;
// #endif
}
break;
}
if (branch_subst)
*branch_subst = score - sum_end_node;
// score += sum_end_node;
return score;
}
void PhyloTree::computeAllPartialPars(PhyloNode *node, PhyloNode *dad) {
if (!node) node = (PhyloNode*)root;
FOR_NEIGHBOR_IT(node, dad, it) {
if ((((PhyloNeighbor*)*it)->partial_lh_computed & 1) == 0)
computePartialParsimony((PhyloNeighbor*)*it, node);
PhyloNeighbor *rev = (PhyloNeighbor*) (*it)->node->findNeighbor(node);
if ((rev->partial_lh_computed & 1) == 0)
computePartialParsimony(rev, (PhyloNode*)(*it)->node);
computeAllPartialPars((PhyloNode*)(*it)->node, node);
}
}
double PhyloTree::JukesCantorCorrection(double dist, double alpha) {
double z = (double) aln->num_states / (aln->num_states - 1);
double x = 1.0 - (z * dist);
if (x > 0) {
if (alpha <= 0.0) {
dist = -log(x) / z;
} else {
//if (verbose_mode >= VB_MAX) cout << "alpha: " << alpha << endl;
dist = alpha * (pow(x, -1.0/alpha) - 1) / z;
}
}
// Branch lengths under PoMo are #events, which is ~N^2 * #substitutions
if (aln->seq_type == SEQ_POMO)
dist *= aln->virtual_pop_size * aln->virtual_pop_size;
if (dist < Params::getInstance().min_branch_length)
dist = Params::getInstance().min_branch_length;
return dist;
}
int PhyloTree::setParsimonyBranchLengths() {
NodeVector nodes1, nodes2;
getBranches(nodes1, nodes2);
clearAllPartialLH();
int sum_score = 0;
double persite = 1.0/getAlnNSite();
double alpha = (site_rate) ? site_rate->getGammaShape() : 1.0;
// int pars_score;
//int i, state;
PhyloNeighbor *dad_branch = (PhyloNeighbor*)nodes1[0]->findNeighbor(nodes2[0]);
PhyloNeighbor *node_branch = (PhyloNeighbor*)nodes2[0]->findNeighbor(nodes1[0]);
PhyloNode *dad = (PhyloNode*) nodes1[0];
PhyloNode *node = (PhyloNode*) nodes2[0];
// determine state of the root
int branch_subst = 0;
int pars_score = computeParsimonyBranchFast(dad_branch, dad, &branch_subst);
int site, real_site;
int nsites = (aln->num_parsimony_sites + UINT_BITS-1) / UINT_BITS;
int nstates = aln->getMaxNumStates();
vector<vector<StateType> > sequences;
sequences.resize(nodeNum, vector<StateType>(aln->num_parsimony_sites, aln->STATE_UNKNOWN));
vector<bool> done;
done.resize(nodeNum, false);
done[node->id] = done[dad->id] = true;
int subst = 0;
for (site = 0, real_site = 0; site < nsites; site++) {
size_t offset = nstates*site;
UINT *x = dad_branch->partial_pars + offset;
UINT *y = node_branch->partial_pars + offset;
UINT w = x[0] & y[0];
int state;
for (state = 1; state < nstates; state++) {
w |= x[state] & y[state];
}
UINT bit = 1;
for (int s = 0; s < UINT_BITS && real_site < aln->num_parsimony_sites; s++, bit = bit << 1, real_site++)
if (w & bit) {
// intersection is non-empty
for (state = 0; state < nstates; state++)
if ((x[state] & bit) && (y[state] & bit)) {
// assign the first state in the intersection
sequences[node->id][real_site] = sequences[dad->id][real_site] = state;
break;
}
} else {
// intersection is empty
subst++;
for (state = 0; state < nstates; state++)
if (x[state] & bit) {
// assign the first admissible state
sequences[node->id][real_site] = state;
break;
}
for (state = 0; state < nstates; state++)
if (y[state] & bit) {
// assign the first admissible state
sequences[dad->id][real_site] = state;
break;
}
}
}
ASSERT(subst == branch_subst);
sum_score += subst;
fixOneNegativeBranch(correctBranchLengthF81(subst*persite, alpha), dad_branch, dad);
// walking down the tree to assign node states
for (int id = 1; id < nodes1.size(); id++) {
// arrange such that states of dad are known
if (done[nodes1[id]->id]) {
dad = (PhyloNode*)nodes1[id];
node = (PhyloNode*)nodes2[id];
} else {
ASSERT(done[nodes2[id]->id]);
dad = (PhyloNode*)nodes2[id];
node = (PhyloNode*)nodes1[id];
}
done[node->id] = true;
// now determine states of node
dad_branch = (PhyloNeighbor*)dad->findNeighbor(node);
node_branch = (PhyloNeighbor*)node->findNeighbor(dad);
subst = 0;
for (site = 0, real_site = 0; site < nsites; site++) {
size_t offset = nstates*site;
UINT *x = dad_branch->partial_pars + offset;
//UINT *y = node_branch->partial_pars + offset;
int state;
UINT bit = 1;
for (int s = 0; s < UINT_BITS && real_site < aln->num_parsimony_sites; s++, bit = bit << 1, real_site++) {
StateType dad_state = sequences[dad->id][real_site];
ASSERT(dad_state < nstates);
//ASSERT(y[dad_state] & bit);
if (x[dad_state] & bit) {
// same state as dad
sequences[node->id][real_site] = dad_state;
} else {
// different state from dad
subst++;
for (state = 0; state < nstates; state++)
if (x[state] & bit) {
// assign the first admissible state
sequences[node->id][real_site] = state;
break;
}
}
}
}
fixOneNegativeBranch(correctBranchLengthF81(subst*persite, alpha), dad_branch, dad);
// computeParsimonyBranchFast(dad_branch, dad, &branch_subst);
// ASSERT(subst <= branch_subst);
sum_score += subst;
}
ASSERT(pars_score == sum_score);
return nodes1.size();
}
/****************************************************************************
Sankoff parsimony function
****************************************************************************/
void PhyloTree::initCostMatrix(CostMatrixType cost_type) {
if(cost_matrix){
aligned_free(cost_matrix);
cost_matrix = NULL;
}
ASSERT(aln);
int cost_nstates = aln->num_states;
// allocate memory for cost_matrix
cost_matrix = aligned_alloc<unsigned int>(cost_nstates * cost_nstates);
switch (cost_type) {
case CM_LINEAR:
for(int i = 0; i < cost_nstates; i++){
for(int j = 0; j < cost_nstates; j++)
cost_matrix[i * cost_nstates + j] = abs(i-j);
}
break;
case CM_UNIFORM:
for(int i = 0; i < cost_nstates; i++){
for(int j = 0; j < cost_nstates; j++)
cost_matrix[i * cost_nstates + j] = ((i==j) ? 0 : 1);
}
break;
}
clearAllPartialLH();
}
void PhyloTree::loadCostMatrixFile(char * file_name){
if(cost_matrix){
aligned_free(cost_matrix);
cost_matrix = NULL;
}
// if(strcmp(file_name, "fitch") == 0)
//// if(file_name == NULL)
// cost_matrix = new SankoffCostMatrix(aln->num_states);
// else
// cost_matrix = new SankoffCostMatrix(file_name);
int cost_nstates;
if(strcmp(file_name, "fitch") == 0 || strcmp(file_name, "e") == 0) { // uniform cost
cost_nstates = aln->num_states;
cost_matrix = aligned_alloc<unsigned int>(cost_nstates * cost_nstates);
for(int i = 0; i < cost_nstates; i++)
for(int j = 0; j < cost_nstates; j++){
if(j == i) cost_matrix[i * cost_nstates + j] = 0;
else cost_matrix[i * cost_nstates + j] = 1;
}
} else{ // Sankoff cost
cout << "Loading cost matrix from " << file_name << "..." << endl;
ifstream fin(file_name);
if(!fin.is_open()){
outError("Reading cost matrix file cannot perform. Please check your input file!");
}
fin >> cost_nstates;
if (cost_nstates != aln->num_states)
outError("Cost matrix file does not have the same size as number of alignment states");
// allocate memory for cost_matrix
cost_matrix = aligned_alloc<unsigned int>(cost_nstates * cost_nstates);
// read numbers from file
for(int i = 0; i < cost_nstates; i++){
for(int j = 0; j < cost_nstates; j++)
fin >> cost_matrix[i * cost_nstates + j];
}
fin.close();
}
int i, j, k;
bool changed = false;
for (k = 0; k < cost_nstates; k++)
for (i = 0; i < cost_nstates; i++)
for (j = 0; j < cost_nstates; j++)
if (cost_matrix[i*cost_nstates+j] > cost_matrix[i*cost_nstates+k] + cost_matrix[k*cost_nstates+j]) {
changed = true;
cost_matrix[i*cost_nstates+j] = cost_matrix[i*cost_nstates+k] + cost_matrix[k*cost_nstates+j];
}
if (changed) {
cout << "WARING: Cost matrix does not satisfy triangular inenquality and is automatically fixed to:" << endl;
cout << cost_nstates << endl;
for (i = 0; i < cost_nstates; i++) {
for (j = 0; j < cost_nstates; j++)
cout << " " << cost_matrix[i*cost_nstates+j];
cout << endl;
}
} else {
cout << "Cost matrix satisfies triangular inenquality" << endl;
}
}
void PhyloTree::computeTipPartialParsimony() {
if ((tip_partial_lh_computed & 2) != 0)
return;
tip_partial_lh_computed |= 2;
int i, state, nstates = aln->num_states;
size_t nptn = aln->ordered_pattern.size();
size_t maxptn = get_safe_upper_limit_float(nptn);
int ptn;
for (ptn = 0; ptn < nptn; ptn++)
ptn_freq_pars[ptn] = aln->ordered_pattern[ptn].frequency;
for (ptn = nptn; ptn < maxptn; ptn++)
ptn_freq_pars[ptn] = 0;
ASSERT(tip_partial_pars);
// ambiguous characters
int ambi_aa[] = {
4+8, // B = N or D
32+64, // Z = Q or E
512+1024 // U = I or L
};
memset(tip_partial_pars, 0, (aln->STATE_UNKNOWN+1)*nstates*sizeof(UINT));
// initialize real states with cost_matrix
memcpy(tip_partial_pars, cost_matrix, nstates*nstates*sizeof(UINT));
UINT *this_tip_partial_pars;
switch (aln->seq_type) {
case SEQ_DNA:
for (state = 4; state < 18; state++) {
int cstate = state-nstates+1;
this_tip_partial_pars = &tip_partial_pars[state*nstates];
for (i = 0; i < nstates; i++) {
if ((cstate) & (1 << i))
this_tip_partial_pars[i] = 0;
else {
this_tip_partial_pars[i] = UINT_MAX;
for (int j = 0; j < nstates; j++)
if ((cstate) & (1 << j))
this_tip_partial_pars[i] = min(this_tip_partial_pars[i], cost_matrix[i*nstates+j]);
}
}
}
break;
case SEQ_PROTEIN:
for (state = 0; state < sizeof(ambi_aa)/sizeof(int); state++) {
this_tip_partial_pars = &tip_partial_pars[(state+20)*nstates];
for (i = 0; i < nstates; i++) {
if (ambi_aa[state] & (1 << i))
this_tip_partial_pars[i] = 0;
else {
this_tip_partial_pars[i] = UINT_MAX;
for (int j = 0; j < nstates; j++)
if (ambi_aa[state] & (1 << j))
this_tip_partial_pars[i] = min(this_tip_partial_pars[i], cost_matrix[i*nstates+j]);
}
}
}
break;
case SEQ_POMO:
ASSERT(0 && "POMO not handled with Sankoff parsimony");
break;
default:
break;
}
}
/**
compute partial parsimony score of the subtree rooted at dad
@param dad_branch the branch leading to the subtree
@param dad its dad, used to direct the traversal
*/
void PhyloTree::computePartialParsimonySankoff(PhyloNeighbor *dad_branch, PhyloNode *dad){
// don't recompute the parsimony
if (dad_branch->partial_lh_computed & 2)
return;
Node *node = dad_branch->node;
//assert(node->degree() <= 3);
/*
if(aln->num_states != cost_nstates){
cout << "Your cost matrix is not compatible with the alignment"
<< " in terms of number of states. Please check!" << endl;
exit(1);
}
*/
int nstates = aln->num_states;
assert(dad_branch->partial_pars);
int pars_block_size = getBitsBlockSize();
// internal node
UINT i, j, ptn, min_child_ptn_pars;
UINT * partial_pars = dad_branch->partial_pars;
memset(partial_pars, 0, sizeof(UINT)*pars_block_size);
PhyloNeighbor *left = NULL, *right = NULL;
FOR_NEIGHBOR_IT(node, dad, it)
if ((*it)->node->name != ROOT_NAME) {
if (!(*it)->node->isLeaf())
computePartialParsimonySankoff((PhyloNeighbor*) (*it), (PhyloNode*) node);
if (!left)
left = ((PhyloNeighbor*)*it);
else
right = ((PhyloNeighbor*)*it);
}
if (!left->node->isLeaf() && right->node->isLeaf()) {
// swap leaf and internal node
PhyloNeighbor *tmp = left;
left = right;
right = tmp;
}
ASSERT(node->degree() >= 3);
if (node->degree() > 3) {
// multifurcating node
for (ptn = 0; ptn < aln->ordered_pattern.size(); ptn++) {
int ptn_start_index = ptn*nstates;
UINT *partial_pars_ptr = &partial_pars[ptn_start_index];
FOR_NEIGHBOR_IT(node, dad, it) if ((*it)->node->name != ROOT_NAME) {
if ((*it)->node->isLeaf()) {
// leaf node
UINT *partial_pars_child_ptr = &tip_partial_pars[aln->ordered_pattern[ptn][(*it)->node->id]*nstates];
for(i = 0; i < nstates; i++){
partial_pars_ptr[i] += partial_pars_child_ptr[i];
}
} else {
// internal node
UINT *partial_pars_child_ptr = &((PhyloNeighbor*) (*it))->partial_pars[ptn_start_index];
UINT *cost_matrix_ptr = cost_matrix;
for (i = 0; i < nstates; i++){
// min(j->i) from child_branch
min_child_ptn_pars = partial_pars_child_ptr[0] + cost_matrix_ptr[0];
for(j = 1; j < nstates; j++) {
UINT value = partial_pars_child_ptr[j] + cost_matrix_ptr[j];
min_child_ptn_pars = min(value, min_child_ptn_pars);
}
partial_pars_ptr[i] += min_child_ptn_pars;
cost_matrix_ptr += nstates;
}
}
}
}
} else if (left->node->isLeaf() && right->node->isLeaf()) {
// tip-tip case
for (ptn = 0; ptn < aln->ordered_pattern.size(); ptn++){
// ignore const ptn because it does not affect pars score
//if (aln->at(ptn).isConst()) continue;
int ptn_start_index = ptn*nstates;
UINT *left_ptr = &tip_partial_pars[aln->ordered_pattern[ptn][left->node->id]*nstates];
UINT *right_ptr = &tip_partial_pars[aln->ordered_pattern[ptn][right->node->id]*nstates];
UINT *partial_pars_ptr = &partial_pars[ptn_start_index];
for (i = 0; i < nstates; i++){
// min(j->i) from child_branch
partial_pars_ptr[i] = left_ptr[i] + right_ptr[i];
}
}
} else if (left->node->isLeaf() && !right->node->isLeaf()) {
// tip-inner case
for (ptn = 0; ptn < aln->ordered_pattern.size(); ptn++){
// ignore const ptn because it does not affect pars score
//if (aln->at(ptn).isConst()) continue;
int ptn_start_index = ptn*nstates;
UINT *left_ptr = &tip_partial_pars[aln->ordered_pattern[ptn][left->node->id]*nstates];
UINT *right_ptr = &right->partial_pars[ptn_start_index];
UINT *partial_pars_ptr = &partial_pars[ptn_start_index];
UINT *cost_matrix_ptr = cost_matrix;
UINT right_contrib;
for(i = 0; i < nstates; i++){
// min(j->i) from child_branch
right_contrib = right_ptr[0] + cost_matrix_ptr[0];
for(j = 1; j < nstates; j++) {
right_contrib = min(right_ptr[j] + cost_matrix_ptr[j], right_contrib);
}
partial_pars_ptr[i] = left_ptr[i] + right_contrib;
cost_matrix_ptr += nstates;
}
}
} else {
// inner-inner case
for (ptn = 0; ptn < aln->ordered_pattern.size(); ptn++){
// ignore const ptn because it does not affect pars score
//if (aln->at(ptn).isConst()) continue;
int ptn_start_index = ptn*nstates;
UINT *left_ptr = &left->partial_pars[ptn_start_index];
UINT *right_ptr = &right->partial_pars[ptn_start_index];
UINT *partial_pars_ptr = &partial_pars[ptn_start_index];
UINT *cost_matrix_ptr = cost_matrix;
UINT left_contrib, right_contrib;
for(i = 0; i < nstates; i++){
// min(j->i) from child_branch
left_contrib = left_ptr[0] + cost_matrix_ptr[0];
right_contrib = right_ptr[0] + cost_matrix_ptr[0];
for(j = 1; j < nstates; j++) {
left_contrib = min(left_ptr[j] + cost_matrix_ptr[j], left_contrib);
right_contrib = min(right_ptr[j] + cost_matrix_ptr[j], right_contrib);
}
partial_pars_ptr[i] = left_contrib+right_contrib;
cost_matrix_ptr += nstates;
}
}
}
dad_branch->partial_lh_computed |= 2;
}
/**
compute tree parsimony score based on a particular branch
@param dad_branch the branch leading to the subtree
@param dad its dad, used to direct the traversal
@param branch_subst (OUT) if not NULL, the number of substitutions on this branch
@return parsimony score of the tree
*/
int PhyloTree::computeParsimonyBranchSankoff(PhyloNeighbor *dad_branch, PhyloNode *dad, int *branch_subst) {
if ((tip_partial_lh_computed & 2) == 0)
computeTipPartialParsimony();
PhyloNode *node = (PhyloNode*) dad_branch->node;
PhyloNeighbor *node_branch = (PhyloNeighbor*) node->findNeighbor(dad);
assert(node_branch);
if (!central_partial_pars)
initializeAllPartialPars();
// DTH: I don't really understand what this is for. ###########
// swap node and dad if dad is a leaf
if (node->isLeaf()) {
PhyloNode *tmp_node = dad;
dad = node;
node = tmp_node;
PhyloNeighbor *tmp_nei = dad_branch;
dad_branch = node_branch;
node_branch = tmp_nei;
// cout << "swapped\n";
}
//int nptn = aln->size();
// if(!_pattern_pars) _pattern_pars = aligned_alloc<BootValTypePars>(nptn+VCSIZE_USHORT);
// memset(_pattern_pars, 0, sizeof(BootValTypePars) * (nptn+VCSIZE_USHORT));
if ((dad_branch->partial_lh_computed & 2) == 0 && !node->isLeaf())
computePartialParsimonySankoff(dad_branch, dad);
if ((node_branch->partial_lh_computed & 2) == 0 && !dad->isLeaf())
computePartialParsimonySankoff(node_branch, node);
// now combine likelihood at the branch
UINT tree_pars = 0;
int nstates = aln->num_states;
UINT i, j, ptn;
UINT branch_pars = 0;
if (dad->isLeaf()) {
// external node
for (ptn = 0; ptn < aln->ordered_pattern.size(); ptn++){
int ptn_start_index = ptn * nstates;
UINT *node_branch_ptr = &tip_partial_pars[aln->ordered_pattern[ptn][dad->id]*nstates];
UINT *dad_branch_ptr = &dad_branch->partial_pars[ptn_start_index];
UINT min_ptn_pars = node_branch_ptr[0] + dad_branch_ptr[0];
UINT br_ptn_pars = node_branch_ptr[0];
for (i = 1; i < nstates; i++){
// min(j->i) from node_branch
UINT min_score = node_branch_ptr[i] + dad_branch_ptr[i];
if (min_score < min_ptn_pars) {
min_ptn_pars = min_score;
br_ptn_pars = node_branch_ptr[i];
}
}
//_pattern_pars[ptn] = min_ptn_pars;
tree_pars += min_ptn_pars * aln->ordered_pattern[ptn].frequency;
branch_pars += br_ptn_pars * aln->ordered_pattern[ptn].frequency;
}
} else {
// internal node
for (ptn = 0; ptn < aln->ordered_pattern.size(); ptn++){
int ptn_start_index = ptn * nstates;
UINT *node_branch_ptr = &node_branch->partial_pars[ptn_start_index];
UINT *dad_branch_ptr = &dad_branch->partial_pars[ptn_start_index];
UINT *cost_matrix_ptr = cost_matrix;
UINT min_ptn_pars = UINT_MAX;
UINT br_ptn_pars = UINT_MAX;
for(i = 0; i < nstates; i++){
// min(j->i) from node_branch
UINT min_score = node_branch_ptr[0] + cost_matrix_ptr[0];
UINT branch_score = cost_matrix_ptr[0];
for(j = 1; j < nstates; j++) {
UINT value = node_branch_ptr[j] + cost_matrix_ptr[j];
if (value < min_score) {
min_score = value;
branch_score = cost_matrix_ptr[j];
}
}
min_score = min_score + dad_branch_ptr[i];
if (min_score < min_ptn_pars) {
min_ptn_pars = min_score;
br_ptn_pars = branch_score;
}
cost_matrix_ptr += nstates;
}
//_pattern_pars[ptn] = min_ptn_pars;
tree_pars += min_ptn_pars * aln->ordered_pattern[ptn].frequency;
branch_pars += br_ptn_pars * aln->ordered_pattern[ptn].frequency;
}
}
if (branch_subst)
*branch_subst = branch_pars;
// cout << endl;
return tree_pars;
}
/****************************************************************************
Stepwise addition (greedy) by maximum parsimony
****************************************************************************/
// random generator function:
//ptrdiff_t myrandom(ptrdiff_t i) {
// return random_int(i);
//}
// pointer object to it:
//ptrdiff_t (*p_myrandom)(ptrdiff_t) = myrandom;
void PhyloTree::create3TaxonTree(IntVector &taxon_order, int *rand_stream) {
freeNode();
int nseq = aln->getNSeq();
taxon_order.resize(nseq);
for (int i = 0; i < nseq; i++)
taxon_order[i] = i;
// randomize the addition order
my_random_shuffle(taxon_order.begin(), taxon_order.end(), rand_stream);
root = newNode(nseq);
// create star tree
for (leafNum = 0; leafNum < 3; leafNum++) {
if (leafNum < 3 && verbose_mode >= VB_MAX)
cout << "Add " << aln->getSeqName(taxon_order[leafNum]) << " to the tree" << endl;
Node *new_taxon = newNode(taxon_order[leafNum], aln->getSeqName(taxon_order[leafNum]).c_str());
root->addNeighbor(new_taxon, -1.0);
new_taxon->addNeighbor(root, -1.0);
}
root = root->neighbors[0]->node;
}
void PhyloTree::copyConstraintTree(MTree *tree, IntVector &taxon_order, int *rand_stream) {
MTree::copyTree(tree);
// assign proper taxon IDs
NodeVector nodes;
NodeVector::iterator it;
getTaxa(nodes);
leafNum = nodes.size();
vector<int> pushed;
pushed.resize(aln->getNSeq(), 0);
// name map for fast lookup
StrVector seq_names = aln->getSeqNames();
StringIntMap name2id;
for (auto sit = seq_names.begin(); sit != seq_names.end(); sit++)
name2id[*sit] = sit - seq_names.begin();
// reindex taxon ID from alignment
for (it = nodes.begin(); it != nodes.end(); it++) {
(*it)->id = name2id[(*it)->name];
ASSERT((*it)->id >= 0);
taxon_order.push_back((*it)->id);
pushed[(*it)->id] = 1;
}
ASSERT(taxon_order.size() == constraintTree.leafNum);
// reindex internal nodes properly
nodes.clear();
getInternalNodes(nodes);
for (it = nodes.begin(); it != nodes.end(); it++)
(*it)->id = aln->getNSeq() + (it - nodes.begin());
// add the remaining taxa
for (int i = 0; i < aln->getNSeq(); i++)
if (!pushed[i]) {
taxon_order.push_back(i);
}
// randomize the addition order
my_random_shuffle(taxon_order.begin()+constraintTree.leafNum, taxon_order.end(), rand_stream);
}
/**
get all neighboring branches to a removed node
*/
void getNeiBranches(NeighborVec &removed_nei, NodeVector &attached_node, NodeVector &added_nodes, int i,
NodeVector &nodes1, NodeVector &nodes2)
{
// get target branches surrounding attached_node
FOR_NEIGHBOR_IT(attached_node[i], NULL, it) {
if (attached_node[i]->id < (*it)->node->id) {
nodes1.push_back(attached_node[i]);
nodes2.push_back((*it)->node);
} else {
nodes2.push_back(attached_node[i]);
nodes1.push_back((*it)->node);
}
}
// get target branches surrounding previous added_nodes
int j;
for (j = i-1; j >= 0; j--) {
if (attached_node[j] != attached_node[i])
break;
Node *node = added_nodes[j];
FOR_NEIGHBOR_IT(node, NULL, it) {
if (node->id < (*it)->node->id) {
bool present = false;
for (int k = 0; k < nodes1.size(); k++)
if (node == nodes1[k] && (*it)->node == nodes2[k]) {
present = true;
break;
}
if (present) continue;
nodes1.push_back(node);
nodes2.push_back((*it)->node);
} else {
bool present = false;
for (int k = 0; k < nodes1.size(); k++)
if (node == nodes2[k] && (*it)->node == nodes1[k]) {
present = true;
break;
}
if (present) continue;
nodes2.push_back(node);
nodes1.push_back((*it)->node);
}
}
// check that exactly two branches are added
}
ASSERT(nodes1.size() == 3 + (i-j-1)*2);
}
void PhyloTree::insertNode2Branch(Node* added_node, Node* target_node, Node* target_dad) {
target_node->updateNeighbor(target_dad, added_node, -1.0);
target_dad->updateNeighbor(target_node, added_node, -1.0);
added_node->updateNeighbor((Node*) 1, target_node, -1.0);
added_node->updateNeighbor((Node*) 2, target_dad, -1.0);
((PhyloNeighbor*) added_node->findNeighbor(target_node))->partial_pars =
((PhyloNeighbor*) target_dad->findNeighbor(added_node))->partial_pars;
((PhyloNeighbor*) added_node->findNeighbor(target_dad))->partial_pars =
((PhyloNeighbor*) target_node->findNeighbor(added_node))->partial_pars;
((PhyloNeighbor*) added_node->findNeighbor(target_node))->partial_lh_computed =
((PhyloNeighbor*) target_dad->findNeighbor(added_node))->partial_lh_computed;
((PhyloNeighbor*) added_node->findNeighbor(target_dad))->partial_lh_computed =
((PhyloNeighbor*) target_node->findNeighbor(added_node))->partial_lh_computed;
PhyloNode *ass_node = (PhyloNode*)added_node->neighbors[0]->node;
((PhyloNeighbor*)ass_node->findNeighbor(added_node))->clearPartialLh();
ass_node->clearReversePartialLh((PhyloNode*)added_node);
}
int PhyloTree::computeParsimonyTree(const char *out_prefix, Alignment *alignment, int *rand_stream) {
aln = alignment;
int nseq = aln->getNSeq();
if (nseq < 3)
outError(ERR_FEW_TAXA);
IntVector taxon_order;
taxon_order.reserve(aln->getNSeq());
NeighborVec removed_nei; // removed Neighbor
NodeVector attached_node; // node attached to removed Neighbor
NodeVector added_nodes; // newly added nodes
int newNodeID;
size_t index;
size_t pars_block_size = getBitsBlockSize();
if (constraintTree.empty()) {
create3TaxonTree(taxon_order, rand_stream);
ASSERT(leafNum == 3);
initializeAllPartialPars();
index = (2*leafNum-3)*2;
newNodeID = nseq + leafNum - 2;
} else {
// first copy the constraint tree
copyConstraintTree(&constraintTree, taxon_order, rand_stream);
newNodeID = nodeNum - leafNum + nseq;
index = (branchNum)*2;
// initialize partial_pars to reuse later
initializeAllPartialPars();
// extract a bifurcating subtree and get removed nodes to insert later
extractBifurcatingSubTree(removed_nei, attached_node, rand_stream);
added_nodes.reserve(removed_nei.size());
}
if (verbose_mode >= VB_MAX)
cout << "computeParsimony: " << computeParsimony() << endl;
//UINT *tmp_partial_pars;
//tmp_partial_pars = newBitsBlock();
if (nseq == 3)
best_pars_score = computeParsimony();
best_pars_score = 0;
if (leafNum == nseq) {
outWarning("Constraint tree has all taxa and is bifurcating, which strictly enforces final tree!");
}
// stepwise adding the next taxon for the remaining taxa
for (int step = 0; leafNum < nseq; step++) {
NodeVector nodes1, nodes2;
PhyloNode *target_node = NULL;
PhyloNode *target_dad = NULL;
best_pars_score = UINT_MAX;
// create a new node attached to new taxon or removed node
PhyloNode *added_node = (PhyloNode*)newNode(newNodeID++);
PhyloNode *new_taxon;
if (step < removed_nei.size()) {
// add the removed_nei (from constraint tree) back to the tree
getNeiBranches(removed_nei, attached_node, added_nodes, step, nodes1, nodes2);
new_taxon = (PhyloNode*)removed_nei[step]->node;
added_node->neighbors.push_back(removed_nei[step]);
new_taxon->updateNeighbor(attached_node[step], added_node);
added_nodes.push_back(added_node);
} else {
// add new taxon to the tree
if (verbose_mode >= VB_MAX)
cout << "Adding " << aln->getSeqName(taxon_order[leafNum]) << " to the tree..." << endl;
getBranches(nodes1, nodes2);
// allocate a new taxon
new_taxon = (PhyloNode*)newNode(taxon_order[leafNum], aln->getSeqName(taxon_order[leafNum]).c_str());
// link new_taxon and added_node
added_node->addNeighbor(new_taxon, -1.0);
new_taxon->addNeighbor(added_node, -1.0);
// allocate memory
((PhyloNeighbor*)new_taxon->findNeighbor(added_node))->partial_pars = central_partial_pars + ((index++) * pars_block_size);
((PhyloNeighbor*)added_node->findNeighbor(new_taxon))->partial_pars = central_partial_pars + ((index++) * pars_block_size);
}
// preserve two neighbors
added_node->addNeighbor((Node*) 1, -1.0);
added_node->addNeighbor((Node*) 2, -1.0);
for (int nodeid = 0; nodeid < nodes1.size(); nodeid++) {
int score = addTaxonMPFast(new_taxon, added_node, nodes1[nodeid], nodes2[nodeid]);
if (score < best_pars_score) {
best_pars_score = score;
target_node = (PhyloNode*)nodes1[nodeid];
target_dad = (PhyloNode*)nodes2[nodeid];
}
}
if (verbose_mode >= VB_MAX)
cout << ", score = " << best_pars_score << endl;
// now insert the new node in the middle of the branch node-dad
insertNode2Branch(added_node, target_node, target_dad);
// assign partial_pars storage
((PhyloNeighbor*)target_dad->findNeighbor(added_node))->clearPartialLh();
((PhyloNeighbor*)target_dad->findNeighbor(added_node))->partial_pars = central_partial_pars + ((index++) * pars_block_size);
((PhyloNeighbor*)target_node->findNeighbor(added_node))->clearPartialLh();
((PhyloNeighbor*)target_node->findNeighbor(added_node))->partial_pars = central_partial_pars + ((index++) * pars_block_size);
target_dad->clearReversePartialLh(added_node);
target_node->clearReversePartialLh(added_node);
// increase number of taxa
leafNum += getNumTaxa(new_taxon, added_node);
}
ASSERT(index == 4*leafNum-6);
nodeNum = 2 * leafNum - 2;
initializeTree();
// parsimony tree is always unrooted
bool orig_rooted = rooted;
rooted = false;
setAlignment(alignment);
// initializeAllPartialPars();
// clearAllPartialLH();
fixNegativeBranch(true);
// convert to rooted tree if originally so
if (orig_rooted)
convertToRooted();
if (out_prefix) {
string file_name = out_prefix;
file_name += ".parstree";
printTree(file_name.c_str(), WT_NEWLINE + WT_BR_LEN);
}
// if (isSuperTree())
// ((PhyloSuperTree*)this)->mapTrees();
return best_pars_score;
}
int PhyloTree::addTaxonMPFast(Node *added_taxon, Node* added_node, Node* node, Node* dad) {
// now insert the new node in the middle of the branch node-dad
insertNode2Branch(added_node, node, dad);
// compute the likelihood
int score = computeParsimonyBranch((PhyloNeighbor*)added_taxon->findNeighbor(added_node), (PhyloNode*)added_taxon);
// remove the added node
node->updateNeighbor(added_node, dad);
dad->updateNeighbor(added_node, node);
added_node->updateNeighbor(node, (Node*) 1);
added_node->updateNeighbor(dad, (Node*) 2);
// set partial_pars to COMPUTED
((PhyloNeighbor*)node->findNeighbor(dad))->partial_lh_computed |= 2;
((PhyloNeighbor*)dad->findNeighbor(node))->partial_lh_computed |= 2;
// now tranverse the tree downwards
// FOR_NEIGHBOR_IT(node, dad, it){
// addTaxonMPFast(added_node, target_node, target_dad, target_partial_pars, (*it)->node, node);
// }
return score;
}
void PhyloTree::extractBifurcatingSubTree(NeighborVec &removed_nei, NodeVector &attached_node, int *rand_stream) {
NodeVector nodes;
getMultifurcatingNodes(nodes);
if (nodes.empty())
return;
int i;
computeBranchDirection();
// firstly make bifurcating tree
for (NodeVector::iterator it = nodes.begin(); it != nodes.end(); it++)
{
Node *node = (*it);
int id[3];
id[0] = -1;
// find the neighbor toward root to preserve root
for (i = 0; i < node->neighbors.size(); i++)
if (((PhyloNeighbor*)node->neighbors[i])->direction == TOWARD_ROOT) {
id[0] = i;
break;
}
ASSERT(id[0] >= 0);
// randomly choose 2 neighbors to reserve
do {
id[1] = random_int(node->degree(), rand_stream);
} while (id[1] == id[0]);
do {
id[2] = random_int(node->degree(), rand_stream);
} while (id[2] == id[0] || id[2] == id[1]);
std::sort(id, id+3);
// remove taxa
int cur_size = removed_nei.size();
for (i = 0; i < node->degree(); i++)
if (i != id[0] && i != id[1] && i != id[2]) {
removed_nei.push_back(node->neighbors[i]);
attached_node.push_back(node);
}
// randomize removed_nei
my_random_shuffle(removed_nei.begin() + cur_size, removed_nei.end(), rand_stream);
// remove neigbors to make bifurcating tree
node->neighbors[0] = node->neighbors[id[0]];
node->neighbors[1] = node->neighbors[id[1]];
node->neighbors[2] = node->neighbors[id[2]];
node->neighbors.resize(3);
}
leafNum = getNumTaxa();
}
|