1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <gset.h>
include <mach.h>
include <math.h>
include <imhdr.h>
include <imset.h>
include <math/iminterp.h>
define BTYPES "|constant|nearest|reflect|wrap|project|"
define SZ_BTYPE 8 # Length of boundary type string
define NLINES 16 # Number of image lines in the buffer
# T_PVECTOR -- Plot the vector of image data between two pixels.
procedure t_pvector()
pointer image, boundary, output, outtype
pointer sp, im, x_vec, y_vec
int wrt_image, wrt_text
int btype, ndim, nxvals, nyvals, nzvals, width
real xc, yc, x1, y1, x2, y2, theta, length, zmin, zmax, bconstant
bool streq(), fp_equalr()
int clgeti(), clgwrd(), nowhite()
pointer immap()
real clgetr()
begin
call smark (sp)
call salloc (image, SZ_FNAME, TY_CHAR)
call salloc (boundary, SZ_BTYPE, TY_CHAR)
call salloc (output, SZ_FNAME, TY_CHAR)
call salloc (outtype, SZ_FNAME, TY_CHAR)
# Get boundary extension parameters.
btype = clgwrd ("boundary", Memc[boundary], SZ_BTYPE, BTYPES)
bconstant = clgetr ("constant")
# Open the image.
call clgstr ("image", Memc[image], SZ_FNAME)
im = immap (Memc[image], READ_ONLY, 0)
ndim = IM_NDIM(im)
if (ndim > 2)
call error (0, "The number of image dimensions is greater then 2.")
# See if we're going to output the vector
call clgstr ("vec_output", Memc[output], SZ_FNAME)
call clgstr ("out_type", Memc[outtype], SZ_FNAME)
wrt_text = NO
wrt_image = NO
if (nowhite (Memc[output], Memc[output], SZ_FNAME) > 0) {
if (streq("image",Memc[outtype]))
wrt_image = YES
else if (streq("text",Memc[outtype]))
wrt_text = YES
}
# Store the maximum coordinate values in the parameter file.
nxvals = IM_LEN(im,1)
if (ndim == 1)
nyvals = 1
else
nyvals = IM_LEN(im,2)
call clputi ("x1.p_maximum", nxvals)
call clputi ("x2.p_maximum", nxvals)
call clputi ("y1.p_maximum", nyvals)
call clputi ("y2.p_maximum", nyvals)
# Get the beginning and ending coordinates and width of the strip.
theta = clgetr ("theta")
if (IS_INDEFR(theta)) {
x1 = clgetr ("x1")
y1 = clgetr ("y1")
x2 = clgetr ("x2")
y2 = clgetr ("y2")
} else {
xc = clgetr ("xc")
yc = clgetr ("yc")
length = clgetr ("length")
call pv_get_bound (xc, yc, length, theta, nxvals, nyvals, x1, y1,
x2, y2)
}
width = clgeti ("width")
# Check the boundary and compute the length of the output vector.
x1 = max (1.0, min (x1, real (nxvals)))
x2 = min (real(nxvals), max (1.0, x2))
y1 = max (1.0, min (y1, real (nyvals)))
y2 = min (real(nyvals), max (1.0, y2))
nzvals = int (sqrt ((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))) + 1
# Check for cases which should be handled by pcols or prows.
call malloc (x_vec, nzvals, TY_REAL)
call malloc (y_vec, nzvals, TY_REAL)
if (fp_equalr (x1, x2)) {
call pv_get_col (im, x1, y1, x2, y2, nzvals, width, btype,
bconstant, Memr[x_vec], Memr[y_vec], zmin, zmax)
} else if (fp_equalr (y1, y2)) {
if (ndim == 1) {
call pv_get_row1 (im, x1, x2, nzvals, btype, bconstant,
Memr[x_vec], Memr[y_vec], zmin, zmax)
} else {
call pv_get_row (im, x1, y1, x2, y2, nzvals, width, btype,
bconstant, Memr[x_vec], Memr[y_vec], zmin, zmax)
}
} else {
call pv_get_vector (im, x1, y1, x2, y2, nzvals, width, btype,
bconstant, Memr[x_vec], Memr[y_vec], zmin, zmax)
}
# Output the plot, via the graphics stream, or as a textfile or image.
if (wrt_image == YES) {
call pv_wrt_image (im, Memc[image], Memc[output],
Memr[x_vec], Memr[y_vec], nzvals, x1, x2, y1, y2, width)
} else if (wrt_text == YES) {
call pv_wrt_pixels (Memc[output],
Memr[x_vec], Memr[y_vec], nzvals)
} else {
call pv_draw_vector (Memr[x_vec], Memr[y_vec], nzvals,
x1, x2, y1, y2, zmin, zmax, width, Memc[image])
}
# Free resources.
call mfree (x_vec, TY_REAL)
call mfree (y_vec, TY_REAL)
call imunmap (im)
call sfree (sp)
end
# PV_DRAW_VECTOR - Draw the vector to the specified output device.
procedure pv_draw_vector (xvec, yvec, nzvals,
x1, x2, y1, y2, zmin, zmax, width, image)
real xvec[nzvals], yvec[nzvals] #I Vectors to draw
int nzvals, width #I Plot parameters
real x1, x2, y1, y2, zmin, zmax #I Plot parameters
char image[SZ_FNAME] #I Image name
pointer sp, gp
int mode, imark
pointer device, marker, xlabel, ylabel, title, suffix, hostid
real wx1, wx2, wy1, wy2, vx1, vx2, vy1, vy2, szm, tol
bool pointmode
bool clgetb(), streq()
int clgeti(), btoi()
pointer gopen()
real clgetr()
errchk gopen
begin
call smark (sp)
call salloc (device, SZ_FNAME, TY_CHAR)
call salloc (marker, SZ_FNAME, TY_CHAR)
call salloc (xlabel, SZ_LINE, TY_CHAR)
call salloc (ylabel, SZ_LINE, TY_CHAR)
call salloc (hostid, 2 * SZ_LINE, TY_CHAR)
call salloc (title, SZ_LINE, TY_CHAR)
call salloc (suffix, SZ_FNAME, TY_CHAR)
# Open the graphics stream.
call clgstr ("device", Memc[device], SZ_FNAME)
if (clgetb ("append"))
mode = APPEND
else
mode = NEW_FILE
iferr (gp = gopen (Memc[device], mode, STDGRAPH))
call error (0, "Error opening graphics device.")
tol = 10. * EPSILONR
if (mode != APPEND) {
# Establish window.
wx1 = clgetr ("wx1")
wx2 = clgetr ("wx2")
wy1 = clgetr ("wy1")
wy2 = clgetr ("wy2")
# Set window limits to defaults if not specified by user.
if (abs(wx2 - wx1) < tol) {
wx1 = 1.0
wx2 = real (nzvals)
}
if (abs(wy2 - wy1) < tol) {
wy1 = zmin
wy2 = zmax
}
call gswind (gp, wx1, wx2, wy1, wy2)
# Establish viewport.
vx1 = clgetr ("vx1")
vx2 = clgetr ("vx2")
vy1 = clgetr ("vy1")
vy2 = clgetr ("vy2")
# Set viewport only if specified by user.
if ((vx2 - vx1) > tol && (vy2 - vy1) > tol)
call gsview (gp, vx1, vx2, vy1, vy2)
else {
if (!clgetb ("fill"))
call gseti (gp, G_ASPECT, 1)
}
call clgstr ("xlabel", Memc[xlabel], SZ_LINE)
call clgstr ("ylabel", Memc[ylabel], SZ_LINE)
call clgstr ("title", Memc[title], SZ_LINE)
call sysid (Memc[hostid], SZ_LINE)
call strcat ("\n", Memc[hostid], SZ_LINE)
if (streq (Memc[title], "imtitle")) {
call strcpy (image, Memc[title], SZ_LINE)
call sprintf (Memc[suffix], SZ_FNAME,
": vector %.1f,%.1f to %.1f,%.1f width: %d") {
call pargr (x1)
call pargr (y1)
call pargr (x2)
call pargr (y2)
call pargi (width)
}
call strcat (Memc[suffix], Memc[title], SZ_LINE)
}
call strcat (Memc[title], Memc[hostid], 2 * SZ_LINE)
call gseti (gp, G_XNMAJOR, clgeti ("majrx"))
call gseti (gp, G_XNMINOR, clgeti ("minrx"))
call gseti (gp, G_YNMAJOR, clgeti ("majry"))
call gseti (gp, G_YNMINOR, clgeti ("minry"))
call gseti (gp, G_ROUND, btoi (clgetb ("round")))
if (clgetb ("logx"))
call gseti (gp, G_XTRAN, GW_LOG)
if (clgetb ("logy"))
call gseti (gp, G_YTRAN, GW_LOG)
# Draw axes using all this information
call glabax (gp, Memc[hostid], Memc[xlabel], Memc[ylabel])
}
pointmode = clgetb ("pointmode")
if (pointmode) {
call clgstr ("marker", Memc[marker], SZ_FNAME)
szm= clgetr ("szmarker")
call init_marker (Memc[marker], imark)
} else
call clgstr ("marker", Memc[marker], SZ_FNAME)
# Now to actually draw the plot.
if (pointmode)
call gpmark (gp, x_vec, y_vec, nzvals, imark, szm, szm)
else
call hgpline (gp, x_vec, y_vec, nzvals, Memc[marker])
# Close up graphics and image.
call gclose (gp)
call sfree (sp)
end
# PV_WRT_PIXELS - Write out the vector to the specified file. File may be
# specified as STDOUT. Behaves much like LISTPIX.
procedure pv_wrt_pixels (file, x, y, npts)
char file[SZ_FNAME] #I Output file name
real x[npts], y[npts] #I Vector to write
int npts #I Npts in vector
int i
pointer fd, open()
bool streq()
errchk open
begin
if (streq("STDOUT", file))
fd = STDOUT
else if (streq("STDERR", file))
fd = STDERR
else
iferr (fd = open (file, APPEND, TEXT_FILE))
call error (0, "Error opening output file.")
do i = 1, npts {
call fprintf (fd, "%.1f %.4f\n")
call pargr (x[i])
call pargr (y[i])
}
call flush (fd)
if (fd != STDOUT && fd != STDERR)
call close (fd)
end
# PV_WRT_IMAGE - Write out the vector to the specified image name. The original
# image header is coptired to the new image and a acomment added describing the
# computed vector
procedure pv_wrt_image (im, image, file, x, y, npts, x1, x2, y1, y2, width)
pointer im #I Parent image pointer
char image[SZ_FNAME] #I Name of original image
char file[SZ_FNAME] #I Ouput image name
real x[npts], y[npts] #I Vector to write
int npts #I Npts in vector
real x1, x2, y1, y2 #I Endpoints of vector
int width #I Width of sampled points
pointer sp, comment, imo
pointer immap(), impl2r()
bool streq()
errchk immap, impl2r
begin
if (streq(file,"STDOUT") || streq(file,"STDERR"))
call error (0, "Illegal filename for output image.")
# Open a (new) image
iferr (imo = immap(file, NEW_COPY, im))
call error (0, "Error opening output image.")
call smark (sp)
call salloc (comment, SZ_LINE, TY_CHAR)
# Do some header manipulations
IM_NDIM(imo) = 1
IM_LEN(imo,1) = npts
call sprintf (Memc[comment], SZ_LINE,
"%s: vector %.1f,%.1f to %.1f,%.1f width: %d")
call pargstr (image)
call pargr (x1)
call pargr (x2)
call pargr (y1)
call pargr (y2)
call pargi (width)
call imastr (imo, "VSLICE", Memc[comment])
# Now dump it into the image
call amovr (y, Memr[impl2r(imo,1)], npts)
# Do some housecleaning
call imunmap (imo)
call sfree (sp)
end
# PV_GET_BOUND -- Find the point where a vector, defined by it's starting
# point and an theta (ccw from +x), intersects the image boundary. The
# image is defined from 1 - nxvals; 1 - nyvals.
procedure pv_get_bound (xc, yc, length, theta, nxvals, nyvals, x1, y1, x2, y2)
real xc, yc # x and y center points
real length # length of the vector
real theta # angle of vector (ccw from +x)
int nxvals, nyvals # image dimensions
real x1, y1 # starting point of vector
real x2, y2 # point where vector intersects boundary
real half_length, angle, dx, dy
begin
if (IS_INDEFR(length))
half_length = sqrt (real (nxvals ** 2 + nyvals ** 2)) / 2.0
else
half_length = length / 2.0
dx = cos (DEGTORAD (theta))
dy = sin (DEGTORAD (theta))
# Compute the coordinates of the end of the vector
x1 = xc - dx * half_length
y1 = yc - dy * half_length
x2 = xc + dx * half_length
y2 = yc + dy * half_length
if (x2 < 1.0 || x2 > nxvals || y2 < 1.0 || y2 > nyvals)
call pv_limits (xc, yc, theta, nxvals, nyvals, x2, y2)
angle = theta + 180.0
if (angle > 360.0)
angle = angle - 360.0
if (x1 < 1.0 || x1 > nxvals || y1 < 1.0 || y1 > nyvals)
call pv_limits (xc, yc, angle, nxvals, nyvals, x1, y1)
end
# PV_LIMITS -- Find the point where a vector, defined by it's starting
# point and an theta (ccw from +x), intersects the image boundary. The
# image is defined from 1 - nxvals; 1 - nyvals.
procedure pv_limits (x1, y1, theta, nxvals, nyvals, x2, y2)
real x1, y1 # starting point of vector
real theta # angle of vector (ccw from +x)
int nxvals, nyvals # size of image
real x2, y2 # point where vector intersects boundary
real tan_theta, xx
bool fp_equalr()
begin
tan_theta = tan (DEGTORAD (theta))
if (fp_equalr (theta, 0.0)) {
x2 = nxvals
y2 = y1
} else if (fp_equalr (theta, 90.0)) {
x2 = x1
y2 = nyvals
} else if (fp_equalr (theta, 180.0)) {
x2 = 1
y2 = y1
} else if (fp_equalr (theta, 270.0)) {
x2 = x1
y2 = 1
} else if (fp_equalr (theta, 360.0)) {
x2 = nxvals
y2 = y1
# Assume it intersects y = nyvals boundary.
} else if (theta > 0.0 && theta < 180.0) {
xx = (nyvals - y1) / tan_theta + x1
if (xx > nxvals || xx < 1.0) {
if (theta < 90.)
x2 = nxvals
else
x2 = 1.0
y2 = y1 + (x2 - x1) * tan_theta
} else {
y2 = nyvals
x2 = (y2 - y1) / tan_theta + x1
}
# Assume it intersects y = 1.0 boundary.
} else if (theta > 180.0 && theta < 360.0) {
xx = (1.0 - y1) / tan_theta + x1
if (xx > nxvals || xx < 1.0) {
if (theta < 270.)
x2 = 1.0
else
x2 = nxvals
y2 = y1 + (x2 - x1) * tan_theta
} else {
y2 = 1.0
x2 = (y2 - y1) / tan_theta + x1
}
}
end
# PV_GET_VECTOR -- Average a strip perpendicular to a given vector and return
# vectors of point number and average pixel value. Also returned is the min
# and max value in the data vector.
procedure pv_get_vector (im, x1, y1, x2, y2, nvals, width, btype,
bconstant, x_vector, y_vector, zmin, zmax)
pointer im # pointer to image header
real x1, y1 # starting pixel of vector
real x2, y2 # ending pixel of pixel
real bconstant # Boundary extension constant
int btype # Boundary extension type
int nvals # number of samples along the vector
int width # width of strip to average over
real x_vector[ARB] # Pixel numbers
real y_vector[ARB] # Average pixel values (returned)
real zmin, zmax # min, max of data vector
double dx, dy, dpx, dpy, ratio, xoff, yoff, noff, xv, yv
int i, j, k, nedge, col1, col2, line1, line2
int colb, colc, line, linea, lineb, linec
pointer sp, oxs, oys, xs, ys, yvals, msi, buf
real sum , lim1, lim2, lim3, lim4
pointer imgs2r()
begin
call smark (sp)
call salloc (oxs, width, TY_REAL)
call salloc (oys, width, TY_REAL)
call salloc (xs, width, TY_REAL)
call salloc (ys, width, TY_REAL)
call salloc (yvals, width, TY_REAL)
# Determine sampling perpendicular to vector.
dx = (x2 - x1) / (nvals - 1)
dy = (y2 - y1) / (nvals - 1)
if (x1 < x2) {
dpx = -dy
dpy = dx
} else {
dpx = dy
dpy = -dx
}
# Compute offset from the nominal vector to the first sample point.
ratio = dx / dy
nedge = width + 1
noff = (real (width) - 1.0) / 2.0
xoff = noff * dpx
yoff = noff * dpy
# Initialize the interpolator and the image data buffer.
call msiinit (msi, II_BILINEAR]
buf = NULL
# Set the boundary.
col1 = int (min (x1, x2)) - nedge
col2 = nint (max (x1, x2)) + nedge
line1 = int (min (y1, y2)) - nedge
line2 = nint (max (y2, y1)) + nedge
call pv_setboundary (im, col1, col2, line1, line2, btype, bconstant)
# Initialize.
xv = x1 - xoff
yv = y1 - yoff
do j = 1, width {
Memr[oxs+j-1] = double (j - 1) * dpx
Memr[oys+j-1] = double (j - 1) * dpy
}
# Loop over the output image lines.
do i = 1, nvals {
x_vector[i] = real (i)
line = yv
# Get the input image data and fit an interpolator to the data.
# The input data is buffered in a section of size NLINES + 2 *
# NEDGE.
if (dy >= 0.0 && (buf == NULL || line > linea)) {
linea = min (line2, line + NLINES - 1)
lineb = max (line1, line - nedge)
linec = min (line2, linea + nedge)
lim1 = xv
lim2 = lim1 + double (width - 1) * dpx
lim3 = xv + double (linea - line + 1) * ratio
lim4 = lim3 + double (width - 1) * dpx
colb = max (col1, int (min (lim1, lim2, lim3, lim4)) - 1)
colc = min (col2, nint (max (lim1, lim2, lim3, lim4)) + 1)
buf = imgs2r (im, colb, colc, lineb, linec)
call msifit (msi, Memr[buf], colc - colb + 1, linec - lineb +
1, colc - colb + 1)
} else if (dy < 0.0 && (buf == NULL || line < linea)) {
linea = max (line1, line - NLINES + 1)
lineb = max (line1, linea - nedge)
linec = min (line2, line + nedge)
lim1 = xv
lim2 = lim1 + double (width - 1) * dpx
lim3 = xv + double (linea - line - 1) * ratio
lim4 = lim3 + double (width - 1) * dpx
colb = max (col1, int (min (lim1, lim2, lim3, lim4)) - 1)
colc = min (col2, nint (max (lim1, lim2, lim3, lim4)) + 1)
buf = imgs2r (im, colb, colc, lineb, linec)
call msifit (msi, Memr[buf], colc - colb + 1, linec - lineb +
1, colc - colb + 1)
}
# Evaluate the interpolant.
call aaddkr (Memr[oxs], real (xv - colb + 1), Memr[xs], width)
call aaddkr (Memr[oys], real (yv - lineb + 1), Memr[ys], width)
call msivector (msi, Memr[xs], Memr[ys], Memr[yvals], width)
if (width == 1)
y_vector[i] = Memr[yvals]
else {
sum = 0.0
do k = 1, width
sum = sum + Memr[yvals+k-1]
y_vector[i] = sum / width
}
xv = xv + dx
yv = yv + dy
}
# Compute min and max values.
call alimr (y_vector, nvals, zmin, zmax)
# Free memory .
call msifree (msi)
call sfree (sp)
end
# PV_GET_COL -- Average a strip perpendicular to a column vector and return
# vectors of point number and average pixel value. Also returned is the min
# and max value in the data vector.
procedure pv_get_col (im, x1, y1, x2, y2, nvals, width, btype,
bconstant, x_vector, y_vector, zmin, zmax)
pointer im # pointer to image header
real x1, y1 # starting pixel of vector
real x2, y2 # ending pixel of pixel
int nvals # number of samples along the vector
int width # width of strip to average over
int btype # Boundary extension type
real bconstant # Boundary extension constant
real x_vector[ARB] # Pixel numbers
real y_vector[ARB] # Average pixel values (returned)
real zmin, zmax # min, max of data vector
real sum
int line, linea, lineb, linec
pointer sp, xs, ys, msi, yvals, buf
double dx, dy, xoff, noff, xv, yv
int i, j, k, nedge, col1, col2, line1, line2
pointer imgs2r()
begin
call smark (sp)
call salloc (xs, width, TY_REAL)
call salloc (ys, width, TY_REAL)
call salloc (yvals, width, TY_REAL)
# Initialize the interpolator and the image data buffer.
call msiinit (msi, II_BILINEAR]
buf = NULL
# Set the boundary.
nedge = max (2, width / 2 + 1)
col1 = int (x1) - nedge
col2 = nint (x1) + nedge
line1 = int (min (y1, y2)) - nedge
line2 = nint (max (y1, y2)) + nedge
call pv_setboundary (im, col1, col2, line1, line2, btype, bconstant)
# Determine sampling perpendicular to vector.
dx = 1.0d0
if (nvals == 1)
dy = 0.0d0
else
dy = (y2 - y1) / (nvals - 1)
# Compute offset from the nominal vector to the first sample point.
noff = (real (width) - 1.0) / 2.0
xoff = noff * dx
xv = x1 - xoff
do j = 1, width
Memr[xs+j-1] = xv + double (j - col1)
yv = y1
# Loop over the output image lines.
do i = 1, nvals {
x_vector[i] = real (i)
line = yv
# Get the input image data and fit an interpolator to the data.
# The input data is buffered in a section of size NLINES + 2 *
# NEDGE.
if (dy >= 0.0 && (buf == NULL || line > (linea))) {
linea = min (line2, line + NLINES - 1)
lineb = max (line1, line - nedge)
linec = min (line2, linea + nedge)
buf = imgs2r (im, col1, col2, lineb, linec)
call msifit (msi, Memr[buf], col2 - col1 + 1, linec - lineb +
1, col2 - col1 + 1)
} else if (dy < 0.0 && (buf == NULL || line < linea)) {
linea = max (line1, line - NLINES + 1)
lineb = max (line1, linea - nedge)
linec = min (line2, line + nedge)
buf = imgs2r (im, col1, col2, lineb, linec)
call msifit (msi, Memr[buf], col2 - col1 + 1, linec - lineb +
1, col2 - col1 + 1)
}
# Evaluate the interpolant.
call amovkr (real (yv - lineb + 1), Memr[ys], width)
call msivector (msi, Memr[xs], Memr[ys], Memr[yvals], width)
if (width == 1)
y_vector[i] = Memr[yvals]
else {
sum = 0.0
do k = 1, width
sum = sum + Memr[yvals+k-1]
y_vector[i] = sum / width
}
yv = yv + dy
}
# Compute min and max values.
call alimr (y_vector, nvals, zmin, zmax)
# Free memory .
call msifree (msi)
call sfree (sp)
end
# PV_GET_ROW -- Average a strip parallel to a row vector and return
# vectors of point number and average pixel value. Also returned is the min
# and max value in the data vector.
procedure pv_get_row (im, x1, y1, x2, y2, nvals, width, btype, bconstant,
x_vector, y_vector, zmin, zmax)
pointer im # pointer to image header
real x1, y1 # starting pixel of vector
real x2, y2 # ending pixel of pixel
int nvals # number of samples along the vector
int width # width of strip to average over
int btype # Boundary extension type
real bconstant # Boundary extension constant
real x_vector[ARB] # Pixel numbers
real y_vector[ARB] # Average pixel values (returned)
real zmin, zmax # min, max of data vector
double dx, dy, yoff, noff, xv, yv
int i, j, nedge, col1, col2, line1, line2
int line, linea, lineb, linec
pointer sp, oys, xs, ys, yvals, msi, buf
pointer imgs2r()
errchk imgs2r, msifit
begin
call smark (sp)
call salloc (oys, width, TY_REAL)
call salloc (xs, nvals, TY_REAL)
call salloc (ys, nvals, TY_REAL)
call salloc (yvals, nvals, TY_REAL)
# Initialize the interpolator and the image data buffer.
call msiinit (msi, II_BILINEAR]
buf = NULL
# Set the boundary.
nedge = max (2, width / 2 + 1)
col1 = int (min (x1, x2)) - nedge
col2 = nint (max (x1, x2)) + nedge
line1 = int (y1) - nedge
line2 = nint (y1) + nedge
call pv_setboundary (im, col1, col2, line1, line2, btype, bconstant)
# Determine sampling perpendicular to vector.
if (nvals == 1)
dx = 0.0d0
else
dx = (x2 - x1) / (nvals - 1)
dy = 1.0
# Compute offset from the nominal vector to the first sample point.
noff = (real (width) - 1.0) / 2.0
xv = x1 - col1 + 1
do i = 1, nvals {
Memr[xs+i-1] = xv
xv = xv + dx
}
yoff = noff * dy
yv = y1 - yoff
do j = 1, width
Memr[oys+j-1] = yv + double (j - 1)
# Clear the accululator.
call aclrr (y_vector, nvals)
# Loop over the output image lines.
do i = 1, width {
line = yv
# Get the input image data and fit an interpolator to the data.
# The input data is buffered in a section of size NLINES + 2 *
# NEDGE.
if (dy >= 0.0 && (buf == NULL || line > (linea))) {
linea = min (line2, line + NLINES - 1)
lineb = max (line1, line - nedge)
linec = min (line2, linea + nedge)
buf = imgs2r (im, col1, col2, lineb, linec)
if (buf == NULL)
call error (0, "Error reading input image.")
call msifit (msi, Memr[buf], col2 - col1 + 1, linec - lineb +
1, col2 - col1 + 1)
} else if (dy < 0.0 && (buf == NULL || line < linea)) {
linea = max (line1, line - NLINES + 1)
lineb = max (line1, linea - nedge)
linec = min (line2, line + nedge)
buf = imgs2r (im, col1, col2, lineb, linec)
if (buf == NULL)
call error (0, "Error reading input image.")
call msifit (msi, Memr[buf], col2 - col1 + 1, linec - lineb +
1, col2 - col1 + 1)
}
# Evaluate the interpolant.
call amovkr (real (Memr[oys+i-1] - lineb + 1), Memr[ys], nvals)
call msivector (msi, Memr[xs], Memr[ys], Memr[yvals], nvals)
if (width == 1)
call amovr (Memr[yvals], y_vector, nvals)
else
call aaddr (Memr[yvals], y_vector, y_vector, nvals)
yv = yv + dy
}
# Compute the x and y vectors.
do i = 1, nvals
x_vector[i] = real (i)
if (width > 1)
call adivkr (y_vector, real (width), y_vector, nvals)
# Compute min and max values.
call alimr (y_vector, nvals, zmin, zmax)
# Free memory .
call msifree (msi)
call sfree (sp)
end
# PV_GET_ROW1 -- Average a strip parallel to a row vector and return
# vectors of point number and average pixel value. Also returned is the min
# and max value in the data vector.
procedure pv_get_row1 (im, x1, x2, nvals, btype, bconstant, x_vector,
y_vector, zmin, zmax)
pointer im # pointer to image header
real x1 # starting pixel of vector
real x2 # ending pixel of pixel
int nvals # number of samples along the vector
int btype # Boundary extension type
real bconstant # Boundary extension constant
real x_vector[ARB] # Pixel numbers
real y_vector[ARB] # Average pixel values (returned)
real zmin, zmax # min, max of data vector
double dx, xv
int i, nedge, col1, col2
pointer sp, xs, asi, buf
pointer imgs1r()
errchk imgs1r
begin
call smark (sp)
call salloc (xs, nvals, TY_REAL)
# Initialize the interpolator.
call asiinit (asi, II_LINEAR]
# Set the boundary.
nedge = 2
col1 = int (min (x1, x2)) - nedge
col2 = nint (max (x1, x2)) + nedge
call pv_setboundary (im, col1, col2, 1, 1, btype, bconstant)
# Compute the x vector.
if (nvals == 1)
dx = 0.0d0
else
dx = (x2 - x1) / (nvals - 1)
xv = x1 - col1 + 1
do i = 1, nvals {
Memr[xs+i-1] = xv
xv = xv + dx
}
# Get the image data, fit and evaluate the interpolant.
buf = imgs1r (im, col1, col2)
if (buf == NULL)
call error (0, "Error reading input image.")
call asifit (asi, Memr[buf], col2 - col1 + 1)
call asivector (asi, Memr[xs], y_vector, nvals)
# Compute the output x vector.
do i = 1, nvals
x_vector[i] = real (i)
# Compute min and max values.
call alimr (y_vector, nvals, zmin, zmax)
# Free memory .
call asifree (asi)
call sfree (sp)
end
# PV_SETBOUNDARY -- Set boundary extension.
procedure pv_setboundary (im, col1, col2, line1, line2, btype, bconstant)
pointer im # IMIO pointer
int col1, col2 # Range of columns
int line1, line2 # Range of lines
int btype # Boundary extension type
real bconstant # Constant for constant boundary extension
int btypes[5]
int nbndrypix
data btypes /BT_CONSTANT, BT_NEAREST, BT_REFLECT, BT_WRAP, BT_PROJECT/
begin
nbndrypix = 0
nbndrypix = max (nbndrypix, 1 - col1)
nbndrypix = max (nbndrypix, col2 - IM_LEN(im, 1))
nbndrypix = max (nbndrypix, 1 - line1)
nbndrypix = max (nbndrypix, line2 - IM_LEN(im, 2))
call imseti (im, IM_TYBNDRY, btypes[btype])
call imseti (im, IM_NBNDRYPIX, nbndrypix + 1)
if (btypes[btype] == BT_CONSTANT)
call imsetr (im, IM_BNDRYPIXVAL, bconstant)
end
# PV_BUFL2R -- Maintain buffer of image lines. A new buffer is created when
# the buffer pointer is null or if the number of lines requested is changed.
# The minimum number of image reads is used.
procedure pv_bufl2r (im, col1, col2, line1, line2, buf)
pointer im # Image pointer
int col1 # First image column of buffer
int col2 # Last image column of buffer
int line1 # First image line of buffer
int line2 # Last image line of buffer
pointer buf # Buffer
int i, ncols, nlines, nclast, llast1, llast2, nllast
pointer buf1, buf2
pointer imgs2r()
begin
ncols = col2 - col1 + 1
nlines = line2 - line1 + 1
# If the buffer pointer is undefined then allocate memory for the
# buffer. If the number of columns or lines requested changes
# reallocate the buffer. Initialize the last line values to force
# a full buffer image read.
if (buf == NULL) {
call malloc (buf, ncols * nlines, TY_REAL)
llast1 = line1 - nlines
llast2 = line2 - nlines
} else if ((nlines != nllast) || (ncols != nclast)) {
call realloc (buf, ncols * nlines, TY_REAL)
llast1 = line1 - nlines
llast2 = line2 - nlines
}
# Read only the image lines with are different from the last buffer.
if (line1 < llast1) {
do i = line2, line1, -1 {
if (i > llast1)
buf1 = buf + (i - llast1) * ncols
else
buf1 = imgs2r (im, col1, col2, i, i)
buf2 = buf + (i - line1) * ncols
call amovr (Memr[buf1], Memr[buf2], ncols)
}
} else if (line2 > llast2) {
do i = line1, line2 {
if (i < llast2)
buf1 = buf + (i - llast1) * ncols
else
buf1 = imgs2r (im, col1, col2, i, i)
buf2 = buf + (i - line1) * ncols
call amovr (Memr[buf1], Memr[buf2], ncols)
}
}
# Save the buffer parameters.
llast1 = line1
llast2 = line2
nclast = ncols
nllast = nlines
end
|