1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
|
This is compiled from
* [Preliminary Test Procedure for IRAF](https://iraf-community.github.io/doc/testproc.pdf),
IRAF Version V2.11, Jeannette Barnes, Central Computer Services,
National Optical Astronomy Observatories, P.O. Box 26732, Tucson, AZ
85726, Revised September 23, 1997,
* [A Beginner's Guide to Using IRAF](https://iraf-community.github.io/doc/beguide.pdf),
IRAF Version 2.10, Jeannette Barnes, Central Computer Services, August 1993.
***
The following pages describe a short test procedure that sites can
execute to test some basic image functions within IRAF for a new
installation. This process will help verify that everything is working
correctly and also help the rst time user gain familiarity with the
system. The commands you need to type and the expected terminal output
are given below.
# The basics
We will assume that you have started IRAF and are residing in an empty
directory from which you wish to work.
## Packages and tasks
All of the IRAF core packages are loaded when you log into IRAF. You
can list what packages are currently loaded by typing the word
`package`. The following should be displayed, but the packages may not
be listed in the same order:
```
cl> package
clpackage
language
system
lists
noao
nttools
utilities
proto
imutil
immatch
imgeom
imfit
imfilter
imcoords
images
```
New packages can be loaded by simply typing the packages name. Not the
change of the prompt. The last package loaded can be unloaded by
typing `bye`. Try the following. Note that in our example the top
level packages listed may be different than yours.
```
cl> digiphot
di> ?
apphot daophot photcal ptools
di> bye
cl> ?
dataio language noao plot softools utilities
images lists obsolete proto system
```
## Image files
An IRAF image exists in the `dev$` directory. Lets make a copy of this
image into the current working directory.
```
cl> imcopy dev$pix image.short
dev$pix -> image.short
```
Let's look at the header information for this image with `imhead`.
```
cl> imhead dev$pix long+
dev$pix[512,512][short]: m51 B 600s
No bad pixels, min=-1., max=19936.
Line storage mode, physdim [512,512], length of user area 1621 s.u.
Created Mon 23:54:13 31-Mar-1997, Last modified Sun 16:37:53 12-Mar-2006
Pixel file "HDR$pix.pix" [ok]
'KPNO-IRAF' /
'31-03-97' /
IRAF-MAX= 1.993600E4 / DATA MAX
IRAF-MIN= -1.000000E0 / DATA MIN
IRAF-BPX= 16 / DATA BITS/PIXEL
IRAFTYPE= 'SHORT ' / PIXEL TYPE
CCDPICNO= 53 / ORIGINAL CCD PICTURE NUMBER
ITIME = 600 / REQUESTED INTEGRATION TIME (SECS)
TTIME = 600 / TOTAL ELAPSED TIME (SECS)
OTIME = 600 / ACTUAL INTEGRATION TIME (SECS)
DATA-TYP= 'OBJECT (0)' / OBJECT,DARK,BIAS,ETC.
DATE-OBS= '05/04/87' / DATE DD/MM/YY
RA = '13:29:24.00' / RIGHT ASCENSION
DEC = '47:15:34.00' / DECLINATION
EPOCH = 0.00 / EPOCH OF RA AND DEC
ZD = '22:14:00.00' / ZENITH DISTANCE
UT = ' 9:27:27.00' / UNIVERSAL TIME
ST = '14:53:42.00' / SIDEREAL TIME
CAM-ID = 1 / CAMERA HEAD ID
CAM-TEMP= -106.22 / CAMERA TEMPERATURE, DEG C
DEW-TEMP= -180.95 / DEWAR TEMPRATURE, DEG C
F1POS = 2 / FILTER BOLT I POSITION
F2POS = 0 / FILTER BOLT II POSITION
TVFILT = 0 / TV FILTER
CMP-LAMP= 0 / COMPARISON LAMP
TILT-POS= 0 / TILT POSITION
BIAS-PIX= 0 /
BI-FLAG = 0 / BIAS SUBTRACT FLAG
BP-FLAG = 0 / BAD PIXEL FLAG
CR-FLAG = 0 / BAD PIXEL FLAG
DK-FLAG = 0 / DARK SUBTRACT FLAG
FR-FLAG = 0 / FRINGE FLAG
FR-SCALE= 0.00 / FRINGE SCALING PARAMETER
TRIM = 'Apr 22 14:11 Trim image section is [3:510,3:510]'
BT-FLAG = 'Apr 22 14:11 Overscan correction strip is [515:544,3:510]'
FF-FLAG = 'Apr 22 14:11 Flat field image is Flat1.imh with scale=183.9447'
CCDPROC = 'Apr 22 14:11 CCD processing done'
AIRMASS = 1.08015632629395 / AIRMASS
HISTORY 'KPNO-IRAF'
HISTORY '24-04-87'
HISTORY 'KPNO-IRAF' /
HISTORY '08-04-92' /
```
Note that the pixels are short integers (=16 bits).
Print the same, but without the user fields:
```
cl> imhead dev$pix l+ u-
dev$pix[512,512][short]: m51 B 600s
No bad pixels, min=-1., max=19936.
Line storage mode, physdim [512,512], length of user area 1621 s.u.
Created Mon 23:54:13 31-Mar-1997, Last modified Sun 16:37:53 12-Mar-2006
Pixel file "HDR$pix.pix" [ok]
'KPNO-IRAF' /
'31-03-97' /
```
Check the parameter settings for `imhead`:
```
cl> lpar imhead
images = image names
(imlist = "*.imh,*.fits,*.pl,*.qp,*.hhh") default image names
(longheader = no) print header in multi-line format
(userfields = yes) print the user fields (instrument parameters)
(mode = "ql")
```
It would be useful to generate two more copies of this image but with
different pixel types - one with 32-bit floating point pixels (called
`real`s) and one with 64-bit double precision floating point pixels
(called `double`). Note that IRAF also supports other pixel data types -
32-bit integers called `long`, 16-bit unsigned integers called
`ushort`, and complex numbers. Execute the following:
```
cl> imarith image.short / 1 image.real pixtype=r
cl> imarith image.short / 1 image.dbl pixtype=d
cl> imhead image.*
image.dbl.fits[512,512][double]: m51 B 600s
image.real.fits[512,512][real]: m51 B 600s
image.short.fits[512,512][short]: m51 B 600s
```
Let's execute a couple of more tasks that will exercise some image
operators. Typing
```
cl> minmax image.dbl,image.real,image.short
image.dbl [77,4] -1. [348,189] 19936.
image.real [77,4] -1. [348,189] 19936.
image.short [77,4] -1. [348,189] 19936.
```
Now display a table with pixel values.
```
cl> listpix image.short[300:305,200:205] formats="%4s %4s" | table
1. 1. 145. 4. 2. 141. 1. 4. 149. 4. 5. 144.
2. 1. 143. 5. 2. 132. 2. 4. 149. 5. 5. 145.
3. 1. 141. 6. 2. 130. 3. 4. 146. 6. 5. 144.
4. 1. 142. 1. 3. 162. 4. 4. 143. 1. 6. 138.
5. 1. 135. 2. 3. 145. 5. 4. 145. 2. 6. 139.
6. 1. 138. 3. 3. 146. 6. 4. 140. 3. 6. 145.
1. 2. 147. 4. 3. 144. 1. 5. 144. 4. 6. 141.
2. 2. 147. 5. 3. 135. 2. 5. 145. 5. 6. 141.
3. 2. 145. 6. 3. 141. 3. 5. 133. 6. 6. 149.
```
## Image sections
Now let's test the use of image sections. Type and observe the
following terminal interactions:
```
cl> imcopy image.real[200:300,200:300] image.sect
image.real[200:300,200:300] -> image.sect
cl> imhead image.sect
image.sect[101,101][real]: m51 B 600s
```
## Modifying images
At this time, let's modify a couple of image titles.
```
cl> hedit image.real title "m51 real" verify=no
image.real,i_title: "m51 B 600s" -> "m51 real"
image.real updated
cl> hedit image.dbl title "m51 double" verify=no
image.dbl,i_title: "m51 B 600s" -> "m51 double"
image.dbl updated
```
We can verify the new title with the `imheader` task.
```
cl> imhead image*
image.dbl.fits[512,512][double]: m51 double
image.real.fits[512,512][real]: m51 real
image.sect.fits[101,101][real]: m51 B 600s
image.short.fits[512,512][short]: m51 B 600s
```
# Plotting data
## One-dimensional (vector) plotting tasks
Now let's check some plotting options. Type
```
cl> plot
cl> pcol image.short 256 >G image.short.meta
cl> !ls image.short.meta
image.short.meta
cl> del image.short.meta
```
The redirected output graphics file should have the md5 sum
`0806e05ccea335a1ad4962282905c830` on 64 bit. Unfortunately, this is
machine dependent, so on 32 bit, the md5 sum is
`32e139a609d9d50c8f108d0023820c11`.
## Two-dimensional plotting tasks
Let's make a contour plot of the section image. We do it as IRAF graphics.
```
cl> plot
cl> contour image.sect >G image.sect.meta
Image will be block averaged by 1 in x and 1 in y
cl> !ls image.sect.meta
image.sect.meta
cl> del image.sect.meta
```
Unfortunately, the file contains local information and therefore the
content can't be strictly compared.
## Tasks that manipulate graphics metacode files
Graphics output can be stored in files. These files are called
"metacode" files. Graphics metacode files can be generated by the task
itself, by the user by redirecting the graphics output to a metacode
file on the command line with the `>G` syntax, or by writing the plot
directly to a metacode file with the `:.write` option in interactive
graphics mode.
A metacode file is distributed with your IRAF system and we will use
it to demonstrate these tasks.
```
cl> plot
cl> gkidir dev$vdm.gki
METAFILE 'dev$vdm.gki':
[1] (3517 words) The SINC Function
[2] (2855 words) The SINC Function
[3] (5701 words) .2
[4] (2525 words) Line 250 of dev$pix[200:300,*]
[5] (7637 words) Log Scaling
[6] (97781 words) NOAO/IRAF V2.3 tody@lyra Fri 23:30:27 08-Aug-86
[7] (2501 words) The Sinc Function
[8] (11719 words) Line 250 of dev$pix[200:300,*]
```
# Using the image display
In the workstation environment the user displays an image into a frame
buffer and then uses the display server, either IMTOOL or SAOimage,
for panning, zooming, blinking, changing the lookup tables (greyscale
and color), and so on. These functions will be done differently
depending on the server you are using.
Before doing anything involving image display the environment variable
stdimage must be set to the correct frame buffer size for the display
servers (as described in the `dev$graphcap` file under the section
"STDIMAGE devices") or to the correct image display device. The task
`GDEVICES` is helpful for determining this information for the display
servers.
```
cl> show stdimage
imt512
cl> set stdimage=imt800
cl> set stdimage=iism70v
```
## Displaying IRAF images
The `DISPLAY` task is the main task used for displaying images, but
cannot be tested here. Running `DISPLAY` without an image server will
result in a failure.
# Coordinate systems within IRAF
IRAF has support for three coordinate systems. The "logical"
coordinate system is defined by pixel coordinates relative to the
current image or image section.
```
cl> listpix dev$wpix[16:20,5:6] wcs=logical
1. 1. 41.
2. 1. 38.
3. 1. 41.
4. 1. 42.
5. 1. 40.
1. 2. 38.
2. 2. 38.
3. 2. 38.
4. 2. 39.
5. 2. 38.
```
The "physical" coordinate system is also in pixel coordinates but
relative to the original or parent image.
```
cl> listpix dev$wpix[16:20,5:6] wcs=physical
16. 5. 41.
17. 5. 38.
18. 5. 41.
19. 5. 42.
20. 5. 40.
16. 6. 38.
17. 6. 38.
18. 6. 38.
19. 6. 39.
20. 6. 38.
```
The "world" coordinates can be in any general world coordinate system
such as right ascension and declination or wavelength.
```
cl> listpix dev$wpix[16:20,5:6] wcs=world format="%H %h"
13:28:05.1 47:24:01.4 41.
13:28:05.1 47:24:01.4 38.
13:28:05.0 47:24:01.4 41.
13:28:04.9 47:24:01.4 42.
13:28:04.8 47:24:01.4 40.
13:28:05.1 47:24:02.1 38.
13:28:05.1 47:24:02.2 38.
13:28:05.0 47:24:02.2 38.
13:28:04.9 47:24:02.2 39.
13:28:04.8 47:24:02.2 38.
```
# Additional interesting topics
## File and image name templates
Templates are character strings including some
metacharacters. Templates can be used as input to IRAF tasks; those
file names matching the template are used as input.
The following are a few examples of the more commonly used file templates.
```
cl> dir *.fits
image.dbl.fits image.real.fits image.sect.fits image.short.fits
```
## The @file
The @file (pronounced "at file") can be used for handling large lists
of images for input and output. The @file is a text file containing a
list of images. The easiest way to generate an @file is with the `FILES`
or `SECTIONS` task. This is often the preferred input/output to tasks
rather than using templates directly. Since the @file is a text file
it can also be edited.
```
cl> files *.fits > inlist
cl> imstat @inlist
# IMAGE NPIX MEAN STDDEV MIN MAX
image.dbl.fits 262144 108.3 131.3 -1. 19936.
image.real.fits 262144 108.3 131.3 -1. 19936.
image.sect.fits 10201 363.9 346. 108. 7734.
image.short.fits 262144 108.3 131.3 -1. 19936.
```
You can also use the `//` operator:
```
cl> imarith @inlist * 2 @inlist//.2
cl> imstat @inlist//.2
# IMAGE NPIX MEAN STDDEV MIN MAX
image.dbl.2.fits 262144 216.6 262.6 -2. 39872.
image.real.2.fits 262144 216.6 262.6 -2. 39872.
image.sect.2.fits 10201 727.8 692. 216. 15468.
image.short.2.fits 262144 216.1 250. -26476. 29280.
cl> imdelete image.*.2.fits
```
A common extension can be specified as well in the list with the new
image opening code (`set use_vo = yes`; see
[#235](https://github.com/iraf-community/iraf/issues/235)):
```
cl> imstat @inlist[0]
# IMAGE NPIX MEAN STDDEV MIN MAX
image.dbl.fits[0] 262144 108.3 131.3 -1. 19936.
image.real.fits[0] 262144 108.3 131.3 -1. 19936.
image.sect.fits[0] 10201 363.9 346. 108. 7734.
image.short.fits[0] 262144 108.3 131.3 -1. 19936.
```
## Using the CL as a calculator
The CL has a built-in calculator capability. Some variables that may
be used are defined in the parameter file for the CL which includes
the booleans b1, b2, and b3; the integer variables, i, j, and k; the
real variables, x, y, and z; and the string variables, s1, s2, and
s3. There are a variety of built-in functions that are also available
including sin, cos, abs, exp, log, log10, max, min, sqrt, and tan.
For more complex examples see the document An Introductory User's
Guide to IRAF Scripts, mentioned in ยง9.1.
```
cl> i=1;j=2;x=5;=i+x**j
26.
cl> =x
5.
cl> =sqrt(x/10)
0.70710678118655
cl> =(sin(0.5)**2+cos(0.5)**2)
1.
```
# Cleaning up
Hopefully all went well to this point. Let's clean things up a bit.
```
cl> dir
image.dbl.fits image.sect.fits inlist
image.real.fits image.short.fits
cl> imdelete image.*
cl> dir
inlist
```
Remember that if you want to delete any images you just use the task
`imdelete`. The task `delete` will delete your text files. If the
wrong task is used to delete images a warning message is printed and
no images are deleted.
If discrepancies occur during any of these steps, please look at the
examples closely. It might be advisable to backtrack a few steps and
verify things again. If the discrepancies are repeatable there could
indeed be a problem. Please document the discrepancy and feel free to
contact us if some advice or help is needed.
|