1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include "im2interpdef.h"
include <math/iminterp.h>
# MRIEVAL -- Procedure to evaluate the 2D interpolant at a given value
# of x and y. MRIEVAL allows the interpolation of a few interpolated
# points without the computing time and storage required for the
# sequential version. The routine assumes that 1 <= x <= nxpix and
# 1 <= y <= nypix.
real procedure mrieval (x, y, datain, nxpix, nypix, len_datain, interp_type)
real x[ARB] # x value
real y[ARB] # y value
real datain[len_datain,ARB] # data array
int nxpix # number of x data points
int nypix # number of y data points
int len_datain # row length of datain
int interp_type # interpolant type
int nx, ny, nterms, row_length
int xindex, yindex, first_row, last_row
int kx, ky
int i, j
pointer tmp
real coeff[SPLPTS+3,SPLPTS+3]
real hold21, hold12, hold22
real sx, sy, tx, ty
real xval, yval, value
errchk malloc, calloc, mfree
begin
switch (interp_type) {
case II_BINEAREST:
return (datain[int (x[1]+0.5), int (y[1]+0.5)])
case II_BILINEAR:
nx = x[1]
sx = x[1] - nx
tx = 1. - sx
ny = y[1]
sy = y[1] - ny
ty = 1. - sy
# protect against the case where x = nxpix and/or y = nypix
if (nx >= nxpix)
hold21 = 2. * datain[nx,ny] - datain[nx-1,ny]
else
hold21 = datain[nx+1,ny]
if (ny >= nypix)
hold12 = 2. * datain[nx,ny] - datain[nx,ny-1]
else
hold12 = datain[nx,ny+1]
if (nx >= nxpix && ny >= nypix)
hold22 = 2. * hold21 - (2. * datain[nx,ny-1] -
datain[nx-1,ny-1])
else if (nx >= nxpix)
hold22 = 2. * hold12 - datain[nx-1,ny+1]
else if (ny >= nypix)
hold22 = 2. * hold21 - datain[nx+1,ny-1]
else
hold22 = datain[nx+1,ny+1]
# evaluate the interpolant
value = tx * ty * datain[nx,ny] + sx * ty * hold21 +
sy * tx * hold12 + sx * sy * hold22
return (value)
case II_BIDRIZZLE:
call ii_bidriz1 (datain, 0, len_datain, x, y, value, 1, BADVAL)
return (value)
case II_BIPOLY3:
row_length = SPLPTS + 3
nterms = 4
nx = x[1]
ny = y[1]
# major problem is that near the edge the interior polynomial
# must be defined
# use boundary projection to extend the data rows
yindex = 1
for (j = ny - 1; j <= ny + 2; j = j + 1) {
# check that the data row is defined
if (j >= 1 && j <= nypix) {
# extend the rows
xindex = 1
for (i = nx - 1; i <= nx + 2; i = i + 1) {
if (i < 1)
coeff[xindex,yindex] = 2. * datain[1,j] -
datain[2-i,j]
else if (i > nxpix)
coeff[xindex,yindex] = 2. * datain[nxpix,j] -
datain[2*nxpix-i,j]
else
coeff[xindex,yindex] = datain[i,j]
xindex = xindex + 1
}
} else if (j == (ny + 2)) {
# extend the rows
xindex = 1
for (i = nx - 1; i <= nx + 2; i = i + 1) {
if (i < 1)
coeff[xindex,yindex] = 2. * datain[1,nypix-2] -
datain[2-i,nypix-2]
else if (i > nxpix)
coeff[xindex,yindex] = 2. * datain[nxpix,nypix-2] -
datain[2*nxpix-i,nypix-2]
else
coeff[xindex,yindex] = datain[i,nypix-2]
xindex = xindex + 1
}
}
yindex = yindex + 1
}
# project columns
first_row = max (1, 3 - ny)
if (first_row > 1) {
for (j = 1; j < first_row; j = j + 1)
call awsur (coeff[1, first_row], coeff[1, 2*first_row-j],
coeff[1,j], nterms, 2., -1.)
}
last_row = min (nterms, nypix - ny + 2)
if (last_row < nterms) {
for (j = last_row + 1; j <= nterms - 1; j = j + 1)
call awsur (coeff[1,last_row], coeff[1,2*last_row-j],
coeff[1,j], nterms, 2., -1.)
if (last_row == 2)
call awsur (coeff[1,last_row], coeff[1,4], coeff[1,4],
nterms, 2., -1.)
else
call awsur (coeff[1,last_row], coeff[1,2*last_row-4],
coeff[1,4], nterms, 2., -1.)
}
# center the x value and call evaluation routine
xval = 2 + (x[1] - nx)
yval = 2 + (y[1] - ny)
call ii_bipoly3 (coeff, 0, row_length, xval, yval, value, 1)
return (value)
case II_BIPOLY5:
row_length = SPLPTS + 3
nterms = 6
nx = x[1]
ny = y[1]
# major problem is to define interior polynomial near the edge
# loop over the rows of data
yindex = 1
for (j = ny - 2; j <= ny + 3; j = j + 1) {
# select the rows containing data
if (j >= 1 && j <= nypix) {
# extend the rows
xindex = 1
for (i = nx - 2; i <= nx + 3; i = i + 1) {
if (i < 1)
coeff[xindex,yindex] = 2. * datain[1,j] -
datain[2-i,j]
else if (i > nxpix)
coeff[xindex,yindex] = 2. * datain[nxpix,j] -
datain[2*nxpix-i,j]
else
coeff[xindex,yindex] = datain[i,j]
xindex = xindex + 1
}
} else if (j == (ny + 3)) {
# extend the rows
xindex = 1
for (i = nx - 2; i <= nx + 3; i = i + 1) {
if (i < 1)
coeff[xindex,yindex] = 2. * datain[1,nypix-3] -
datain[2-i,nypix-3]
else if (i > nxpix)
coeff[xindex,yindex] = 2. * datain[nxpix,nypix-3] -
datain[2*nxpix-i,nypix-3]
else
coeff[xindex,yindex] = datain[i,nypix-3]
xindex = xindex + 1
}
}
yindex = yindex + 1
}
# project columns
first_row = max (1, 4 - ny)
if (first_row > 1) {
for (j = 1; j < first_row; j = j + 1)
call awsur (coeff[1,first_row], coeff[1,2*first_row-j],
coeff[1,j], nterms, 2., -1.)
}
last_row = min (nterms, nypix - ny + 3)
if (last_row < nterms) {
for (j = last_row + 1; j <= nterms - 1; j = j + 1)
call awsur (coeff[1,last_row], coeff[1,2*last_row-j],
coeff[1,j], nterms, 2., -1.)
if (last_row == 3)
call awsur (coeff[1,last_row], coeff[1,6], coeff[1,6],
nterms, 2., -1.)
else
call awsur (coeff[1,last_row], coeff[1,2*last_row-6],
coeff[1,6], nterms, 2., -1.)
}
# call evaluation routine
xval = 3 + (x[1] - nx)
yval = 3 + (y[1] - ny)
call ii_bipoly5 (coeff, 0, row_length, xval, yval, value, 1)
return (value)
case II_BISPLINE3:
row_length = SPLPTS + 3
nx = x[1]
ny = y[1]
# allocate space for temporary array and 0 file
call calloc (tmp, row_length * row_length, TY_REAL)
ky = 0
# maximum number of points used in each direction is SPLPTS
for (j = ny - SPLPTS/2 + 1; j <= ny + SPLPTS/2; j = j + 1) {
if (j < 1 || j > nypix)
;
else {
ky = ky + 1
if (ky == 1)
yindex = ny - j + 1
kx = 0
for (i = nx - SPLPTS/2 + 1; i <= nx + SPLPTS/2; i = i + 1) {
if (i < 1 || i > nxpix)
;
else {
kx = kx + 1
if (kx == 1)
xindex = nx - i + 1
coeff[kx+1,ky+1] = datain[i,j]
}
}
coeff[1,ky+1] = 0.
coeff[kx+2,ky+1] = 0.
coeff[kx+3,ky+1] = 0.
}
}
# zero out 1st and last 2 rows
call amovkr (0., coeff[1,1], kx+3)
call amovkr (0., coeff[1,ky+2], kx+3)
call amovkr (0., coeff[1,ky+3],kx+3)
# calculate the spline coefficients
call ii_spline2d (coeff, Memr[tmp], kx, ky+2, row_length,
row_length)
call ii_spline2d (Memr[tmp], coeff, ky, kx+2, row_length,
row_length)
# evaluate spline
xval = xindex + 1 + (x[1] - nx)
yval = yindex + 1 + (y[1] - ny)
call ii_bispline3 (coeff, 0, row_length, xval, yval, value, 1)
# free space
call mfree (tmp, TY_REAL)
return (value)
case II_BISINC, II_BILSINC:
call ii_bisinc (datain, 0, len_datain, nypix, x, y, value, 1,
NSINC, DX, DY)
return (value)
}
end
|