File: multitree_iterator.cpp

package info (click to toggle)
iqtree 2.0.7%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 14,700 kB
  • sloc: cpp: 142,571; ansic: 57,789; sh: 275; python: 242; makefile: 95
file content (179 lines) | stat: -rw-r--r-- 5,734 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#include "multitree_iterator.hpp"

namespace terraces {

multitree_iterator::multitree_iterator(const multitree_node* root)
        : m_tree(2 * root->num_leaves - 1), m_choices(m_tree.size()),
          m_unconstrained_choices(m_tree.size()) {
	m_choices[0] = {root};
	init_subtree(0);
}

void multitree_iterator::init_subtree(index i, index single_leaf) {
	m_tree[i].lchild() = none;
	m_tree[i].rchild() = none;
	m_tree[i].taxon() = single_leaf;
}

void multitree_iterator::init_subtree(index i, multitree_nodes::two_leaves two_leaves) {
	const auto l = i + 1;
	const auto r = i + 2;
	m_tree[i].lchild() = l;
	m_tree[i].rchild() = r;
	m_tree[i].taxon() = none;
	m_tree[l] = {i, none, none, two_leaves.left_leaf};
	m_tree[r] = {i, none, none, two_leaves.right_leaf};
}

void multitree_iterator::init_subtree(index i, multitree_nodes::unconstrained unconstrained) {
	m_unconstrained_choices[i] = small_bipartition::full_set(unconstrained.num_leaves());
	init_subtree_unconstrained(i, unconstrained);
}

void multitree_iterator::init_subtree_unconstrained(index i, multitree_nodes::unconstrained data) {
	const auto& bip = m_unconstrained_choices[i];
	auto& node = m_tree[i];
	if (bip.num_leaves() <= 2) {
		if (bip.num_leaves() == 1) {
			node.lchild() = none;
			node.rchild() = none;
			node.taxon() = data.begin[bip.leftmost_leaf()];
		} else {
			node.lchild() = i + 1;
			node.rchild() = i + 2;
			node.taxon() = none;
			m_tree[i + 1] = {i, none, none, data.begin[bip.leftmost_leaf()]};
			m_tree[i + 2] = {i, none, none, data.begin[bip.rightmost_leaf()]};
		}
	} else {
		const auto lbip = small_bipartition{bip.left_mask()};
		const auto rbip = small_bipartition{bip.right_mask()};
		const auto left = i + 1;
		const auto right = i + 1 + 2 * lbip.num_leaves() - 1;
		node.lchild() = left;
		node.rchild() = right;
		node.taxon() = none;
		m_unconstrained_choices[left] = lbip;
		m_unconstrained_choices[right] = rbip;
		m_tree[node.lchild()].parent() = i;
		m_tree[node.rchild()].parent() = i;

		init_subtree_unconstrained(right, data);
		init_subtree_unconstrained(left, data);
		init_subtree_unconstrained(right, data);
	}
}

void multitree_iterator::init_subtree(index i, multitree_nodes::inner_node inner) {
	const auto left = inner.left;
	const auto right = inner.right;
	const auto lindex = i + 1;
	const auto rindex = lindex + (2 * left->num_leaves - 1);
	m_tree[i].lchild() = lindex;
	m_tree[i].rchild() = rindex;
	m_tree[i].taxon() = none;
	m_tree[lindex].parent() = i;
	m_tree[rindex].parent() = i;
	m_choices[lindex] = {left};
	m_choices[rindex] = {right};
	init_subtree(lindex);
	init_subtree(rindex);
}

void multitree_iterator::init_subtree(index i) {
	const auto mt_node = m_choices[i].current;
	switch (mt_node->type) {
	case multitree_node_type::base_single_leaf:
		return init_subtree(i, mt_node->single_leaf);
	case multitree_node_type::base_two_leaves:
		return init_subtree(i, mt_node->two_leaves);
	case multitree_node_type::base_unconstrained:
		return init_subtree(i, mt_node->unconstrained);
	case multitree_node_type::inner_node:
		return init_subtree(i, mt_node->inner_node);
	case multitree_node_type::alternative_array:
		assert(false && "Malformed multitree: Nested alternative_arrays");
		break;
	case multitree_node_type::unexplored:
		assert(false && "Must not use multitree_iterator with unexplored nodes");
		break;
	}
}

bool multitree_iterator::next(index root) {
	auto node = m_tree[root];
	auto left = node.lchild();
	auto right = node.rchild();
	auto& choice = m_choices[root];
	switch (choice.current->type) {
	case multitree_node_type::base_single_leaf:
	case multitree_node_type::base_two_leaves:
		return false;
	case multitree_node_type::base_unconstrained:
		return next_unconstrained(root, choice.current->unconstrained);
	case multitree_node_type::inner_node:
	case multitree_node_type::alternative_array:
		return next(left) || (next(right) && reset(left)) ||
		       (choice.has_choices() && choice.next() && (init_subtree(root), true));
	case multitree_node_type::unexplored: {
		assert(false && "Must not use multitree_iterator with unexplored nodes");
		return false;
	}
	default:
		assert(false && "Unknown node type in multitree");
		return false;
	}
}

bool multitree_iterator::next_unconstrained(index root, multitree_nodes::unconstrained data) {
	auto node = m_tree[root];
	auto left = node.lchild();
	auto right = node.rchild();
	auto& choice = m_unconstrained_choices[root];
	if (!choice.has_choices()) {
		return false;
	}
	return next_unconstrained(left, data) ||
	       (next_unconstrained(right, data) && reset_unconstrained(left, data)) ||
	       (choice.next() && (init_subtree_unconstrained(root, data), true));
}

bool multitree_iterator::reset(index root) {
	auto& choice = m_choices[root];
	if (choice.has_choices()) {
		choice.reset();
	}
	switch (choice.current->type) {
	case multitree_node_type::base_single_leaf:
	case multitree_node_type::base_two_leaves:
		break;
	case multitree_node_type::base_unconstrained:
		reset_unconstrained(root, choice.current->unconstrained);
		break;
	case multitree_node_type::inner_node:
	case multitree_node_type::alternative_array:
		init_subtree(root);
		break;
	case multitree_node_type::unexplored: {
		assert(false && "Must not use multitree_iterator with unexplored nodes");
		break;
	}
	default:
		assert(false && "Unknown node type in multitree");
		break;
	}
	return true;
}

bool multitree_iterator::reset_unconstrained(index root, multitree_nodes::unconstrained data) {
	auto& choice = m_unconstrained_choices[root];
	if (choice.has_choices()) {
		choice.reset();
	}
	init_subtree_unconstrained(root, data);
	return true;
}

bool multitree_iterator::next() { return next(0); }

} // namespace terraces