1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
# Writing own procedures
## SPP tasks
This example is taken from a the [slides of a talk by Rob
Seaman](https://iraf-community.github.io/doc/spp_intro.pdf).
Take a simple program from the test directory:
File: `hello.x`
```
# HELLO -- Sample program introducing SPP.
task hello = t_hello_world
procedure t_hello_world ()
begin
call printf ("Hello,world!\n")
end
```
Compile it, declare and run as an IRAF task
```
cl> softools
cl> xc hello.x
cl> task $hello = hello.e
cl> hello
Hello, world!
```
## SPP debugging info
This is a test for [#98](https://iraf-community.github.io/iraf-v216/issues/98).
XC is able to keep the line number of the main file, for
debugging. This is done with the `-x` flag:
```
cl> softools
cl> xc -x -f hello.x
cl> system
cl> tail hello.f nlines=22 | head nlines=11
subroutine thelld ()
integer*2 st0001(14)
save
integer iyy
data (st0001(iyy),iyy= 1, 8) / 72,101,108,108,111, 44,119,111/
data (st0001(iyy),iyy= 9,14) /114,108,100, 33, 10, 0/
#line 5 "hello.x"
call xprinf(st0001)
100 call zzepro
return
end
```
## Machine dependent limits
This is a test for [#106](https://iraf-community.github.io/iraf-v216/issues/106).
Some limits are defined by the `R1MACH` and `D1MACH` functions. We
just test some very basic properties of these numbers:
File: `machtest.x`
```
task machtest = t_machtest
procedure t_machtest ()
real r1mach()
double d1mach()
int i
int failures
begin
# Check that all values are positive numbers
failures = 0
do i=1, 5 {
if (! (r1mach(i) == r1mach(i))) {
call printf("R1MACH(%d) is not a number\n")
call pargi(i)
failures = failures + 1
} else if (r1mach(i) <= 0) {
call printf("R1MACH(%d) is not positive\n")
call pargi(i)
failures = failures + 1
}
}
call printf("\n")
do i=1, 5 {
if (! (d1mach(i) == d1mach(i))) {
call printf("D1MACH(%d) is not a number\n")
call pargi(i)
failures = failures + 1
} else if (d1mach(i) <= 0) {
call printf("D1MACH(%d) is not positive\n")
call pargi(i)
failures = failures + 1
}
}
if (failures == 0) {
call printf("Simple consistency check passed.\n")
} else {
call printf("Simple consistency check has %d failures\n")
call pargi(failures)
}
end
```
Running this should give:
```
cl> softools
cl> xc machtest.x
cl> task $machtest = machtest.e
cl> machtest
Simple consistency check passed.
```
## ILP64 memory model
This is a test for [#107](https://iraf-community.github.io/iraf-v216/issues/107).
On 64-bit machines, IRAF uses the ILP64 model that makes normal SPP
`integer` 8 byte wide. `real` values however remain at 4 byte. This
should be recognized by the Fortran compiler when doing
`equivalence`.
File: `test_equiv.x`
```
task test_equiv = t_equiv
procedure t_equiv ()
real fval, gval
int ival
% equivalence (fval, ival)
begin
ival = 0
gval = 1.2345e06
call printf("Should be zero: %d\n")
call pargi(ival)
gval = 0.
ival = 998765123423
call printf("Should be zero: %g\n")
call pargr(gval)
end
```
In that example, setting `ival` should not affect the independently
defined variable `gval` and vice versa:
```
cl> softools
cl> xc test_equiv.x
cl> task $test_equiv = test_equiv.e
cl> test_equiv
Should be zero: 0
Should be zero: 0.
```
## Plain FORTRAN files
The xc compiler should be able to compile plain FORTRAN files (with
FORTRAN I/O) as well. The f2c compiler used in 2.17, 2.17.1, 2.18
cannot compile this. See [discussion
#369](https://github.com/orgs/iraf-community/discussions/369).
File: `test_io.f`
```
PROGRAM TESTIO
OPEN (11, FILE='testio.dat')
WRITE (11, *) 'Hello world'
CLOSE (11)
END
```
```
cl> softools
cl> xc -h test_io.f
cl> !./test_io.e
cl> type testio.dat
Hello world
```
## Loop optimization
This is a test for [#60](https://iraf-community.github.io/iraf-v216/issues/60).
With the original 2.16.1 release, there is a problem with loop
optimization on "newer" platforms. A simple example task is here:
File: `otest.x`
```
task otest = t_otest
procedure t_otest ()
int i
pointer p, sp
begin
call smark(sp)
call salloc(p, 4, TY_DOUBLE)
do i = 1, 4
memd[p+i-1] = i
do i = 1, 4 {
call printf("%d == %g\n")
call pargi(i)
call pargd(memd[p+i-1])
}
call sfree(sp)
end
```
All this code does is to allocate a temporary array with four
integers, fill each position with its index, and then print out the
integers. Compile it, declare the task in (e)cl and run it:
```
cl> softools
cl> xc otest.x
cl> task $otest = otest.e
cl> otest
1 == 1.
2 == 2.
3 == 3.
4 == 4.
```
See issue #73 for the bug report.
## The `generic` preprocessor
The `generic` preprocessor is used to translate generic source code (code
written to work for any datatype) into type dependent source code,
suitable for compilation and insertion into a library. The generic source
is translated for each datatype, producing a type dependent copy of the
source code for each datatype.
One way to operate `generic` is to embed `$for` and `$endfor`
directives into the source file. The example is taken from the
`sys/vops` subdir:
File: `aabs.gx`
```
$for (dr)
procedure aabs$t (a, b, npix)
PIXEL a[ARB], b[ARB]
int npix, i
begin
do i = 1, npix
b[i] = abs(a[i])
end
$endfor
```
which produces the following single output file:
```
cl> softools
cl> generic aabs.gx -o aabs.x
cl> dir aabs*
aabs.gx aabs.x
cl> type aabs.x
procedure aabsd (a, b, npix)
double a[ARB], b[ARB]
int npix, i
begin
do i = 1, npix
b[i] = abs(a[i])
end
procedure aabsr (a, b, npix)
real a[ARB], b[ARB]
int npix, i
begin
do i = 1, npix
b[i] = abs(a[i])
end
```
One may also specify the types on the command line of `generic`, like
for this input file:
File: `alim.gx`
```
procedure alim$t (a, npix, minval, maxval)
PIXEL a[ARB], minval, maxval, value
int npix, i
begin
minval = a[1]
maxval = a[1]
do i = 1, npix {
value = a[i]
$if (datatype == x)
if (abs(value) < abs(minval))
minval = value
else if (abs(value) > abs(maxval))
maxval = value
$else
if (value < minval)
minval = value
else if (value > maxval)
maxval = value
$endif
}
end
```
It produces one output file per type:
```
cl> softools
cl> generic -t silrdx alim.gx
cl> dir alim*
alim.gx alimd.x alimi.x aliml.x alimr.x alims.x alimx.x
cl> type alimi.x
procedure alimi (a, npix, minval, maxval)
int a[ARB], minval, maxval, value
int npix, i
begin
minval = a[1]
maxval = a[1]
do i = 1, npix {
value = a[i]
if (value < minval)
minval = value
else if (value > maxval)
maxval = value
}
end
cl> type alimr.x
procedure alimr (a, npix, minval, maxval)
real a[ARB], minval, maxval, value
int npix, i
begin
minval = a[1]
maxval = a[1]
do i = 1, npix {
value = a[i]
if (value < minval)
minval = value
else if (value > maxval)
maxval = value
}
end
```
The `generic` has a specific handling for `INDEF`: `INDEF` and
`IS_INDEF` are replaced with the ones specific for the processed data
type, while `INDEFR` etc. are kept as they are. Also, `$if` can limit
the preprocessing.
For example,
File: `geofxy.gx`
```
$for (rd)
procedure geo_fxy$t(fit, sf1)
pointer fit, sf1
begin
$if (datatype == r)
if (IS_INDEFD(GM_XO(fit)))
call gsset (sf1, GSXREF, INDEF)
$else
call gsset (sf1, GSXREF, INDEF)
$endif
end
$endfor
```
which produces:
```
cl> softools
cl> generic geofxy.gx -o geofxy.x
cl> type geofxy.x
procedure geo_fxyr(fit, sf1)
pointer fit, sf1
begin
if (IS_INDEFD(GM_XO(fit)))
call gsset (sf1, GSXREF, INDEFR)
end
procedure geo_fxyd(fit, sf1)
pointer fit, sf1
begin
call gsset (sf1, GSXREF, INDEFD)
end
```
|