1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <math.h>
# II_PCPOLY3 -- Procedure to evaluate the polynomial coefficients
# of third order in x and y using Everetts formuala.
procedure ii_pcpoly3 (coeff, index, len_coeff, pcoeff, len_pcoeff)
real coeff[ARB] # 1D array of interpolant coeffcients
int index # pointer into coeff array
int len_coeff # row length of coeffcients
real pcoeff[len_pcoeff,ARB] # polynomial coefficients
int len_pcoeff # row length of pcoeff
int tptr
int i, j
real cd20, cd21, temp[4]
begin
# determine polynomial coefficients in x
tptr = index
do i = 1, 4 {
# calculate the central differences
cd20 = 1./6. * (coeff[tptr+1] - 2. * coeff[tptr] + coeff[tptr-1])
cd21 = 1./6. * (coeff[tptr+2] - 2. * coeff[tptr+1] + coeff[tptr])
# calculate the polynomial coefficients in x at each y
pcoeff[1,i] = coeff[tptr]
pcoeff[2,i] = coeff[tptr+1] - coeff[tptr] - 2. * cd20 - cd21
pcoeff[3,i] = 3. * cd20
pcoeff[4,i] = cd21 - cd20
tptr = tptr + len_coeff
}
# calculate polynomial coefficients in y
do j = 1, 4 {
# calculate the central differences
cd20 = 1./6. * (pcoeff[j,3] - 2. * pcoeff[j,2] + pcoeff[j,1])
cd21 = 1./6. * (pcoeff[j,4] - 2. * pcoeff[j,3] + pcoeff[j,2])
# calculate the final coefficients
temp[1] = pcoeff[j,2]
temp[2] = pcoeff[j,3] - pcoeff[j,2] - 2. * cd20 - cd21
temp[3] = 3. * cd20
temp[4] = cd21 - cd20
do i = 1, 4
pcoeff[j,i] = temp[i]
}
end
# II_PCPOLY5 -- Procedure to evaluate the polynomial coefficients
# of fifth order in x and y using Everetts formuala.
procedure ii_pcpoly5 (coeff, index, len_coeff, pcoeff, len_pcoeff)
real coeff[ARB] # 1D array of interpolant coeffcients
int index # pointer into coeff array
int len_coeff # row length of coeffcients
real pcoeff[len_pcoeff,ARB] # polynomial coefficients
int len_pcoeff # row length of pcoeff array
int tptr
int i, j
real cd20, cd21, cd40, cd41, temp[6]
begin
# determine polynomial coefficients in x
tptr = index
do i = 1, 6 {
# calculate the central differences
cd20 = 1./6. * (coeff[tptr+1] - 2. * coeff[tptr] + coeff[tptr-1])
cd21 = 1./6. * (coeff[tptr+2] - 2. * coeff[tptr+1] + coeff[tptr])
cd40 = 1./120. * (coeff[tptr-2] - 4. * coeff[tptr-1] +
6. * coeff[tptr] - 4. * coeff[tptr+1] +
coeff[tptr+2])
cd41 = 1./120. * (coeff[tptr-1] - 4. * coeff[tptr] +
6. * coeff[tptr+1] - 4. * coeff[tptr+2] +
coeff[tptr+3])
# calculate coefficients in x for each y
pcoeff[1,i] = coeff[tptr]
pcoeff[2,i] = coeff[tptr+1] - coeff[tptr] - 2. * cd20 - cd21 +
6. * cd40 + 4. * cd41
pcoeff[3,i] = 3. * cd20 - 5. * cd40
pcoeff[4,i] = cd21 - cd20 - 5. * (cd40 + cd41)
pcoeff[5,i] = 5. * cd40
pcoeff[6,i] = cd41 - cd40
tptr = tptr + len_coeff
}
# calculate polynomial coefficients in y
do j = 1, 6 {
# calculate the central differences
cd20 = 1./6. * (pcoeff[j,4] - 2. * pcoeff[j,3] + pcoeff[j,2])
cd21 = 1./6. * (pcoeff[j,5] - 2. * pcoeff[j,4] + pcoeff[j,3])
cd40 = 1./120. * (pcoeff[j,1] - 4. * pcoeff[j,2] +
6. * pcoeff[j,3] - 4. * pcoeff[j,4] + pcoeff[j,5])
cd41 = 1./120. * (pcoeff[j,2] - 4. * pcoeff[j,3] +
6. * pcoeff[j,4] - 4. * pcoeff[j,5] + pcoeff[j,6])
# calculate the final coefficients
temp[1] = pcoeff[j,3]
temp[2] = pcoeff[j,4] - pcoeff[j,3] - 2. * cd20 - cd21 +
6. * cd40 + 4. * cd41
temp[3] = 3. * cd20 - 5. * cd40
temp[4] = cd21 - cd20 - 5. * (cd40 + cd41)
temp[5] = 5. * cd40
temp[6] = cd41 - cd40
do i = 1, 6
pcoeff[j,i] = temp[i]
}
end
# II_PCSPLINE3 -- Procedure to evaluate the polynomial coefficients
# of bicubic spline.
procedure ii_pcspline3 (coeff, index, len_coeff, pcoeff, len_pcoeff)
real coeff[ARB] # 1D array of interpolant coeffcients
int index # pointer into coeff array
int len_coeff # row length of coeffcients
real pcoeff[len_pcoeff,ARB] # polynomial coefficients
int len_pcoeff # row length of pcoeff
int tptr
int i, j
real temp[4]
begin
# determine polynomial coefficients in x
tptr = index
do i = 1, 4 {
pcoeff[1,i] = coeff[tptr+1] + 4. * coeff[tptr] + coeff[tptr-1]
pcoeff[2,i] = 3. * (coeff[tptr+1] - coeff[tptr-1])
pcoeff[3,i] = 3. * (coeff[tptr-1] - 2. * coeff[tptr] +
coeff[tptr+1])
pcoeff[4,i] = -coeff[tptr-1] + 3. * coeff[tptr] -
3. * coeff[tptr+1] + coeff[tptr+2]
tptr = tptr + len_coeff
}
# calculate polynomial coefficients in y
do j = 1, 4 {
temp[1] = pcoeff[j,3] + 4. * pcoeff[j,2] + pcoeff[j,1]
temp[2] = 3. * (pcoeff[j,3] - pcoeff[j,1])
temp[3] = 3. * (pcoeff[j,1] - 2. * pcoeff[j,2] + pcoeff[j,3])
temp[4] = -pcoeff[j,1] + 3. * pcoeff[j,2] - 3. * pcoeff[j,3] +
pcoeff[j,4]
do i = 1, 4
pcoeff[j,i] = temp[i]
}
end
# II_BISINCDER -- Evaluate the derivatives of the 2D sinc interpolator. If the
# function value only is needed call ii_bisinc. This routine computes only
# the first 2 derivatives in x and y. The second derivative is computed
# even if only the first derivative is needed. The sinc truncation length
# is nsinc. The taper is a cosbell approximated by a quartic polynomial.
# The data value if returned if x is closer to x[i] than mindx and y is
# closer to y[i] than mindy.
procedure ii_bisincder (x, y, der, nxder, nyder, len_der, coeff, first_point,
nxpix, nypix, nsinc, mindx, mindy)
real x, y # the input x and y values
real der[len_der,ARB] # the output derivatives array
int nxder, nyder # the number of derivatives to compute
int len_der # the width of the derivatives array
real coeff[ARB] # the coefficient array
int first_point # offset of first data point into the array
int nxpix, nypix # size of the coefficient array
int nsinc # the sinc truncation length
real mindx, mindy # the precision of the sinc interpolant
double sumx, normx[3], normy[3], norm[3,3], sum[3,3]
int i, j, k, jj, kk, xc, yc, nconv, index
int minj, maxj, offj, mink, maxk, offk, last_point
pointer sp, ac, ar
real sconst, a2, a4, dx, dy, dxn, dyn, dx2, taper, sdx, ax, ay, ctanx, ctany
real zx, zy
real px[3], py[3]
begin
# Return if no derivatives ar to be computed.
if (nxder == 0 || nyder == 0)
return
# Initialize the derivatives to zero.
do jj = 1, nyder {
do kk = 1, nxder
der[kk,jj] = 0.0
}
# Return if the data is outside range.
xc = nint (x)
yc = nint (y)
if (xc < 1 || xc > nxpix || yc < 1 || yc > nypix)
return
# Call ii_bsinc if only the function value is requested.
if (nxder == 1 && nyder == 1) {
call ii_bisinc (coeff, first_point, nxpix, nypix, x, y, der[1,1],
1, nsinc, mindx, mindy)
return
}
# Compute the constants for the cosine bell taper approximation.
sconst = (HALFPI / nsinc) ** 2
a2 = -0.49670
a4 = 0.03705
# Allocate some working space.
nconv = 2 * nsinc + 1
call smark (sp)
call salloc (ac, 3 * nconv, TY_REAL)
call salloc (ar, 3 * nconv, TY_REAL)
call aclrr (Memr[ac], 3 * nconv)
call aclrr (Memr[ar], 3 * nconv)
# Initialize.
dx = x - xc
dy = y - yc
if (dx == 0.0)
ctanx = 0.0
else
ctanx = 1.0 / tan (PI * dx)
if (dy == 0.0)
ctany = 0.0
else
ctany = 1.0 / tan (PI * dy)
index = - 1 - nsinc
dxn = -1 - nsinc - dx
dyn = -1 - nsinc - dy
if (mod (nsinc, 2) == 0)
sdx = 1.0
else
sdx = -1.0
do jj = 1, 3 {
normy[jj] = 0.0d0
normx[jj] = 0.0d0
}
do i = 1, nconv {
dx2 = sconst * (i + index) ** 2
taper = sdx * (1.0 + a2 * dx2 + a4 * dx2 * dx2) ** 2
#ax = dxn + i
#ay = dyn + i
ax = -dxn - i
ay = -dyn - i
if (ax == 0.0) {
px[1] = 1.0
px[2] = 0.0
px[3] = - 1.0 / 3.0
} else if (dx == 0.0) {
px[1] = 0.0
px[2] = 0.0
px[3] = 0.0
} else {
zx = 1.0 / ax
px[1] = taper * zx
px[2] = px[1] * (ctanx - zx)
px[3] = -px[1] * (1.0 + 2.0 * zx * (ctanx - zx))
}
if (ay == 0.0) {
py[1] = 1.0
py[2] = 0.0
py[3] = - 1.0 / 3.0
} else if (dy == 0.0) {
py[1] = 0.0
py[2] = 0.0
py[3] = 0.0
} else {
zy = 1.0 / ay
py[1] = taper * zy
py[2] = py[1] * (ctany - zy)
py[3] = -py[1] * (1.0 + 2.0 * zy * (ctany - zy))
}
Memr[ac+i-1] = px[1]
Memr[ac+nconv+i-1] = px[2]
Memr[ac+2*nconv+i-1] = px[3]
Memr[ar+i-1] = py[1]
Memr[ar+nconv+i-1] = py[2]
Memr[ar+2*nconv+i-1] = py[3]
do jj = 1, 3 {
normx[jj] = normx[jj] + px[jj]
normy[jj] = normy[jj] + py[jj]
}
sdx = -sdx
}
# Normalize.
do jj = 1, 3 {
do kk = 1, 3
norm[kk,jj] = normx[kk] * normy[jj]
}
# Do the convolution.
minj = max (1, yc - nsinc)
maxj = min (nypix, yc + nsinc)
mink = max (1, xc - nsinc)
maxk = min (nxpix, xc + nsinc)
do jj = 1, nyder {
offj = ar + (jj - 1) * nconv - yc + nsinc
do kk = 1, nxder {
offk = ac + (kk - 1) * nconv - xc + nsinc
sum[kk,jj] = 0.0d0
# Do the convolutions.
do j = yc - nsinc, minj - 1 {
sumx = 0.0d0
do k = xc - nsinc, mink - 1
sumx = sumx + Memr[k+offk] * coeff[first_point+1]
do k = mink, maxk
sumx = sumx + Memr[k+offk] * coeff[first_point+k]
do k = maxk + 1, xc + nsinc
sumx = sumx + Memr[k+offk] * coeff[first_point+nxpix]
sum[kk,jj] = sum[kk,jj] + Memr[j+offj] * sumx
}
do j = minj, maxj {
index = first_point + (j - 1) * nxpix
sumx = 0.0d0
do k = xc - nsinc, mink - 1
sumx = sumx + Memr[k+offk] * coeff[index+1]
do k = mink, maxk
sumx = sumx + Memr[k+offk] * coeff[index+k]
do k = maxk + 1, xc + nsinc
sumx = sumx + Memr[k+offk] * coeff[index+nxpix]
sum[kk,jj] = sum[kk,jj] + Memr[j+offj] * sumx
}
do j = maxj + 1, yc + nsinc {
last_point = first_point + (nypix - 1) * nxpix
sumx = 0.0d0
do k = xc - nsinc, mink - 1
sumx = sumx + Memr[k+offk] * coeff[last_point+1]
do k = mink, maxk
sumx = sumx + Memr[k+offk] * coeff[last_point+k]
do k = maxk + 1, xc + nsinc
sumx = sumx + Memr[k+offk] * coeff[last_point+nxpix]
sum[kk,jj] = sum[kk,jj] + Memr[j+offj] * sumx
}
}
}
# Build the derivatives.
der[1,1] = sum[1,1] / norm[1,1]
if (nxder > 1)
der[2,1] = sum[2,1] / norm[1,1] - (sum[1,1] * norm[2,1]) /
norm[1,1] ** 2
if (nxder > 2)
der[3,1] = sum[3,1] / norm[1,1] - (norm[3,1] * sum[1,1] +
2.0d0 * sum[2,1] * norm[2,1]) / norm[1,1] ** 2 +
2.0d0 * sum[1,1] * norm[2,1] * norm[2,1] / norm[1,1] ** 3
if (nyder > 1) {
der[1,2] = sum[1,2] / norm[1,1] - (sum[1,1] * norm[1,2]) /
norm[1,1] ** 2
if (nxder > 1)
der[2,2] = sum[2,2] / norm[1,1] - (sum[2,1] * norm[1,2] +
sum[1,2] * norm[2,1] + norm[2,2] * sum[1,1]) /
norm[1,1] ** 2 + (2.0d0 * sum[1,1] * norm[2,1] *
norm[1,2]) / norm[1,1] ** 3
if (nxder > 2)
der[3,2] = sum[3,2] / norm[1,1] - (sum[3,1] * norm[1,2] +
2.0 * norm[2,2] * sum[2,1] + 2.0 * sum[2,2] *
norm[2,1] + norm[3,1] * sum[1,2] + norm[3,2] *
sum[1,1]) / norm[1,1] ** 2 + (4.0 * norm[2,1] *
sum[2,1] * norm[1,2] + 2.0 * norm[2,1] * sum[1,2] *
norm[2,1] + 4.0 * norm[2,1] * norm[2,2] * sum[1,1] +
2.0 * norm[3,1] * norm[1,2] * sum[1,1]) /
norm[1,1] ** 3 - 6.0 * norm[2,1] * norm[2,1] *
norm[1,2] * sum[1,1] / norm[1,1] ** 4
}
if (nyder > 2) {
der[1,3] = sum[1,3] / norm[1,1] - (norm[1,3] * sum[1,1] +
2.0d0 * sum[1,2] * norm[1,2]) / norm[1,1] ** 2 +
2.0d0 * sum[1,1] * norm[1,2] * norm[1,2] / norm[1,1] ** 3
if (nxder > 1)
der[2,3] = sum[2,3] / norm[1,1] - (sum[1,3] * norm[2,1] +
2.0 * norm[2,2] * sum[1,2] + 2.0 * sum[2,2] *
norm[1,2] + norm[1,3] * sum[2,1] + norm[2,3] *
sum[1,1]) / norm[1,1] ** 2 + (4.0 * norm[1,2] *
sum[1,2] * norm[2,1] + 2.0 * norm[1,2] * sum[2,1] *
norm[1,2] + 4.0 * norm[1,2] * norm[2,2] * sum[1,1] +
2.0 * norm[1,3] * norm[2,1] * sum[1,1]) /
norm[1,1] ** 3 - 6.0 * norm[1,2] * norm[1,2] *
norm[2,1] * sum[1,1] / norm[1,1] ** 4
if (nxder > 2)
der[3,3] = sum[3,3] / norm[1,1] - (2.0 * sum[2,3] * norm[2,1] +
norm[3,1] * sum[1,3] + 2.0 * norm[3,2] * sum[1,2] +
4.0 * sum[2,2] * norm[2,2] + 2.0 * sum[3,2] *
norm[1,2] + 2.0 * norm[2,3] * sum[2,1] + sum[3,1] *
norm[1,3] + norm[3,3] * sum[1,1]) / norm[1,1] ** 2 +
(2.0 * norm[2,1] * norm[2,1] * sum[1,3] + 8.0 *
norm[2,1] * sum[1,2] * norm[2,2] + 8.0 * norm[2,1] *
norm[1,2] * sum[2,2] + 4.0 * norm[2,1] * sum[2,1] *
norm[1,3] + 4.0 * norm[2,1] * norm[2,3] * sum[1,1] +
4.0 * norm[1,2] * sum[1,2] * norm[3,1] + 8.0 *
norm[2,2] * sum[2,1] * norm[1,2] + 2.0 * norm[1,2] *
norm[1,2] * sum[3,1] + 4.0 * norm[2,2] * norm[2,2] *
sum[1,1] + 4.0 * norm[1,2] * norm[3,2] * sum[1,1] +
2.0 * norm[1,3] * norm[3,1] * sum[1,1]) /
norm[1,1] ** 3 - (12.0 * norm[2,1] * norm[2,1] *
norm[1,2] * sum[1,2] + 12.0 * norm[2,1] * norm[1,2] *
norm[1,2] * sum[2,1] + 24.0 * norm[2,1] * norm[1,2] *
norm[2,2] * sum[1,1] + 6.0 * norm[2,1] * norm[2,1] *
norm[1,3] * sum[1,1] + 6.0 * norm[1,2] * norm[1,2] *
norm[3,1] * sum[1,1]) / norm[1,1] ** 4 + ( 24.0 *
norm[1,2] * norm[1,2] * norm[2,1] * norm[2,1] *
sum[1,1]) / norm[1,1] ** 5
}
call sfree (sp)
end
|