1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
include <gset.h>
include <math/iminterp.h>
define INTERP_TYPE II_SPLINE3 # Interpolation type
define STEP 0.01 # Approximate step size
define NITERATE 10 # Number of iteration to find endpoints
define DX 0.001 # Accuracy
# IMP_PROFILE -- IMPLOT profile analysis.
procedure imp_profile (gp, x, y, n, x1, y1, x2, y2, sl, sline)
pointer gp #I gio pointer
real x[n] #I x coordinates
real y[n] #I y coordinates
int n #I number of points
real x1, y1 #I first endpoint
real x2, y2 #I second endpoint
pointer sl #U status line pointer
int sline #U line to print
int i
real p, p1, p2, pc, pl, pr, step
real a, b, c, y0, dy, xc, xl, xr, der[2]
double sumb, sum0, sum1, sum2, sum3
pointer xasi, yasi, sl_getstr
real asieval()
bool fp_equalr()
begin
# Fit an interpolator to the input arrays.
call asiinit (xasi, INTERP_TYPE)
call asiinit (yasi, INTERP_TYPE)
call asifit (xasi, x, n)
call asifit (yasi, y, n)
# Find the pixel endpoints given the x endpoints to an accuracy of DX.
p1 = 1. + n / 2.
b = 1.
do i = 1, NITERATE {
call asider (xasi, p1, der, 2)
if (!fp_equalr (der[2], 0.))
b = der[2]
a = x1 - der[1]
p1 = max (1., min (real(n), p1 + a / der[2]))
if (abs (a) < DX)
break
}
p2 = p1
do i = 1, NITERATE {
call asider (xasi, p2, der, 2)
if (!fp_equalr (der[2], 0.))
b = der[2]
a = x2 - der[1]
p2 = max (1., min (real(n), p2 + a / der[2]))
if (abs (a) < DX)
break
}
# Set the linear baseline.
if (fp_equalr (p1, p2)) {
y0 = (y1 + y2) / 2.
dy = 1.
step = STEP
} else if (p1 < p2) {
y0 = y1
dy = (y2 - y0) / (p2 - p1)
step = (p2 - p1) / (nint(p2) - nint(p1) + 1) * STEP
} else {
pc = p1
p1 = p2
p2 = pc
y0 = y2
dy = (y1 - y0) / (p2 - p1)
step = (p2 - p1) / (nint(p2) - nint(p1) + 1) * STEP
}
# Compute the first 2 moments using trapezoidal integration.
p = p1
a = asieval (xasi, p)
b = y0 + (p - p1) * dy
c = asieval (yasi, p) - b
sumb = b / 2
sum0 = c / 2
sum1 = a * c / 2
for (p=p+step; p<=p2; p=p+step) {
a = asieval (xasi, p)
b = y0 + (p - p1) * dy
c = asieval (yasi, p) - b
sumb = sumb + b
sum0 = sum0 + c
sum1 = sum1 + a * c
}
sumb = (sumb - b / 2) * step
sum0 = (sum0 - c / 2) * step
sum1 = (sum1 - a * c / 2) * step
# Compute the higher central moments using trapezoidal integration.
if (sum0 == 0D0) {
sum1 = INDEFD
sum2 = INDEFD
sum3 = INDEFD
} else {
sum1 = sum1 / sum0
p = p1
a = asieval (xasi, p) - sum1
b = y0 + (p - p1) * dy
c = asieval (yasi, p) - b
sum2 = a * a * c / 2
sum3 = a * a * a * c / 2
for (p=p+step; p<=p2; p=p+step) {
a = asieval (xasi, p) - sum1
b = y0 + (p - p1) * dy
c = asieval (yasi, p) - b
sum2 = sum2 + a * a * c
sum3 = sum3 + a * a * a * c
}
sum2 = (sum2 - a * a * c / 2) * step
sum3 = (sum3 - a * a * a * c / 2) * step
sum2 = sqrt (sum2 / sum0)
if (sum2 > 0.)
sum3 = (sum3 / sum0) / (sum2 ** 3)
}
# Find the maximum value away from the baseline.
pc= p1
c = 0.
for (p=p1; p<=p2; p=p+step) {
a = abs (asieval (yasi, p) - y0 - (p - p1) * dy)
if (a > c) {
pc = p
c = a
}
}
xc = asieval (xasi, pc)
# Find the half width points.
c = c / 2
pl = INDEF
xl = INDEF
for (p=pc; p>=p1; p=p-step) {
a = abs (asieval (yasi, p) - y0 - (p - p1) * dy)
if (a < c) {
pl = p + (c - a) / (b - a) * step
xl = asieval (xasi, pl)
break
}
b = a
}
pr = INDEF
xr = INDEF
for (p=pc; p<p2; p=p+step) {
a = abs (asieval (yasi, p) - y0 - (p - p1) * dy)
if (a < c) {
pr = p - (c - a) / (b - a) * step
xr = asieval (xasi, pr)
break
}
b = a
}
b = y0 + (pc - p1) * dy
p = asieval (yasi, pc)
a = (p - b) / 2 + b
if (!IS_INDEF(xl)) {
if (xl > xc) {
c = pl
pl = pr
pr = c
c = xl
xl = xr
xr = c
}
}
if (IS_INDEF(xl) || IS_INDEF(xr))
c = INDEF
else
c = xr - xl
# Draw marks to show the baseline, center, and width.
call gseti (gp, G_PLTYPE, 2)
call gline (gp, x1, y1, x2, y2)
call gline (gp, xc, b, xc, p)
if (!IS_INDEF(xl))
call gline (gp, xc, a, xl, a-b+y0+(pl-p1)*dy)
if (!IS_INDEF(xr))
call gline (gp, xc, a, xr, a-b+y0+(pr-p1)*dy)
call gseti (gp, G_PLTYPE, 1)
# Record the results.
call sl_init (sl, 4)
call sprintf (Memc[sl_getstr(sl,1)], SZ_LINE,
"[1/4] Profile: Center=%8g, Width=%8g, Peak=%8g, Bkg=%8g\n")
call pargr (xc)
call pargr (c)
call pargr (p)
call pargr (b)
call sprintf (Memc[sl_getstr(sl,2)], SZ_LINE,
"[2/4] Moments: Centroid=%8g, Width=%8g, Flux=%8g, Asym=%6g\n")
call pargd (sum1)
call pargd (2.35482 * sum2)
call pargd (sum0)
call pargd (sum3)
call sprintf (Memc[sl_getstr(sl,3)], SZ_LINE,
"[3/4] Half Intensity: Lower=%8g, Upper=%8g, Width=%8g\n")
call pargr (xl)
call pargr (xr)
call pargr (c)
call sprintf (Memc[sl_getstr(sl,4)], SZ_LINE,
"[4/4] Background: (%8g, %8g) - (%8g, %8g)\n")
call pargr (x1)
call pargr (y1)
call pargr (x2)
call pargr (y2)
sline = 1
call asifree (xasi)
call asifree (yasi)
end
|