1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
/*
* cast.c: CAST-128 bit encryption
*
* Written By Matthew Green.
*
* Copyright (c) 1998-2014 Matthew R. Green.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
IRCII_RCSID_NAMED("@(#)$eterna: cast.c,v 2.48 2020/11/17 08:24:32 mrg Exp $", cast_rcsid);
static int cast_encrypt_str(crypt_key *, u_char **, size_t *);
static int cast_decrypt_str(crypt_key *, u_char **, size_t *);
/* pull in the sboxes */
#include "cast_sbox.h"
#include "assert.h"
/* our structured cast key: 32 subkeys, and do we do 12 or 16 rounds? */
typedef struct {
uint32_t rk[32]; /* prepared key */
int full16; /* do 12 our 16 rounds? */
uint32_t enc_oldr, enc_oldl; /* state for encryption */
uint32_t dec_oldr, dec_oldl; /* state for decryption */
} castkey;
static void cast_setkey(crypt_key *, size_t);
static void cast_encrypt(castkey *, u_char *, u_char *, int);
static void cast_decrypt(castkey *, u_char *, u_char *, int);
static void cast_clearstate_dec(castkey *k);
static void cast_clearstate_enc(castkey *k);
/* get different 8 bit parts of a 32 bit variable */
#define E0(x) ((u_char) (x >> 24))
#define E1(x) ((u_char)((x >> 16) & 255))
#define E2(x) ((u_char)((x >> 8) & 255))
#define E3(x) ((u_char)((x) & 255))
/* rotate left */
#define ROT(x, n) ( ((x)<<(n)) | ((x)>>(32-(n))) )
/* CAST-128 needs three rounding functions */
#define R1(l, r, i) do { \
I = ROT((k)->rk[(i)] + (r), (k)->rk[(i) + 16]); \
l ^= ((cast_S1[E0(I)] ^ cast_S2[E1(I)]) - cast_S3[E2(I)]) \
+ cast_S4[E3(I)]; \
} while (0)
#define R2(l, r, i) do { \
I = ROT((k)->rk[(i)] ^ (r), (k)->rk[(i) + 16]); \
l ^= ((cast_S1[E0(I)] - cast_S2[E1(I)]) + cast_S3[E2(I)]) \
^ cast_S4[E3(I)]; \
} while (0)
#define R3(l, r, i) do { \
I = ROT((k)->rk[(i)] - (r), (k)->rk[(i) + 16]); \
l ^= ((cast_S1[E0(I)] + cast_S2[E1(I)]) ^ cast_S3[E2(I)]) \
- cast_S4[E3(I)]; \
} while (0)
/* get 32 bits from the block, from the specified offset */
#define G32(s, o) \
(((uint32_t)(s)[(o) + 0] << 24) | ((uint32_t)(s)[(o) + 1] << 16) | \
((uint32_t)(s)[(o) + 2] << 8) | (uint32_t)(s)[(o) + 3])
/*
* cast_encrypt:
* - converts 8 bytes of data from src to dest using key k.
* - note that we only do 12 rounds if we have a long enough
* key (80 or more bits).
*/
static void
cast_encrypt(castkey *k, u_char *src, u_char *dest, int first)
{
uint32_t I, l, r;
/*
* if this is the first encryption, we only want to
* setup internal state
*/
if (first)
{
k->enc_oldl = G32(src, 0);
k->enc_oldr = G32(src, 4);
return;
}
/*
* split src into left and right parts, xoring the previous
* cipherblock as we go
*/
l = G32(src, 0) ^ k->enc_oldl;
r = G32(src, 4) ^ k->enc_oldr;
/* do it */
R1(l, r, 0);
R2(r, l, 1);
R3(l, r, 2);
R1(r, l, 3);
R2(l, r, 4);
R3(r, l, 5);
R1(l, r, 6);
R2(r, l, 7);
R3(l, r, 8);
R1(r, l, 9);
R2(l, r, 10);
R3(r, l, 11);
if (k->full16) {
R1(l, r, 12);
R2(r, l, 13);
R3(l, r, 14);
R1(r, l, 15);
}
/* now put the left and right parts back into dest */
dest[0] = E0(r);
dest[1] = E1(r);
dest[2] = E2(r);
dest[3] = E3(r);
dest[4] = E0(l);
dest[5] = E1(l);
dest[6] = E2(l);
dest[7] = E3(l);
/* save the final cipherblock for the next block's encryption */
k->enc_oldl = G32(dest, 0);
k->enc_oldr = G32(dest, 4);
/* and clean up our stack */
I = l = r = 0;
}
/*
* cast_decrypt:
* - unconverts 8 bytes of data from src to dest using key k
* - note that we only do 12 rounds if we have a long enough
* key (80 or more bits).
*/
static void
cast_decrypt(castkey *k, u_char *src, u_char *dest, int first)
{
uint32_t new_oldr, new_oldl;
uint32_t I, r, l;
/*
* if this is the first decryption, we only want to
* setup internal state
*/
if (first)
{
k->dec_oldl = G32(src, 0);
k->dec_oldr = G32(src, 4);
return;
}
new_oldl = G32(src, 0);
new_oldr = G32(src, 4);
/* split src into left and right parts */
r = G32(src, 0);
l = G32(src, 4);
/* do it */
if (k->full16) {
R1(r, l, 15);
R3(l, r, 14);
R2(r, l, 13);
R1(l, r, 12);
}
R3(r, l, 11);
R2(l, r, 10);
R1(r, l, 9);
R3(l, r, 8);
R2(r, l, 7);
R1(l, r, 6);
R3(r, l, 5);
R2(l, r, 4);
R1(r, l, 3);
R3(l, r, 2);
R2(r, l, 1);
R1(l, r, 0);
/* now put the left and right parts back into dest */
dest[0] = E0(l) ^ E0(k->dec_oldl);
dest[1] = E1(l) ^ E1(k->dec_oldl);
dest[2] = E2(l) ^ E2(k->dec_oldl);
dest[3] = E3(l) ^ E3(k->dec_oldl);
dest[4] = E0(r) ^ E0(k->dec_oldr);
dest[5] = E1(r) ^ E1(k->dec_oldr);
dest[6] = E2(r) ^ E2(k->dec_oldr);
dest[7] = E3(r) ^ E3(k->dec_oldr);
/* save the final cipherblock for the next block's encryption */
k->dec_oldr = new_oldr;
k->dec_oldl = new_oldl;
/* and clean up our stack */
I = l = r = 0;
new_oldr = new_oldl = 0;
}
/*
* Clear the encryption/decryption state.
*/
static void
cast_clearstate_enc(castkey *k)
{
k->enc_oldr = k->enc_oldl = 0;
}
static void
cast_clearstate_dec(castkey *k)
{
k->dec_oldr = k->dec_oldl = 0;
}
/*
* cast_setkey:
* - fill in key from the raw bytes in key for length len.
*/
static void
cast_setkey(crypt_key *key, size_t len)
{
castkey *k;
uint32_t t[4], x[4], z[4];
int i;
memset(&t, 0, sizeof t);
memset(&z, 0, sizeof z);
if (key->cookie)
{
/*yell("cast_setkey: key-cookie not null; freeing.");*/
new_free(&key->cookie);
}
key->cookie = k = new_malloc(sizeof *k);
cast_clearstate_enc(k);
cast_clearstate_dec(k);
/* convert the key so we can use it ... */
for (i = 0; i < 4; i++) {
x[i] = 0;
if ((i * 4 + 0) < len)
x[i] = (uint32_t)key->key[i * 4 + 0] << 24;
if ((i * 4 + 1) < len)
x[i] |= (uint32_t)key->key[i * 4 + 1] << 16;
if ((i * 4 + 2) < len)
x[i] |= (uint32_t)key->key[i * 4 + 2] << 8;
if ((i * 4 + 3) < len)
x[i] |= (uint32_t)key->key[i * 4 + 3];
}
/* if the key length is not sufficient, only do 12 rounds */
k->full16 = (len > 10 ? 1 : 0);
/*
* generate our 32 subkeys (4 at a time, as we can). used an
* idea from steve reid on how to collapse this code a little
* more than the fully expanded version .. (pity i found that
* later)
*/
for (i = 0; i < 32; i += 4) {
switch (i & 4) {
case 0:
t[0] = z[0] = x[0] ^ cast_S5[E1(x[3])] ^ cast_S6[E3(x[3])] ^ cast_S7[E0(x[3])] ^ cast_S8[E2(x[3])] ^ cast_S7[E0(x[2])];
t[1] = z[1] = x[2] ^ cast_S5[E0(z[0])] ^ cast_S6[E2(z[0])] ^ cast_S7[E1(z[0])] ^ cast_S8[E3(z[0])] ^ cast_S8[E2(x[2])];
t[2] = z[2] = x[3] ^ cast_S5[E3(z[1])] ^ cast_S6[E2(z[1])] ^ cast_S7[E1(z[1])] ^ cast_S8[E0(z[1])] ^ cast_S5[E1(x[2])];
t[3] = z[3] = x[1] ^ cast_S5[E2(z[2])] ^ cast_S6[E1(z[2])] ^ cast_S7[E3(z[2])] ^ cast_S8[E0(z[2])] ^ cast_S6[E3(x[2])];
break;
case 4:
t[0] = x[0] = z[2] ^ cast_S5[E1(z[1])] ^ cast_S6[E3(z[1])] ^ cast_S7[E0(z[1])] ^ cast_S8[E2(z[1])] ^ cast_S7[E0(z[0])];
t[1] = x[1] = z[0] ^ cast_S5[E0(x[0])] ^ cast_S6[E2(x[0])] ^ cast_S7[E1(x[0])] ^ cast_S8[E3(x[0])] ^ cast_S8[E2(z[0])];
t[2] = x[2] = z[1] ^ cast_S5[E3(x[1])] ^ cast_S6[E2(x[1])] ^ cast_S7[E1(x[1])] ^ cast_S8[E0(x[1])] ^ cast_S5[E1(z[0])];
t[3] = x[3] = z[3] ^ cast_S5[E2(x[2])] ^ cast_S6[E1(x[2])] ^ cast_S7[E3(x[2])] ^ cast_S8[E0(x[2])] ^ cast_S6[E3(z[0])];
break;
}
switch (i & 12) {
case 0:
case 12:
k->rk[i + 0] = cast_S5[E0(t[2])] ^ cast_S6[E1(t[2])] ^ cast_S7[E3(t[1])] ^ cast_S8[E2(t[1])];
k->rk[i + 1] = cast_S5[E2(t[2])] ^ cast_S6[E3(t[2])] ^ cast_S7[E1(t[1])] ^ cast_S8[E0(t[1])];
k->rk[i + 2] = cast_S5[E0(t[3])] ^ cast_S6[E1(t[3])] ^ cast_S7[E3(t[0])] ^ cast_S8[E2(t[0])];
k->rk[i + 3] = cast_S5[E2(t[3])] ^ cast_S6[E3(t[3])] ^ cast_S7[E1(t[0])] ^ cast_S8[E0(t[0])];
break;
case 4:
case 8:
k->rk[i + 0] = cast_S5[E3(t[0])] ^ cast_S6[E2(t[0])] ^ cast_S7[E0(t[3])] ^ cast_S8[E1(t[3])];
k->rk[i + 1] = cast_S5[E1(t[0])] ^ cast_S6[E0(t[0])] ^ cast_S7[E2(t[3])] ^ cast_S8[E3(t[3])];
k->rk[i + 2] = cast_S5[E3(t[1])] ^ cast_S6[E2(t[1])] ^ cast_S7[E0(t[2])] ^ cast_S8[E1(t[2])];
k->rk[i + 3] = cast_S5[E1(t[1])] ^ cast_S6[E0(t[1])] ^ cast_S7[E2(t[2])] ^ cast_S8[E3(t[2])];
break;
}
switch (i & 12) {
case 0:
k->rk[i + 0] ^= cast_S5[E2(z[0])];
k->rk[i + 1] ^= cast_S6[E2(z[1])];
k->rk[i + 2] ^= cast_S7[E1(z[2])];
k->rk[i + 3] ^= cast_S8[E0(z[3])];
break;
case 4:
k->rk[i + 0] ^= cast_S5[E0(x[2])];
k->rk[i + 1] ^= cast_S6[E1(x[3])];
k->rk[i + 2] ^= cast_S7[E3(x[0])];
k->rk[i + 3] ^= cast_S8[E3(x[1])];
break;
case 8:
k->rk[i + 0] ^= cast_S5[E1(z[2])];
k->rk[i + 1] ^= cast_S6[E0(z[3])];
k->rk[i + 2] ^= cast_S7[E2(z[0])];
k->rk[i + 3] ^= cast_S8[E2(z[1])];
break;
case 12:
k->rk[i + 0] ^= cast_S5[E3(x[0])];
k->rk[i + 1] ^= cast_S6[E3(x[1])];
k->rk[i + 2] ^= cast_S7[E0(x[2])];
k->rk[i + 3] ^= cast_S8[E1(x[3])];
break;
}
if (i >= 16) {
k->rk[i + 0] &= 31;
k->rk[i + 1] &= 31;
k->rk[i + 2] &= 31;
k->rk[i + 3] &= 31;
}
}
/* and clean up our stack */
for (i = 0; i < 4; i++)
t[i] = x[i] = z[i] = 0;
}
/*
* we implement cyclic block chaining mode here, where each previous
* encryption block (and a random initial vector sent with each message,
* for the first block) is exclusived-ORed with the plaintext before
* being encryptioned. this avoids many problems.
*/
/*
* and here are the functions we pass to the crypt module.
*
* XXX: we copy non-64-bit-with-trailing-nul sized data into a new
* string, and fill the end with garbage, expecting clients to throw
* away data after the nul.
*/
static int
cast_encrypt_str(crypt_key *key, u_char **str, size_t *len)
{
u_char *s, *newstr;
int i;
size_t nlen, padlen;
/*
* pad the string to 64bit block boundary. we use the same
* trick of DES does, and put the number of pad bytes (not
* inclusive) there are. eg, a 47 byte string will become
* a 48 byte string with a '0' in the final byte, where as
* a 48 byte string will become a 56 byte string, with a '7'
* in the final byte, with garbage from 49 -> 55.
*
* note we allocate 8 bytes for the IV and generate it here.
*/
nlen = (*len + 8 + 8) & ~7UL;
newstr = new_malloc(nlen + 1);
memmove(newstr + 8, *str, *len);
crypt_get_random_data(newstr, 8);
padlen = nlen - *len - 1 - 8;
crypt_get_random_data(newstr + *len + 8, padlen);
newstr[nlen - 1] = padlen;
newstr[nlen] = '\0';
/*
* fill in str for our parent. note that we don't free the
* old str as it is the property of our caller (and in the
* only caller, it is an automatic variable).
*/
*str = newstr;
if (key->cookie == NULL)
cast_setkey(key, my_strlen(key->key));
/* encrypt each 64bit chunk */
for (i = nlen, s = (u_char *)*str; i > 0; s += 8, i -= 8)
cast_encrypt(key->cookie, s, s, i == nlen);
cast_clearstate_enc(key->cookie);
/* set this so that our caller knows it has changed size */
*len = nlen;
(*str)[nlen] = '\0';
return (0);
}
static int
cast_decrypt_str(crypt_key *key, u_char **str, size_t *len)
{
u_char *s;
size_t i;
/*
* cast messages must be 8-byte aligned, so force this by
* ignoring anything beyond a full block.
*/
*len &= ~7UL;
if (key->cookie == NULL)
cast_setkey(key, my_strlen(key->key));
for (i = *len, s = (u_char *)*str; i > 0; s += 8, i -= 8)
cast_decrypt(key->cookie, s, s, i == *len);
assert(i == 0);
cast_clearstate_dec(key->cookie);
/* find the final byte */
i = (*str)[*len - 1];
if (i > 7)
i = 7;
*len = *len - 1 - 8 - i;
/* now remove the trash IV from the top */
for (i = 0; i < *len; i++)
(*str)[i] = (*str)[i+8];
/* fill in our nul byte from the final byte of the data */
(*str)[i] = 0;
return (0);
}
|