File: line2d.h

package info (click to toggle)
irrlicht 1.7.1%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 32,124 kB
  • ctags: 44,051
  • sloc: cpp: 137,592; ansic: 3,232; makefile: 801; sh: 16; sed: 11
file content (198 lines) | stat: -rw-r--r-- 6,769 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// Copyright (C) 2002-2009 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h

#ifndef __IRR_LINE_2D_H_INCLUDED__
#define __IRR_LINE_2D_H_INCLUDED__

#include "irrTypes.h"
#include "vector2d.h"

namespace irr
{
namespace core
{

//! 2D line between two points with intersection methods.
template <class T>
class line2d
{
	public:
		//! Default constructor for line going from (0,0) to (1,1).
		line2d() : start(0,0), end(1,1) {}
		//! Constructor for line between the two points.
		line2d(T xa, T ya, T xb, T yb) : start(xa, ya), end(xb, yb) {}
		//! Constructor for line between the two points given as vectors.
		line2d(const vector2d<T>& start, const vector2d<T>& end) : start(start), end(end) {}
		//! Copy constructor.
		line2d(const line2d<T>& other) : start(other.start), end(other.end) {}

		// operators

		line2d<T> operator+(const vector2d<T>& point) const { return line2d<T>(start + point, end + point); }
		line2d<T>& operator+=(const vector2d<T>& point) { start += point; end += point; return *this; }

		line2d<T> operator-(const vector2d<T>& point) const { return line2d<T>(start - point, end - point); }
		line2d<T>& operator-=(const vector2d<T>& point) { start -= point; end -= point; return *this; }

		bool operator==(const line2d<T>& other) const
		{ return (start==other.start && end==other.end) || (end==other.start && start==other.end);}
		bool operator!=(const line2d<T>& other) const
		{ return !(start==other.start && end==other.end) || (end==other.start && start==other.end);}

		// functions
		//! Set this line to new line going through the two points.
		void setLine(const T& xa, const T& ya, const T& xb, const T& yb){start.set(xa, ya); end.set(xb, yb);}
		//! Set this line to new line going through the two points.
		void setLine(const vector2d<T>& nstart, const vector2d<T>& nend){start.set(nstart); end.set(nend);}
		//! Set this line to new line given as parameter.
		void setLine(const line2d<T>& line){start.set(line.start); end.set(line.end);}

		//! Get length of line
		/** \return Length of the line. */
		f64 getLength() const { return start.getDistanceFrom(end); }

		//! Get squared length of the line
		/** \return Squared length of line. */
		T getLengthSQ() const { return start.getDistanceFromSQ(end); }

		//! Get middle of the line
		/** \return center of the line. */
		vector2d<T> getMiddle() const
		{
			return (start + end) * (T)0.5;
		}

		//! Get the vector of the line.
		/** \return The vector of the line. */
		vector2d<T> getVector() const { return vector2d<T>(end.X - start.X, end.Y - start.Y); }

		//! Tests if this line intersects with another line.
		/** \param l: Other line to test intersection with.
		\param out: If there is an intersection, the location of the
		intersection will be stored in this vector.
		\return True if there is an intersection, false if not. */
		bool intersectWith(const line2d<T>& l, vector2d<T>& out) const
		{
			// Uses the method given at:
			// http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/ 
			const f32 commonDenominator = (l.end.Y - l.start.Y)*(end.X - start.X) -
											(l.end.X - l.start.X)*(end.Y - start.Y);

			const f32 numeratorA = (l.end.X - l.start.X)*(start.Y - l.start.Y) -
											(l.end.Y - l.start.Y)*(start.X -l.start.X);

			const f32 numeratorB = (end.X - start.X)*(start.Y - l.start.Y) -
											(end.Y - start.Y)*(start.X -l.start.X); 

			if(equals(commonDenominator, 0.f))
			{ 
				// The lines are either coincident or parallel
				if(equals(numeratorA, 0.f) && equals(numeratorB, 0.f))
				{
					// Try and find a common endpoint
					if(l.start == start || l.end == start)
						out = start;
					else if(l.end == end || l.start == end)
						out = end;
					else
						// one line is contained in the other, so for lack of a better
						// answer, pick the average of both lines
						out = ((start + end + l.start + l.end) * 0.25f);

					return true; // coincident
				}

				return false; // parallel
			}

			// Get the point of intersection on this line, checking that
			// it is within the line segment.
			const f32 uA = numeratorA / commonDenominator;
			if(uA < 0.f || uA > 1.f)
				return false; // Outside the line segment

			const f32 uB = numeratorB / commonDenominator;
			if(uB < 0.f || uB > 1.f)
				return false; // Outside the line segment

			// Calculate the intersection point.
			out.X = start.X + uA * (end.X - start.X);
			out.Y = start.Y + uA * (end.Y - start.Y);
			return true; 
		}

		//! Get unit vector of the line.
		/** \return Unit vector of this line. */
		vector2d<T> getUnitVector() const
		{
			T len = (T)(1.0 / getLength());
			return vector2d<T>((end.X - start.X) * len, (end.Y - start.Y) * len);
		}

		//! Get angle between this line and given line.
		/** \param l Other line for test.
		\return Angle in degrees. */
		f64 getAngleWith(const line2d<T>& l) const
		{
			vector2d<T> vect = getVector();
			vector2d<T> vect2 = l.getVector();
			return vect.getAngleWith(vect2);
		}

		//! Tells us if the given point lies to the left, right, or on the line.
		/** \return 0 if the point is on the line
		<0 if to the left, or >0 if to the right. */
		T getPointOrientation(const vector2d<T>& point) const
		{
			return ( (end.X - start.X) * (point.Y - start.Y) -
					(point.X - start.X) * (end.Y - start.Y) );
		}

		//! Check if the given point is a member of the line
		/** \return True if point is between start and end, else false. */
		bool isPointOnLine(const vector2d<T>& point) const
		{
			T d = getPointOrientation(point);
			return (d == 0 && point.isBetweenPoints(start, end));
		}

		//! Check if the given point is between start and end of the line.
		/** Assumes that the point is already somewhere on the line. */
		bool isPointBetweenStartAndEnd(const vector2d<T>& point) const
		{
			return point.isBetweenPoints(start, end);
		}

		//! Get the closest point on this line to a point
		vector2d<T> getClosestPoint(const vector2d<T>& point) const
		{
			vector2d<T> c = point - start;
			vector2d<T> v = end - start;
			T d = (T)v.getLength();
			v /= d;
			T t = v.dotProduct(c);

			if (t < (T)0.0) return start;
			if (t > d) return end;

			v *= t;
			return start + v;
		}

		//! Start point of the line.
		vector2d<T> start;
		//! End point of the line.
		vector2d<T> end;
};

	//! Typedef for an f32 line.
	typedef line2d<f32> line2df;
	//! Typedef for an integer line.
	typedef line2d<s32> line2di;

} // end namespace core
} // end namespace irr

#endif