1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
|
.help iminterp Jul84 "Math Package"
.ce
Specifications for the Image Interpolator Package
.ce
Lindsey Davis
.ce
Vesa Junkkarinen
.ce
August 1984
.sh
1. Introduction
One of the most common operations in image processing is
interpolation in a data array. Due to the large amount of data involved,
efficiency is highly important. The advantage of having locally written
interpolators, includes the ability to optimize for uniformly spaced data
and the possibility of adding features that are useful to the final
application.
.sh
2. Requirements
.ls (1)
The package shall take as input a one-dimensional array containing image
data. The pixels are assumed to be equally spaced along a line.
The coordinates of a pixel are assumed to be
the same as the subscript of the pixel in the data array.
The coordinate of the first pixel in the array and the spacing between pixels
is assumed to be 1.0. All pixels are assumed to be good.
Checking for INDEF valued and out of bounds pixels is the responsibility of the
user. A routine to remove INDEF valued pixels from a data array shall be
included in the package.
.le
.ls (2)
The package is divided into array sequential interpolators and array
random interpolators. The sequential interpolators have been optimized
for returning many values as is the case when an array is shifted, or
oversampled at many points in order to produce a
smooth plot.
The random interpolators allow the evaluation of a few interpolated
points without the computing time and storage overhead required for
setting up the sequential version.
.le
.ls (3)
The quality of the interpolant will be set at run time. The options are:
.nf
II_NEAREST - nearest neighbour
II_LINEAR - linear interpolation
II_POLY3 - 3rd order divided differences
II_POLY5 - 5th order divided differences
II_SPLINE3 - cubic spline
.fi
The calling sequences shall be invariant to the interpolant selected.
Routines should be designed so that new interpolants can be added
with minimal changes to the code and no change to the calling sequences.
.le
.ls (4)
The interpolant parameters and the arrays necessary to store the coefficients
are stored in a structure referenced by a pointer. The pointer is returned
to the user program by the initial call to ASIINIT or ASIRESTORE and freed
by a call to ASIFREE (see section 3.1).
.le
.ls (5)
The package routines shall be able to:
.ls o
Calculate the coefficients of the interpolant and store these coefficients in
the appropriate part of the interpolant descriptor structure.
.le
.ls o
Evaluate the interplant at a given x(s) coordinate(s).
.le
.ls o
Calculate the derivatives of the interpolant at a given value of x.
.le
.ls o
Integrate the interpolant over a specified x interval.
.le
.ls o
Store the interpolant in a user supplied array. Restore the saved interpolant
to the interpolant descriptor structure for later use by ASIEVAL, ASIVECTOR,
ASIDER and ASIGRL.
.le
.sh
3. Specifications
.sh
3.1. The Array Sequential Interpolator Routines
The package prefix is asi and the package routines are:
.nf
asiinit (asi, interp_type)
asifit (asi, datain, npix)
y = asieval (asi, x)
asivector (asi, x, yfit, npix)
asider (asi, x, der, nder)
v = asigrl (asi, a, b)
asisave (asi, interpolant)
asirestore (asi, interpolant)
asifree (asi)
.fi
.sh
3.2. The Array Random Interpolator Routines
The package prefix is ari and the package routines are:
.nf
y = arieval (x, datain, npix, interp_type)
arider (x, datain, npix, der, nder, interp_type)
.fi
.sh
3.3. Miscellaneous
A routine has been included in the package to remove INDEF valued
pixels from an array.
.nf
arbpix (datain, dataout, npix, interp_type, boundary_type)
.fi
.sh
3.4. Algorithms
.sh
3.4.1. Coefficients
The coefficient array used by the asi routines is calculated by ASIFIT.
ASIFIT accepts an array of data, checks that the number
of data points is appropriate for the interpolant selected, allocates
space for the interpolant, and calculates the coefficients.
Boundary coefficient values are calculated
using boundary projection. With the exception of the cubic spline interpolant,
the coefficients are stored as the data points.
The B-spline coefficients are
calculated using natural end conditions (Prenter 1975).
After a call to ASIFIT the coefficient array contains the following.
.nf
case II_NEAREST:
# no boundary conditions necessary
coeff[1] = datain[1]
.
.
.
coeff[npts] = datain[npix]
case II_LINEAR:
# coeff[npxix+1] required if x = npix
coeff[1] = datain[1]
.
.
.
coeff[npix] = datain[npix]
coeff[npix+1] = 2. * datain[npix] - datain[npix-1]
case II_POLY3:
# coeff[0] required if x = 1
# coeff[npix+1], coeff[npix+2] required if x = npix
coeff[0] = 2. * datain[1] - datain[2]
coeff[1] = datain[1]
.
.
.
coeff[npix] = datain[npix]
coeff[npix+1] = 2. * datain[npix] - datain[npix-1]
coeff[npix+2] = 2. * datain[npix] - datain[npix-2]
case II_POLY5:
# coeff[1], coeff[0] reqired if x = 1
# coeff[npix+1], coeff[npix+2], coeff[npix=3]
# required if x = npix
coeff[-1] = 2. * datain[1] - datain[3]
coeff[0] = 2. * datain[1] - datain[2]
coeff[1] = datain[1]
.
.
.
coeff[npix] = datain[npix]
coeff[npix+1] = 2. * datain[npix] - datain[npix-1]
coeff[npix+2] = 2. * datain[npix] - datain[npix-2]
coeff[npix+3] = 2. * datain[npix] - datain[npix-3]
case SPLINE3:
# coeff[0] = 2nd der at x = 1, coeff[0] = 0.
# coeff[npix+1] = 2nd der at x = npts, coeff[npix+1] = 0.
# coeff[npix+2] = 0., required if x = npix
coeff[0] = b[1]
coeff[1] = b[2]
.
.
.
coeff[npix] = b[npix+1]
coeff[npix+1] = b[npix+2]
coeff[npix+2] = 0.
.fi
.sh
3.4.2. Evaluation
The ASIEVAL and ASIVECTOR routines have been optimized to be as efficient
as possible. The values of the II_NEAREST and II_LINEAR interpolants
are calculated directly. The II_SPLINE3 interpolant is evaluated using
polynomial coefficients calculated directly from the B-spline coefficients
(de Boor 1978). Values of the higher order polynomial interpolants
are calculated using central differences. The equations for each case are
listed below.
.nf
case II_NEAREST:
y = coeff[int (x + 0.5)]
case II_LINEAR:
nx = x
y = (x - nx) * coeff[nx+1] + (nx + 1 - x) * coeff[nx]
case II_POLY3:
nx = x
s = x - nx
t = 1. - s
# second central differences
cd20 = 1./6. * (coeff[nx+1] - 2. * coeff[nx] + coeff[nx-1])
cd21 = 1./6. * (coeff[nx+2] - 2. * coeff[nx+1] + coeff[nx])
y = s * (coeff[nx+1] + (s * s - 1.) * cd21) + t * (coeff[nx] +
(t * t - 1.) * cd20)
case II_POLY5:
nx = x
s = x - nx
t = 1. - s
# second central differences
cd20 = 1./6. * (coeff[nx+1] - 2. * coeff[nx] + coeff[nx-1])
cd21 = 1./6. * (coeff[nx+2] - 2. * coeff[nx+1] + coeff[nx])
# fourth central diffreences
cd40 = 1./120. * (coeff[nx-2] - 4. * coeff[nx-1] + 6. * coeff[nx] - 4. *
coeff[nx+1] + a[nx+2])
cd41 = 1./120. * (coeff[nx-1] - 4. * coeff[nx] + 6. * coeff[nx+1] - 4. *
coeff[nx+2] + coeff[nx+3]
y = s * (coeff[nx+1] + (s * s - 1.) * (cd21 + (s * s - 4.) * cd41)) +
t * (coeff[nx] + (t * t - 1.) * (cd20 + (t * t - 4.) * cd40))
case II_SPLINE3:
nx = x
s = x - nx
pc[1] = coeff[nx-1] + 4. * coeff[nx] + coeff[nx+1]
pc[2] = 3. * (coeff[nx+1] - coeff[nx-1])
pc[3] = 3. * (coeff[nx-1] - 2. * coeff[nx] + coeff[nx+1])
pc[4] = -coeff[nx-1] + 3. * coeff[nx] - 3. * coeff[nx+1] + coeff[nx+2]
y = pc[1] + s * (pc[2] + s * (pc[3] + s * pc[4]))
.fi
The ARIEVAL routine uses the expressions above to evaluate the
interpolant. However unlike ASIEVAL, ARIEVAL does not use a previously
calculated coefficient array. Instead ARIEVAL selects the appropriate
portion of the data array, calculates the coefficients and boundary
coefficients if necessary, and evaluates the interpolant at the time it
is called. The cubic spline interpolant uses at most SPLTS (currently 16)
data points to calculate the B-spline coefficients.
.sh
3.4.3. Derivatives
Derivatives of the interpolant are calculated by evaluating the
derivatives of the interpolating polynomial. For all interpolants der[1]
equals the value of the interpolant at x.
For the sake of efficiency the derivatives
of the II_NEAREST and II_LINEAR interpolants are calculated directly.
.nf
case II_NEAREST:
der[1] = coeff[int (x+0.5)]
case II_LINEAR:
der[1] = (x - nx) * coeff [nx+1] + (nx + 1 - x) * coeff[nx]
der[2] = coeff[nx+1] - coeff[nx]
.fi
In order to calculate the derivatives of the cubic spline and
polynomial interpolants
the coefficients of the interpolating polynomial must be calculated.
The polynomial
coefficients for the cubic spline interpolant are computed directly from the
B-spline coefficients (see 3.4.2.). The higher order polynomial
interpolant coefficients are calculated as follows.
First the appropriate portion of the coefficient array is loaded.
.nf
do i = 1, nterms
d[i] = coeff[nx - nterms/2 + i]
.fi
Next the divided differences are calculated (Conte and de Boor 1972).
.nf
do k = 1, nterms - 1
do i = 1, nterms - k
d[i] = (d[i+1] - d[i]) / k
.fi
The d[i] are the coefficients of an interpolating polynomial of the
following form. The x[i] are the nterms data points surrounding the
point of interest.
.nf
p(x) = d[1] * (x-x[1]) * ... * (x-x[nterms-1) +
d[2] * (x-x[2]) * ... * (x-x[nterms-1]) + ... + d[nterms]
.fi
Next a new set of polynomial coefficients are calculated
(Conte and de Boor 1972).
.nf
do k = nterms, 2, -1
do i = 2, k
d[i] = d[i] + d[i-1] * (k - i - nterms/2)
.fi
The new d[i] are the coefficients of the follwoing polynomial.
.nf
nx = x
p(x) = d[1] * (x-nx) ** (nterms-1) + d[2] * (x-nx) ** (nterms-2) + ...
d[nterms]
.fi
The d[i] array is flipped. The value and derivatives
of the interpolant are then calculated using the d[i] array and
nested multiplication.
.nf
s = x - nx
do k = 1, nder {
accum = d[nterms-k+1]
do j = nterms - k, 1, -1
accum = d[j] + s * accum
der[k] = accum
# differnetiate
do j = 1, nterms - k
d[j] = j * d[j + 1]
}
.fi
ARIDER calculates the derivatives of the interpolant using the same
technique ASIDER. However ARIDER does not use a previously calculated
coefficient array like ASIDER. Instead ARIDER selects the appropriate portion
of the data array, calculates the coefficients and boundary coefficients,
and computes the derivatives at the time it is called.
.sh
3.4.5. Integration
ASIGRL calculates the integral of the interpolant between fixed limits
by integrating the interpolating polynomial. The coefficients of the
interpolating polynomial are calculated as discussed in section 3.4.4.
.sh
4. Usage
.sh
4.1. User Notes
The following series of steps illustrates the use of the package.
.ls 4
.ls (1)
Insert an include <iminterp.h> statement in the calling program to make
the IINTERP definitions available to the user program.
.le
.ls (2)
Remove INDEF valued pixels from the data using ARBPIX.
.le
.ls (3)
Call ASIINIT to initialize the interpolant parameters.
.le
.ls (4)
Call ASIFIT to calculate the coefficients of the interpolant.
.le
.ls (5)
Evaluate the interpolant at a given value of x(s) using ASIEVAL or
ASIVECTOR.
.le
.ls (6)
Calculate the derivatives and integral or the interpolant using
ASIDER and ASIGRL.
.le
.ls (7)
Free the interpolator structure by calling ASIFREE.
.le
.le
The interpolant can be saved and restored using ASISAVE and ASIRESTORE.
If the values and derivatives of only a few points in an array are desired
ARIEVAL and ARIDER can be called.
.sh
4.2. Examples
.nf
Example 1: Shift a data array by a constant amount
include <iminterp.h>
...
call asiinit (asi, II_POLY5)
call asifit (asi, inrow, npix)
do i = 1, npix
outrow[i] = asieval (asi, i + shift)
call asifree (asi)
...
Example 2: Calculate the integral under the data array
include <iminterp.h>
...
call asiinit (asi, II_POLY5)
call asifit (asi, datain, npix)
integral = asigrl (asi, 1. real (npix))
call asifree (asi)
...
Example 2: Store interpolant for later use by ASIEVAL
LEN_INTERP must be at least npix + 8 units long where npix is
is defined in the call to ASIFIT.
include <iminterp.h>
real interpolant[LEN_INTERP]
...
call asiinit (asi, II_POLY3)
call asifit (asi, datain, npix)
call asisave (asi, interpolant)
call asifree (asi)
...
call asirestore (asi, interpolant)
do i = 1, npts
yfit[i] = asieval (asi, x[i])
call asifree (asi)
...
.fi
.sh
5. Detailed Design
.sh
5.1. Interpolator Descriptor
The interpolant parameters and coefficients are stored in a
structure listed below.
.nf
define LEN_ASISTRUCT 4 # Length in structure units of
# interpolant descriptor
define ASI_TYPE Memi[$1] # Interpolant type
define ASI_NCOEFF Memi[$1+1] # No. of coefficients
define ASI_OFFSET Memi[$1+2] # First "data" point in
# coefficient array
define ASI_COEFF Memi[$1+3] # Pointer to coefficient array
.fi
.sh
5.2. Storage Requirements
The interpolant descriptor requires LEN_ASISTRUCT storage units. The
coefficient array requires ASI_NCOEFF(asi) real storage elements, where
ASI_NCOEFF(asi) is defined as follows.
.nf
ASI_NCOEFF(asi) = npix # II_NEAREST
ASI_NCOEFF(asi) = npix+1 # II_LINEAR
ASI_NCOEFF(asi) = npix+3 # II_POLY3
ASI_NCOEFF(asi) = npix+5 # II_POLY5
ASI_NCOEFF(asi) = npix+3 # II_SPLINE3
.fi
.sh
6. References
.ls (1)
Carl de Boor, "A Practical Guide to Splines", 1978, Springer-Verlag New
York Inc.
.le
.ls (2)
S.D. Conte and C. de Boor, "Elementary Numerical Analysis", 1972, McGraw-Hill,
Inc.
.le
.ls (3)
P.M. Prenter, "Splines and Variational Methods", 1975, John Wiley and Sons Inc.
.le
.endhelp
|