1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
|
include <imhdr.h>
include <math.h>
# This file contains the following high-level routines for converting
# between world coordinates and pixel coordinates:
#
# xt_wcs_init initialize struct for world coordinate system
# xt_wcs_init_c initialize from input cdelt, crota, etc
# xt_wcs_init_cd initialize from input CD matrix, etc
# xt_wcs_free deallocate wcs struct
# xt_wc_pix convert from world coordinates to pixel coordinates
# xt_pix_wc convert from pixel coordinates to world coordinates
#
# Phil Hodge, 27-Sept-1988 Created, based on code by Nelson & Zolt.
# Phil Hodge, 6-April-1990 CD matrix mult. was transposed in xt_pix_wc.
# Phil Hodge, 26-July-1991 In xt_e_ctype, change GBS to GLS (global sine).
define LEN_WCS 136 # size of wcs struct for naxis <= 7
define W_VALID Memi[$1] # coordinates valid, YES or NO?
define W_NAXIS Memi[$1+1] # number of axes
define W_RA_AX Memi[$1+2] # which axis is RA? zero if none
define W_DEC_AX Memi[$1+3] # which axis is Dec? zero if none
define W_PROJECTION Memi[$1+4] # projection type
# 6 is currently not used
# 7 - 55: full CD matrix (7x7); units = e.g. degrees
# 56 - 104: LU decomposition of CD matrix
# 105 - 111: index returned by ludcmp for use by lubksb
# 112 - 118: reference pixel location
# 119 - 122: cosine & sine of declination at the reference pixel
# 123 - 136: coordinates at crpix; units = e.g. degrees
define W_CD Memr[P2R($1+6 +($2-1)+($3-1)*7)]
define W_CDLU Memr[P2R($1+55 +($2-1)+($3-1)*7)]
define W_CDINDX Memr[P2R($1+104)] # this is an array of 7
define W_CRPIX Memr[P2R($1+110+$2)]
define W_COSDEC Memd[P2D($1+118)]
define W_SINDEC Memd[P2D($1+120)]
define W_CRVAL Memd[P2D($1+120)+$2]
# Projection types.
define W_LINEAR 0
define W_GNOMONIC 1 # TAN
define W_SINE 2 # SIN
define W_ARC 3 # ARC
define W_NORTH_POLAR 4 # NCP, north celestial pole (Westerbork)
define W_STEREOGRAPHIC 5 # STG (conformal)
define W_AITOFF 6 # AIT (equal-area)
define W_GLOBAL_SINE 7 # GLS (equal-area)
define W_MERCATOR 8 # MER (conformal)
# xt_wcs_init -- initialize wcs struct
# This routine allocates space for a structure describing the world
# coordinate system for an image, fills in the values or defaults, and
# returns a pointer to that structure.
procedure xt_wcs_init (im, wcs)
pointer im # i: pointer to image descriptor
pointer wcs # o: pointer to world coord system struct
#--
real dummy # returned by ludcmp and ignored
int ira, idec # index of RA, Dec axes
int j, k # loop indexes
errchk xt_load_ctstruct
begin
call calloc (wcs, LEN_WCS, TY_STRUCT)
W_VALID(wcs) = YES # initial value
W_NAXIS(wcs) = IM_NDIM(im)
call xt_load_wcsstruct (im, wcs) # get CRVAL, etc from image
if (W_NAXIS(wcs) >= 2) {
ira = W_RA_AX(wcs)
idec = W_DEC_AX(wcs)
if (idec > 0) {
W_COSDEC(wcs) = cos (DEGTORAD(W_CRVAL(wcs,idec)))
W_SINDEC(wcs) = sin (DEGTORAD(W_CRVAL(wcs,idec)))
} else {
W_COSDEC(wcs) = 1.d0
W_SINDEC(wcs) = 0.d0
}
# Copy the CD matrix to W_CDLU, and do the LU decomposition
# on W_CDLU in-place.
do k = 1, IM_MAXDIM
do j = 1, IM_MAXDIM
W_CDLU(wcs,j,k) = W_CD(wcs,j,k)
iferr {
call ludcmp (W_CDLU(wcs,1,1), W_NAXIS(wcs), IM_MAXDIM,
W_CDINDX(wcs), dummy)
} then {
call mfree (wcs, TY_STRUCT)
call error (0, "xt_wcs_init: cd matrix is singular")
}
}
end
# xt_wcs_free -- deallocate wcs struct
# This routine deallocates space for a wcs structure.
procedure xt_wcs_free (wcs)
pointer wcs # io: pointer to world coord system struct
#--
begin
if (wcs != NULL)
call mfree (wcs, TY_STRUCT)
end
# xt_wcs_init_c -- initialize wcs struct
# xt_wcs_init_c and xt_wcs_init_cd allocate space for a structure
# describing the world coordinate system for an image, fill in the values
# or defaults, and return a pointer to that structure. They differ from
# xt_wcs_init in that these take the coordinate parameters as arguments
# rather than getting them from the image.
# xt_wcs_init_c takes cdelt & crota, and xt_wcs_init_cd takes the CD matrix.
procedure xt_wcs_init_c (crval, crpix, cdelt, crota, ctype, naxis, wcs)
double crval[naxis] # i: coordinate values at reference pixel
real crpix[naxis] # i: reference pixel
real cdelt[naxis] # i: pixel spacing
real crota # i: rotation angle (if 2-D)
char ctype[SZ_CTYPE,naxis] # i: e.g. "RA---TAN"
int naxis # i: size of arrays
pointer wcs # o: pointer to world coord system struct
#--
real dummy # returned by ludcmp and ignored
int ira, idec # index of RA, Dec axes
int j, k # loop indexes
errchk ludcmp
begin
do k = 1, naxis
if (cdelt[k] == 0.)
call error (0, "xt_wcs_init_c: zero value of CDELT")
call calloc (wcs, LEN_WCS, TY_STRUCT)
W_NAXIS(wcs) = naxis
W_VALID(wcs) = YES # initial value
# Examine ctype to get ira, idec, proj_type.
call xt_e_ctype (ctype, naxis, ira, idec, W_PROJECTION(wcs))
W_RA_AX(wcs) = ira
W_DEC_AX(wcs) = idec
do k = 1, naxis {
W_CRVAL(wcs,k) = crval[k]
W_CRPIX(wcs,k) = crpix[k]
}
do k = naxis+1, IM_MAXDIM {
W_CRVAL(wcs,k) = 0.d0
W_CRPIX(wcs,k) = 1.
}
if (naxis == 1) {
W_CD(wcs,1,1) = cdelt[1]
} else if (naxis >= 2) {
if (idec > 0) {
W_COSDEC(wcs) = cos (DEGTORAD(W_CRVAL(wcs,idec)))
W_SINDEC(wcs) = sin (DEGTORAD(W_CRVAL(wcs,idec)))
} else {
W_COSDEC(wcs) = 1.d0
W_SINDEC(wcs) = 0.d0
}
# Convert cdelt & crota to the CD matrix.
call xt_to_cd (wcs, cdelt, crota, naxis)
# Copy the CD matrix, and do the LU decomposition on W_CDLU.
do k = 1, IM_MAXDIM
do j = 1, IM_MAXDIM
W_CDLU(wcs,j,k) = W_CD(wcs,j,k)
call ludcmp (W_CDLU(wcs,1,1), naxis, IM_MAXDIM,
W_CDINDX(wcs), dummy)
}
end
# xt_wcs_init_cd -- initialize wcs struct (CD)
procedure xt_wcs_init_cd (crval, crpix, cd, ctype, naxis, wcs)
double crval[naxis] # i: coordinate values at reference pixel
real crpix[naxis] # i: reference pixel
real cd[naxis,naxis] # i: CD matrix
char ctype[SZ_CTYPE,naxis] # i: e.g. "RA---TAN"
int naxis # i: size of arrays
pointer wcs # o: pointer to world coord system struct
#--
real dummy # returned by ludcmp and ignored
int ira, idec # index of RA, Dec axes
int j, k # loop indexes
begin
call calloc (wcs, LEN_WCS, TY_STRUCT)
W_NAXIS(wcs) = naxis
W_VALID(wcs) = YES # initial value
# Examine ctype to get ira, idec, proj_type.
call xt_e_ctype (ctype, naxis, ira, idec, W_PROJECTION(wcs))
W_RA_AX(wcs) = ira
W_DEC_AX(wcs) = idec
do k = 1, naxis {
W_CRVAL(wcs,k) = crval[k]
W_CRPIX(wcs,k) = crpix[k]
}
do k = naxis+1, IM_MAXDIM {
W_CRVAL(wcs,k) = 0.d0
W_CRPIX(wcs,k) = 1.
}
if (naxis == 1) {
W_CD(wcs,1,1) = cd[1,1]
} else if (naxis >= 2) {
if (idec > 0) {
W_COSDEC(wcs) = cos (DEGTORAD(W_CRVAL(wcs,idec)))
W_SINDEC(wcs) = sin (DEGTORAD(W_CRVAL(wcs,idec)))
} else {
W_COSDEC(wcs) = 1.d0
W_SINDEC(wcs) = 0.d0
}
# Assign initial values to the CD matrix.
do k = 1, IM_MAXDIM {
do j = 1, IM_MAXDIM {
if (j == k) {
W_CD(wcs,k,k) = 1.
W_CDLU(wcs,k,k) = 1.
} else {
W_CD(wcs,j,k) = 0.
W_CDLU(wcs,j,k) = 0.
}
}
}
# Copy the CD matrix, and do the LU decomposition on W_CDLU.
do k = 1, naxis {
do j = 1, naxis {
W_CD(wcs,j,k) = cd[j,k]
W_CDLU(wcs,j,k) = cd[j,k]
}
}
iferr {
call ludcmp (W_CDLU(wcs,1,1), naxis, IM_MAXDIM,
W_CDINDX(wcs), dummy)
} then {
call mfree (wcs, TY_STRUCT)
call error (0, "xt_wcs_init_cd: cd matrix is singular")
}
}
end
# xt_to_cd -- from cdelt & crota to cd matrix
# This routine computes the CD matrix from CDELT and CROTA.
procedure xt_to_cd (wcs, cdelt, crota, naxis)
pointer wcs # i: pointer to world coord system struct
real cdelt[naxis] # i: pixel spacing
real crota # i: rotation angle (if 2-D)
int naxis # i: size of arrays
#--
real cosrota, sinrota # cosine & sine of crota
real sign_cdelt[2] # one, with sign of cdelt1 or cdelt2
int ira, idec # index of RA, Dec axes
int j, k # loop indexes
begin
ira = W_RA_AX(wcs)
idec = W_DEC_AX(wcs)
if ( ! IS_INDEFD(crota) ) {
cosrota = cos (DEGTORAD(crota))
sinrota = sin (DEGTORAD(crota))
} else {
cosrota = 1.d0
sinrota = 0.d0
}
# Initial values for CD matrix.
do k = 1, IM_MAXDIM {
do j = 1, IM_MAXDIM {
if (j == k)
W_CD(wcs,k,k) = 1.
else
W_CD(wcs,j,k) = 0.
}
}
do k = 1, naxis
W_CD(wcs,k,k) = cdelt[k]
if (ira > 0 && idec > 0) {
if (cdelt[ira] >= 0.)
sign_cdelt[1] = 1.
else
sign_cdelt[1] = -1.
if (cdelt[idec] >= 0.)
sign_cdelt[2] = 1.
else
sign_cdelt[2] = -1.
W_CD(wcs,ira,ira) = cdelt[ira] * cosrota
W_CD(wcs,ira,idec) = abs (cdelt[idec]) * sign_cdelt[1] * sinrota
W_CD(wcs,idec,ira) = -abs (cdelt[ira]) * sign_cdelt[2] * sinrota
W_CD(wcs,idec,idec) = cdelt[idec] * cosrota
}
end
# xt_e_ctype -- examine ctype
# Examine each element of the ctype array to find which axes (if any)
# are RA & Dec (or glon & glat, etc). Also get the projection type,
# such as gnomonic, if this was specified in ctype.
procedure xt_e_ctype (ctype, naxis, ra_axis, dec_axis, proj_type)
char ctype[SZ_CTYPE,naxis] # i: coordinate type, e.g. "RA---TAN"
int naxis # i: dimension
int ra_axis # o: which axis is RA (or glon, etc)?
int dec_axis # o: which axis is Dec (or glat, etc)?
int proj_type # o: type of projection
#--
char lctype[SZ_CTYPE] # local copy of an element of ctype
char dash # '-'
int k
int index # index of '-' in ctype
int strncmp(), strldx()
begin
# Assign defaults.
ra_axis = 0
dec_axis = 0
if (naxis == 1)
proj_type = W_LINEAR
else
proj_type = W_GNOMONIC
# Search for "RA", "DEC", etc.
do k = 1, naxis {
# Make a local copy of ctype & make sure it's upper case.
call strcpy (ctype[1,k], lctype, SZ_CTYPE)
call strupr (lctype)
if (strncmp (lctype, "RA", 2) == 0)
ra_axis = k
else if (strncmp (lctype, "DEC", 3) == 0)
dec_axis = k
else if (strncmp (lctype, "GLON", 4) == 0)
ra_axis = k
else if (strncmp (lctype, "LL", 2) == 0)
ra_axis = k
else if (strncmp (lctype, "UU", 2) == 0)
ra_axis = k
else if (strncmp (lctype, "ELON", 4) == 0)
ra_axis = k
else if (strncmp (lctype, "GLAT", 4) == 0)
dec_axis = k
else if (strncmp (lctype, "MM", 2) == 0)
dec_axis = k
else if (strncmp (lctype, "VV", 2) == 0)
dec_axis = k
else if (strncmp (lctype, "ELAT", 4) == 0)
dec_axis = k
}
if (ra_axis > 0)
k = ra_axis
else if (dec_axis > 0)
k = dec_axis
else
k = 0
# If at least one of the axes is like RA or Dec, check to see
# whether a projection type was specified.
if (k > 0) {
dash = '-'
index = strldx (dash, lctype)
if (index > 0) {
index = index + 1
if (strncmp (lctype[index], "TAN", 3) == 0)
proj_type = W_GNOMONIC
else if (strncmp (lctype[index], "SIN", 3) == 0)
proj_type = W_SINE
else if (strncmp (lctype[index], "ARC", 3) == 0)
proj_type = W_ARC
else if (strncmp (lctype[index], "NCP", 3) == 0)
proj_type = W_NORTH_POLAR
else if (strncmp (lctype[index], "STG", 3) == 0)
proj_type = W_STEREOGRAPHIC
else if (strncmp (lctype[index], "AIT", 3) == 0)
proj_type = W_AITOFF
else if (strncmp (lctype[index], "GLS", 3) == 0)
proj_type = W_GLOBAL_SINE
else if (strncmp (lctype[index], "MER", 3) == 0)
proj_type = W_MERCATOR
}
}
end
define SZ_PNAME 8
# xt_load_wcsstruct -- load coordinate information
# Get the coordinate information from the image, and load
# that info into the wcs structure.
procedure xt_load_wcsstruct (im, wcs)
pointer im # i: pointer to image header struct
pointer wcs # i: pointer to world coord system struct
#--
char pname[SZ_PNAME]
char ctype[SZ_CTYPE,IM_MAXDIM]
int naxis, iax # dimension of image; loop index for axis
bool cdm_found # true if CD matrix present in image
int imaccf()
double imgetd()
real imgetr()
errchk imgstr, imgetd, imgetr, xt_g_cd_matrix, xt_c_cd_matrix
begin
naxis = IM_NDIM(im)
# Get the coordinate info. If anything is missing set W_VALID to NO.
do iax = 1, naxis {
# CTYPE for each axis.
call sprintf (pname, SZ_PNAME, "ctype%d")
call pargi (iax)
if (imaccf (im, pname) == YES) {
call imgstr (im, pname, ctype[1,iax], SZ_CTYPE)
} else {
call strcpy ("PIXEL", ctype[1,iax], SZ_CTYPE)
W_VALID(wcs) = NO
}
# CRVAL for each axis
call sprintf (pname, SZ_PNAME, "crval%d")
call pargi (iax)
if (imaccf (im, pname) == YES) {
W_CRVAL(wcs,iax) = imgetd (im, pname)
} else {
W_CRVAL(wcs,iax) = 0.d0
W_VALID(wcs) = NO
}
# CRPIX for each axis
call sprintf (pname, SZ_PNAME, "crpix%d")
call pargi (iax)
if (imaccf (im, pname) == YES) {
W_CRPIX(wcs,iax) = imgetr (im, pname)
} else {
W_CRPIX(wcs,iax) = 1.
W_VALID(wcs) = NO
}
}
# Assign reasonable values to the unused elements.
do iax = naxis+1, IM_MAXDIM {
W_CRVAL(wcs,iax) = 0.d0
W_CRPIX(wcs,iax) = 1.
}
# Examine ctype array.
call xt_e_ctype (ctype, naxis,
W_RA_AX(wcs), W_DEC_AX(wcs), W_PROJECTION(wcs))
# First try to get the CD matrix, and if it isn't there
# get CDELT and CROTA and convert to CD.
call xt_g_cd_matrix (im, wcs, naxis, cdm_found)
if ( ! cdm_found )
call xt_c_cd_matrix (im, wcs, naxis)
end
# xt_g_cd_matrix -- get CD matrix
# If the CD matrix is present, get the values and place them into the
# wcs structure. Note that we assume that if *any* of the CD matrix
# parameters are there, they are *all* there.
define TOLER 1.e-5
procedure xt_g_cd_matrix (im, wcs, naxis, cdm_found)
pointer im # i: image pointer
pointer wcs # i: pointer to wcs structure
int naxis # i: number of axes in image
bool cdm_found # o: true if CD matrix found
#--
real cd_matrix[IM_MAXDIM,IM_MAXDIM] # the CD matrix
char pname[SZ_PNAME]
int i, j
int imaccf()
real imgetr()
errchk imgetr
begin
# This is reset below if any element of the CD matrix is found.
cdm_found = false
# Assign default values.
do j = 1, IM_MAXDIM
do i= 1, IM_MAXDIM
if (i == j)
cd_matrix[i,j] = 1.
else
cd_matrix[i,j] = 0.
# Get each element of the CD matrix.
do j = 1, naxis {
do i = 1, naxis {
call sprintf (pname, SZ_PNAME, "cd%d_%d")
call pargi (i)
call pargi (j)
if (imaccf (im, pname) == YES) {
cd_matrix[i,j] = imgetr (im, pname)
cdm_found = true
}
}
}
# Copy to the wcs structure.
do j = 1, IM_MAXDIM
do i = 1, IM_MAXDIM
W_CD(wcs,i,j) = cd_matrix[i,j]
end
# xt_c_cd_matrix -- create CD matrix
# If the CD matrix is not present, get the values of CDELT & CROTA,
# convert to the CD matrix, and store the values in the wcs structure.
# Since this is called after trying unsuccessfully to get the CD matrix,
# if cdelt or crota is not present W_VALID will be reset to NO.
procedure xt_c_cd_matrix (im, wcs, naxis)
pointer im # i: image pointer
pointer wcs # i: pointer to wcs structure
int naxis # i: number of axes in image
#--
char pname[SZ_PNAME] # parameter name (e.g. "cdelt1")
real cdelt[IM_MAXDIM] # pixel spacing
real crota # rotation angle in degrees
int k # loop index for axis
int imaccf()
real imgetr()
errchk imgetr
begin
do k = 1, naxis {
# CDELT for each axis.
call sprintf (pname, SZ_PNAME, "cdelt%d")
call pargi (k)
if (imaccf (im, pname) == YES) {
cdelt[k] = imgetr (im, pname)
if (cdelt[k] == 0.)
call error (0, "xt_c_cd_matrix: cdelt is zero")
} else {
cdelt[k] = 1.
W_VALID(wcs) = NO
}
}
# For a 1-D image, assign CD1_1 and return.
if (naxis == 1) {
W_CD(wcs,1,1) = cdelt[1]
return
}
# CROTA (only one).
call strcpy ("crota1", pname, SZ_PNAME)
if (imaccf (im, pname) == YES) {
crota = imgetr (im, pname)
} else {
crota = 0.
W_VALID(wcs) = NO
}
# Compute CD matrix from CDELT & CROTA.
call xt_to_cd (wcs, cdelt, crota, naxis)
end
# xt_wc_pix -- wcs to pixels
# This routine converts world coordinates to pixel coordinates.
#
# In the 1-D case, CRVAL is subtracted from the coordinate, the
# result is divided by CDELT (same as CD1_1), and CRPIX is added.
#
# For 2-D or higher dimension, if two of the axes are like RA and Dec,
# the input coordinates are converted to standard coordinates Xi
# and Eta. The (Xi, Eta) vector is then multiplied on the left by
# the inverse of the CD matrix, and CRPIX is added.
# The units for axes like Ra & Dec are degrees, not hours or radians.
# For linear axes the conversion is the same as for 1-D.
procedure xt_wc_pix (wcs, phys, pix, naxis)
pointer wcs # i: pointer to world coord system struct
double phys[naxis] # i: physical (world) coordinates (e.g. degrees)
real pix[naxis] # o: pixel coordinates
int naxis # i: size of arrays
#--
double delta_ra # RA of object - RA at reference pixel
double dra_r, dec_r # delta_ra & declination in radians
double xi_r, eta_r # xi & eta in radians
real dphys[IM_MAXDIM] # phys coord - reference coord
int ira, idec # index of RA, Dec axes
int k # loop index
errchk xt_wp_ncp, xt_wp_mer
begin
do k = 1, naxis
dphys[k] = phys[k] - W_CRVAL(wcs,k)
if (naxis == 1) {
pix[1] = dphys[1] / W_CD(wcs,1,1) + W_CRPIX(wcs,1)
} else {
ira = W_RA_AX(wcs)
idec = W_DEC_AX(wcs)
# Convert RA & Dec to Xi & Eta (standard coordinates).
if (ira > 0 && idec > 0) {
delta_ra = phys[ira] - W_CRVAL(wcs,ira) # double prec
dra_r = DEGTORAD (delta_ra)
dec_r = DEGTORAD (phys[idec])
switch (W_PROJECTION(wcs)) {
case W_GNOMONIC:
call xt_wp_tan (wcs, dra_r, dec_r, xi_r, eta_r)
case W_SINE:
call xt_wp_sin (wcs, dra_r, dec_r, xi_r, eta_r)
case W_ARC:
call xt_wp_arc (wcs, dra_r, dec_r, xi_r, eta_r)
case W_NORTH_POLAR:
call xt_wp_ncp (wcs, dra_r, dec_r, xi_r, eta_r)
case W_STEREOGRAPHIC:
call xt_wp_stg (wcs, dra_r, dec_r, xi_r, eta_r)
case W_AITOFF:
call xt_wp_ait (wcs, dra_r, dec_r, xi_r, eta_r)
case W_GLOBAL_SINE:
call xt_wp_gls (wcs, dra_r, dec_r, xi_r, eta_r)
case W_MERCATOR:
call xt_wp_mer (wcs, dra_r, dec_r, xi_r, eta_r)
}
dphys[ira] = RADTODEG (xi_r) # xi, eta in degrees
dphys[idec] = RADTODEG (eta_r)
}
# Use LU backsubstitution to get pixel coords from physical coords.
call lubksb (W_CDLU(wcs,1,1), naxis, IM_MAXDIM,
W_CDINDX(wcs), dphys) # dphys is modified in-place
do k = 1, naxis
pix[k] = dphys[k] + W_CRPIX(wcs,k) # copy to output
}
end
# xt_pix_wc -- pixels to wcs
# This routine converts pixel coordinates to world coordinates.
#
# In the 1-D case, CRPIX is subtracted from the pixel coordinate,
# the result is multiplied by CDELT (same as CD1_1), and CRVAL is added.
#
# For 2-D or higher dimension, CRPIX is subtracted, and the result is
# multiplied on the left by the CD matrix. If two of the axes are like
# RA and Dec, the pixel coordinates are converted to standard coordinates
# Xi and Eta. The (xi, eta) vector is then converted to differences
# between RA and Dec and CRVAL, and then CRVAL is added to each coordinate.
procedure xt_pix_wc (wcs, pix, phys, naxis)
pointer wcs # i: pointer to world coord system struct
real pix[naxis] # i: pixel coordinates
double phys[naxis] # o: physical (world) coordinates
int naxis # i: size of arrays
#--
double dpix[IM_MAXDIM] # pix coord - crpix
double sum # for matrix multiplication
double dra_r, dec_r # delta_ra & declination in radians
double xi_r, eta_r # xi & eta in radians
int ira, idec # index of RA, Dec axes
int j, k # loop indexes
begin
do k = 1, naxis
dpix[k] = pix[k] - W_CRPIX(wcs,k)
if (naxis == 1) {
phys[1] = dpix[1] * W_CD(wcs,1,1) + W_CRVAL(wcs,1)
} else {
do j = 1, naxis {
sum = 0.d0
do k = 1, naxis
sum = sum + W_CD(wcs,j,k) * dpix[k]
phys[j] = sum
}
ira = W_RA_AX(wcs)
idec = W_DEC_AX(wcs)
# Convert Xi & Eta (standard coordinates) to RA & Dec.
if (ira > 0 && idec > 0) {
xi_r = DEGTORAD (phys[ira])
eta_r = DEGTORAD (phys[idec])
switch (W_PROJECTION(wcs)) {
case W_GNOMONIC:
call xt_pw_tan (wcs, xi_r, eta_r, dra_r, dec_r)
case W_SINE:
call xt_pw_sin (wcs, xi_r, eta_r, dra_r, dec_r)
case W_ARC:
call xt_pw_arc (wcs, xi_r, eta_r, dra_r, dec_r)
case W_NORTH_POLAR:
call xt_pw_ncp (wcs, xi_r, eta_r, dra_r, dec_r)
case W_STEREOGRAPHIC:
call xt_pw_stg (wcs, xi_r, eta_r, dra_r, dec_r)
case W_AITOFF:
call xt_pw_ait (wcs, xi_r, eta_r, dra_r, dec_r)
case W_GLOBAL_SINE:
call xt_pw_gls (wcs, xi_r, eta_r, dra_r, dec_r)
case W_MERCATOR:
call xt_pw_mer (wcs, xi_r, eta_r, dra_r, dec_r)
}
phys[idec] = RADTODEG (dec_r)
phys[ira] = RADTODEG (dra_r) + W_CRVAL(wcs,ira)
if (phys[ira] < 0.d0)
phys[ira] = phys[ira] + 360.d0
}
do k = 1, naxis
if (k != ira && k != idec)
phys[k] = phys[k] + W_CRVAL(wcs,k)
}
end
# xt_wp_tan -- convert from ra & dec using gnomonic projection
procedure xt_wp_tan (wcs, dra_r, dec_r, xi_r, eta_r)
pointer wcs # i: pointer to world coord system struct
double dra_r # i: RA of object - RA at reference pixel (radians)
double dec_r # i: declination of object (radians)
double xi_r # o: standard coordinate (radians)
double eta_r # o: standard coordinate (radians)
#--
double cosdra, sindra # cos & sin of dra_r
double cosdec, sindec # cos & sin of object declination
double cosdist # cos of dist from ref pixel to object
begin
cosdra = cos (dra_r)
sindra = sin (dra_r)
cosdec = cos (dec_r)
sindec = sin (dec_r)
cosdist = sindec * W_SINDEC(wcs) + cosdec * W_COSDEC(wcs) * cosdra
xi_r = cosdec * sindra / cosdist
eta_r = (sindec * W_COSDEC(wcs) -
cosdec * W_SINDEC(wcs) * cosdra) / cosdist
end
# xt_pw_tan -- convert to ra & dec using gnomonic projection
# In rectangular coordinates the vector (1, xi, eta) points toward
# the object; the origin is the observer's location, the x-axis points
# toward the reference pixel, the y-axis is in the direction of increasing
# right ascension, and the z-axis is in the direction of increasing
# declination. The coordinate system is then rotated by the declination so
# the x-axis passes through the equator at the RA of the reference pixel;
# the components of the vector in this coordinate system are used to
# compute (RA - reference_RA) and declination.
procedure xt_pw_tan (wcs, xi_r, eta_r, dra_r, dec_r)
pointer wcs # i: pointer to world coord system struct
double xi_r # i: standard coordinate (radians)
double eta_r # i: standard coordinate (radians)
double dra_r # o: RA of object - RA at reference pixel (radians)
double dec_r # o: declination of object (radians)
#--
double x, y, z # vector (not unit length) pointing toward object
begin
# Rotate the rectangular coordinate system of the vector (1, xi, eta)
# by the declination so the x-axis will pass through the equator.
x = W_COSDEC(wcs) - eta_r * W_SINDEC(wcs)
y = xi_r
z = W_SINDEC(wcs) + eta_r * W_COSDEC(wcs)
if (x == 0.d0 && y == 0.d0)
dra_r = 0.d0
else
dra_r = atan2 (y, x)
dec_r = atan2 (z, sqrt (x*x + y*y))
end
# xt_wp_sin -- convert from ra & dec using sine projection
#
# Reference: AIPS Memo No. 27 by Eric W. Greisen
procedure xt_wp_sin (wcs, dra_r, dec_r, xi_r, eta_r)
pointer wcs # i: pointer to world coord system struct
double dra_r # i: RA of object - RA at reference pixel (radians)
double dec_r # i: declination of object (radians)
double xi_r # o: standard coordinate (radians)
double eta_r # o: standard coordinate (radians)
#--
double cosdra, sindra # cos & sin of delta_ra
double cosdec, sindec # cos & sin of object declination
begin
cosdra = cos (dra_r)
sindra = sin (dra_r)
cosdec = cos (dec_r)
sindec = sin (dec_r)
xi_r = cosdec * sindra
eta_r = sindec * W_COSDEC(wcs) - cosdec * W_SINDEC(wcs) * cosdra
end
# xt_pw_sin -- convert to ra & dec using sine projection
# In rectangular coordinates the vector (v1, xi, eta), where
# v1 = sqrt (1 - xi**2 - eta**2), is the location of the object on the
# unit celestial sphere. The x-axis points toward the reference pixel,
# the y-axis is in the direction of increasing right ascension, and the
# z-axis is in the direction of increasing declination. The coordinate
# system is then rotated (around the y-axis) by the declination so the
# x-axis passes through the equator at the RA of the reference pixel;
# the components of the vector in this coordinate system are used to
# compute (RA - reference_RA) and declination.
procedure xt_pw_sin (wcs, xi_r, eta_r, dra_r, dec_r)
pointer wcs # i: pointer to world coord system struct
double xi_r # i: standard coordinate (radians)
double eta_r # i: standard coordinate (radians)
double dra_r # o: RA of object - RA at reference pixel (radians)
double dec_r # o: declination of object (radians)
#--
double v1 # x component of unit vector
double x, y, z # unit vector with x[1] pointing toward equator
begin
v1 = sqrt (1.d0 - xi_r*xi_r - eta_r*eta_r)
# Rotate the rectangular coordinate system of the vector (v1, xi, eta)
# by the declination so the x-axis will pass through the equator.
x = v1 * W_COSDEC(wcs) - eta_r * W_SINDEC(wcs)
y = xi_r
z = v1 * W_SINDEC(wcs) + eta_r * W_COSDEC(wcs)
if (x == 0.d0 && y == 0.d0)
dra_r = 0.d0
else
dra_r = atan2 (y, x)
dec_r = atan2 (z, sqrt (x*x + y*y))
end
# xt_wp_arc -- convert from ra & dec using arc projection
#
# Reference: AIPS Memo No. 27 by Eric W. Greisen
procedure xt_wp_arc (wcs, dra_r, dec_r, xi_r, eta_r)
pointer wcs # i: pointer to world coord system struct
double dra_r # i: RA of object - RA at reference pixel (radians)
double dec_r # i: declination of object (radians)
double xi_r # o: standard coordinate (radians)
double eta_r # o: standard coordinate (radians)
#--
double cosdra, sindra # cos & sin of delta_ra
double cosdec, sindec # cos & sin of object declination
double theta # distance (radians) from ref pixel to object
double r # theta / sin (theta)
begin
cosdra = cos (dra_r)
sindra = sin (dra_r)
cosdec = cos (dec_r)
sindec = sin (dec_r)
theta = acos (sindec * W_SINDEC(wcs) + cosdec * W_COSDEC(wcs) * cosdra)
if (theta == 0.d0)
r = 1.d0
else
r = theta / sin (theta)
xi_r = r * cosdec * sindra
eta_r = r * (sindec * W_COSDEC(wcs) - cosdec * W_SINDEC(wcs) * cosdra)
end
# xt_pw_arc -- convert to ra & dec using arc projection
# The rectangular coordinates of the pixel on a unit celestial sphere
# are computed in a coordinate system such that the x-axis points toward
# the reference pixel, the y-axis is in the direction of increasing right
# ascension, and the z-axis is in the direction of increasing declination.
# The coordinate system is then rotated (around the y-axis) by the
# declination so the x-axis passes through the equator at the RA of the
# reference pixel; the components of the vector in this coordinate system
# are used to compute (RA - reference_RA) and declination.
procedure xt_pw_arc (wcs, xi_r, eta_r, dra_r, dec_r)
pointer wcs # i: pointer to world coord system struct
double xi_r # i: standard coordinate (radians)
double eta_r # i: standard coordinate (radians)
double dra_r # o: RA of object - RA at reference pixel (radians)
double dec_r # o: declination of object (radians)
#--
double theta # arc length, i.e. sqrt (xi**2 + eta**2)
double v[3] # unit vector with v[1] pointing toward ref pixel
double x, y, z # vector with x[1] pointing toward equator
begin
theta = sqrt (xi_r*xi_r + eta_r*eta_r)
if (theta == 0.d0) {
v[1] = 1.d0
v[2] = 0.d0
v[3] = 0.d0
} else {
v[1] = cos (theta)
v[2] = sin (theta) / theta * xi_r
v[3] = sin (theta) / theta * eta_r
}
# Rotate the rectangular coordinate system of the vector v by the
# declination so the x-axis will pass through the equator.
x = v[1] * W_COSDEC(wcs) - v[3] * W_SINDEC(wcs)
y = v[2]
z = v[1] * W_SINDEC(wcs) + v[3] * W_COSDEC(wcs)
if (x == 0.d0 && y == 0.d0)
dra_r = 0.d0
else
dra_r = atan2 (y, x)
dec_r = atan2 (z, sqrt (x*x + y*y))
end
# xt_wp_ncp -- convert from ra & dec using ncp projection
#
# References:
# AIPS Memo No. 27 by Eric W. Greisen
# Data Processing for the Westerbork Synthesis Radio Telescope
# by W. N. Brouw
procedure xt_wp_ncp (wcs, dra_r, dec_r, xi_r, eta_r)
pointer wcs # i: pointer to world coord system struct
double dra_r # i: RA of object - RA at reference pixel (radians)
double dec_r # i: declination of object (radians)
double xi_r # o: standard coordinate (radians)
double eta_r # o: standard coordinate (radians)
#--
double cosdra, sindra # cos & sin of delta_ra
double cosdec # cos of object declination
begin
if (W_SINDEC(wcs) == 0.)
call error (1, "NCP projection: dec is zero")
cosdra = cos (dra_r)
sindra = sin (dra_r)
cosdec = cos (dec_r)
xi_r = - cosdec * sindra
eta_r = (W_COSDEC(wcs) - cosdec * cosdra) / W_SINDEC(wcs)
end
# xt_pw_ncp -- convert to ra & dec using ncp projection
#
# References:
# AIPS Memo No. 27 by Eric W. Greisen
# Data Processing for the Westerbork Synthesis Radio Telescope
# by W. N. Brouw
procedure xt_pw_ncp (wcs, xi_r, eta_r, dra_r, dec_r)
pointer wcs # i: pointer to world coord system struct
double xi_r # i: standard coordinate (radians)
double eta_r # i: standard coordinate (radians)
double dra_r # o: RA of object - RA at reference pixel (radians)
double dec_r # o: declination of object (radians)
#--
double temp
begin
temp = W_COSDEC(wcs) - eta_r * W_SINDEC(wcs)
dra_r = atan2 (-xi_r, temp)
dec_r = acos (temp / cos (dra_r))
if (W_SINDEC(wcs) < 0)
dec_r = -dec_r
end
# xt_wp_gls -- convert from ra & dec using global-sine projection
#
# Reference: AIPS Memo No. 46 by Eric W. Greisen
procedure xt_wp_gls (wcs, dra_r, dec_r, xi_r, eta_r)
pointer wcs # i: pointer to world coord system struct
double dra_r # i: RA of object - RA at reference pixel (radians)
double dec_r # i: declination of object (radians)
double xi_r # o: standard coordinate (radians)
double eta_r # o: standard coordinate (radians)
#--
double cosdec # cos of object declination
double temp # delta RA
int idec # which axis is declination axis
begin
cosdec = cos (dec_r)
idec = W_DEC_AX(wcs)
temp = dra_r
# Put dra_r on the interval (-180,+180] degrees.
if (temp <= -PI)
temp = temp + TWOPI
if (temp > PI)
temp = temp - TWOPI
xi_r = temp * cosdec
if (idec > 0)
eta_r = dec_r - DEGTORAD (W_CRVAL(wcs,idec))
else
eta_r = dec_r
end
# xt_pw_gls -- convert to ra & dec using global-sine projection
#
# Reference: AIPS Memo No. 46 by Eric W. Greisen
procedure xt_pw_gls (wcs, xi_r, eta_r, dra_r, dec_r)
pointer wcs # i: pointer to world coord system struct
double xi_r # i: standard coordinate (radians)
double eta_r # i: standard coordinate (radians)
double dra_r # o: RA of object - RA at reference pixel (radians)
double dec_r # o: declination of object (radians)
#--
double cosdec # cosine of object declination
int idec # which axis is declination axis
begin
idec = W_DEC_AX(wcs)
if (idec > 0)
dec_r = eta_r + DEGTORAD (W_CRVAL(wcs,idec))
else
dec_r = eta_r
cosdec = cos (dec_r)
if (cosdec > 0.d0)
dra_r = xi_r / cosdec
else
dra_r = 0.d0
end
# xt_wp_stg -- convert from ra & dec using stereographic projection
#
# Reference: AIPS Memo No. 46 by Eric W. Greisen
procedure xt_wp_stg (wcs, dra_r, dec_r, xi_r, eta_r)
pointer wcs # i: pointer to world coord system struct
double dra_r # i: RA of object - RA at reference pixel (radians)
double dec_r # i: declination of object (radians)
double xi_r # o: standard coordinate (radians)
double eta_r # o: standard coordinate (radians)
#--
double cosdra, sindra # cos & sin of dra_r
double cosdec, sindec # cos & sin of object declination
double cosdist # cos of dist from ref pixel to object
double sincos # sin (theta) * cos (phi)
begin
cosdra = cos (dra_r)
sindra = sin (dra_r)
cosdec = cos (dec_r)
sindec = sin (dec_r)
cosdist = sindec * W_SINDEC(wcs) + cosdec * W_COSDEC(wcs) * cosdra
sincos = sindec * W_COSDEC(wcs) - cosdec * W_SINDEC(wcs) * cosdra
xi_r = 2.d0 * cosdec * sindra / (1.d0 + cosdist)
eta_r = 2.d0 * sincos / (1.d0 + cosdist)
end
# xt_pw_stg -- convert to ra & dec using stereographic projection
procedure xt_pw_stg (wcs, xi_r, eta_r, dra_r, dec_r)
pointer wcs # i: pointer to world coord system struct
double xi_r # i: standard coordinate (radians)
double eta_r # i: standard coordinate (radians)
double dra_r # o: RA of object - RA at reference pixel (radians)
double dec_r # o: declination of object (radians)
#--
double rho2 # square of distance from reference pixel
double scale # factor to reduce xi, eta to y, z
double x, y, z # unit vector toward object
double temp
begin
rho2 = xi_r * xi_r + eta_r * eta_r
x = (4.d0 - rho2) / (4.d0 + rho2)
scale = (x + 1.d0) / 2.d0
y = xi_r * scale
z = eta_r * scale
temp = x * W_COSDEC(wcs) - z * W_SINDEC(wcs)
z = x * W_SINDEC(wcs) + z * W_COSDEC(wcs)
x = temp
if (x == 0.d0 && y == 0.d0)
dra_r = 0.d0
else
dra_r = atan2 (y, x)
dec_r = atan2 (z, sqrt (x*x + y*y))
end
# xt_wp_ait -- convert from ra & dec using Aitoff projection
#
# Note that the declination at the reference pixel is ignored and is
# assumed to be zero. The algorithms given in the AIPS reference do
# allow for a non-zero declination at the reference pixel.
#
# Reference: AIPS Memo No. 46 by Eric W. Greisen
procedure xt_wp_ait (wcs, dra_r, dec_r, xi_r, eta_r)
pointer wcs # i: pointer to world coord system struct
double dra_r # i: RA of object - RA at reference pixel (radians)
double dec_r # i: declination of object (radians)
double xi_r # o: standard coordinate (radians)
double eta_r # o: standard coordinate (radians)
#--
double z # temp variable
double cosdec # cosine of declination
begin
cosdec = cos (dec_r)
z = sqrt ((1.d0 + cosdec * cos (dra_r/2.d0)) / 2.d0)
xi_r = 2.d0 * cosdec * sin (dra_r/2.d0) / z
eta_r = sin (dec_r) / z
end
# xt_pw_ait -- convert to ra & dec using Aitoff projection
#
# Note that the declination at the reference pixel is ignored and is
# assumed to be zero. The algorithms given in the AIPS reference do
# allow for a non-zero declination at the reference pixel.
#
# Reference: AIPS Memo No. 46 by Eric W. Greisen
procedure xt_pw_ait (wcs, xi_r, eta_r, dra_r, dec_r)
pointer wcs # i: pointer to world coord system struct
double xi_r # i: standard coordinate (radians)
double eta_r # i: standard coordinate (radians)
double dra_r # o: RA of object - RA at reference pixel (radians)
double dec_r # o: declination of object (radians)
#--
double z # temp variable
double cosdec # cosine of declination
begin
z = sqrt (1.d0 - xi_r*xi_r/16.d0 - eta_r*eta_r/4.d0)
dec_r = asin (eta_r * z)
cosdec = cos (dec_r)
if (cosdec > 0.d0) {
dra_r = 2.d0 * asin (xi_r * z / (2.d0 * cosdec))
} else {
dra_r = 0.d0
}
end
# xt_wp_mer -- convert from ra & dec using Mercator projection
#
# Note that the declination at the reference pixel is ignored and is
# assumed to be zero. The algorithms given in the AIPS reference do
# allow for a non-zero declination at the reference pixel.
#
# Reference: AIPS Memo No. 46 by Eric W. Greisen
procedure xt_wp_mer (wcs, dra_r, dec_r, xi_r, eta_r)
pointer wcs # i: pointer to world coord system struct
double dra_r # i: RA of object - RA at reference pixel (radians)
double dec_r # i: declination of object (radians)
double xi_r # o: standard coordinate (radians)
double eta_r # o: standard coordinate (radians)
#--
double temp
begin
xi_r = dra_r
temp = (dec_r + HALFPI) / 2.d0
if (temp >= HALFPI || temp <= 0.d0)
call error (1, "invalid declination for Mercator projection")
eta_r = log (tan (temp))
end
# xt_pw_mer -- convert to ra & dec using Mercator projection
#
# Reference: AIPS Memo No. 46 by Eric W. Greisen
procedure xt_pw_mer (wcs, xi_r, eta_r, dra_r, dec_r)
pointer wcs # i: pointer to world coord system struct
double xi_r # i: standard coordinate (radians)
double eta_r # i: standard coordinate (radians)
double dra_r # o: RA of object - RA at reference pixel (radians)
double dec_r # o: declination of object (radians)
#--
begin
dra_r = xi_r
dec_r = 2.d0 * atan (exp (eta_r)) - HALFPI
end
|