File: subckt.c

package info (click to toggle)
irsim 9.7.104-1.2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,964 kB
  • sloc: ansic: 24,763; sh: 7,499; makefile: 418; csh: 269; tcl: 88
file content (527 lines) | stat: -rw-r--r-- 13,985 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <ctype.h>

#ifdef TCL_IRSIM
#include <tk.h>
#endif

#ifndef _DEFS_H
#include "defs.h"
#endif
#ifndef _GLOBALS_H
#include "globals.h"
#endif
#ifndef _NET_MACROS_H
#include "net_macros.h"
#endif
#ifndef _SUBCKT_H
#include "subckt.h"
#endif

#ifdef USER_SUBCKT 

typedef struct _Sub
{
    userSubCircuit *subckt;	/* subcircuit (possibly static) */
    int		   inst;	/* Number of instantiations */
#ifndef TCL_IRSIM
    struct _Sub	   *next;	/* list of commands in bucket */
#endif
} SubCircuit;

extern userSubCircuit subs[];
extern tptr rd_tlist;

#ifdef TCL_IRSIM

extern Tcl_Interp *irsiminterp;

/*----------------------------------------------*/
/* Tcl procedure characters representing states	*/
/*----------------------------------------------*/

static char pot2ch[] = {'0', 'x', 'z', '1'};

/*------------------------------*/
/* Method 1:			*/
/* Make use of Tcl Hash tables	*/
/*------------------------------*/

Tcl_HashTable substbl;

/* First add any C-compiled user subcircuits */

public void init_subs(userSubCircuit *subckts)
{
    userSubCircuit *s;
    SubCircuit *sl;
    Tcl_HashEntry *he;
    int newptr;

    Tcl_InitHashTable(&substbl, TCL_STRING_KEYS);

    for (s = subckts; s->name != NULL; s++)
    {
	sl = (SubCircuit *)malloc(sizeof(SubCircuit));
	sl->subckt = s;
	sl->inst = 0 ;

	he = Tcl_CreateHashEntry(&substbl, s->name, &newptr);
	Tcl_SetHashValue(he, (ClientData)sl);
    }
}

/* Instantiate a user subcircuit */

public userSubCircuit *subckt_instantiate(char *sname, int *inst, uptr *udatap)
{
    int newptr, result;
    SubCircuit *sl;
    Tcl_HashEntry *he;
    Tcl_Obj *objv[1];

    *udatap = NULL;	/* placeholder, used only for procedures */

    he = Tcl_CreateHashEntry(&substbl, sname, &newptr);
    sl = (SubCircuit *)Tcl_GetHashValue(he);

    if (sl != NULL) {
	sl->inst++;
	*inst = sl->inst;
	return sl->subckt;
    }

    /* We allow subcircuits to be defined as Tcl procedures.		*/
    /* Two procedures need to be defined, given the name of the		*/
    /* subcircuit plus "_eval" and "_init", respectively.  The "_init"	*/
    /* procedure must return a list containing:  number of inputs,	*/
    /* number of outputs, list of output pullup and pulldown		*/
    /* resistances, and an object (Tcl_Obj *) containing any		*/
    /* information required by the instance.				*/

    objv[0] = Tcl_NewStringObj(sname, -1);
    Tcl_AppendToObj(objv[0], "_init", 5);
    result = Tcl_EvalObjv(irsiminterp, 1, objv, 0);
    if (result == TCL_OK)
    {
	int i, listlen, noutputs, ninputs;
	double dval;
	Tcl_Obj *elem, *rlist, *olist, *uobj;
	userSubCircuit *s;

	rlist = Tcl_GetObjResult(irsiminterp);
	result = Tcl_ListObjLength(irsiminterp, rlist, &listlen);
	if (result == TCL_OK && (listlen == 3 || listlen == 4))
	{
	    if (listlen == 4)
	        result = Tcl_ListObjIndex(irsiminterp, rlist, 3, &uobj);
	    else
		uobj = Tcl_NewListObj(0, NULL);
	    *udatap = (uptr)uobj;
	    Tcl_IncrRefCount(uobj);
	
	    result = Tcl_ListObjIndex(irsiminterp, rlist, 0, &elem);
	    result = Tcl_GetIntFromObj(irsiminterp, elem, &ninputs);
	    if (result != TCL_OK) return NULL;
	    result = Tcl_ListObjIndex(irsiminterp, rlist, 1, &elem);
	    result = Tcl_GetIntFromObj(irsiminterp, elem, &noutputs);
	    if (result != TCL_OK) return NULL;
	    result = Tcl_ListObjIndex(irsiminterp, rlist, 2, &olist);
	    result = Tcl_ListObjLength(irsiminterp, olist, &listlen);
	    if (listlen != (noutputs * 2)) return NULL;

	    /* Set up a new hash table record for this subcircuit */

	    sl = (SubCircuit *)malloc(sizeof(SubCircuit));
	    s = (userSubCircuit *)malloc(sizeof(userSubCircuit));
	    sl->inst = 1;
	    sl->subckt = s;
	    Tcl_SetHashValue(he, (ClientData)sl);
	    s->name = strdup(sname);
	    s->model = NULL;
	    s->init = NULL;
	    s->ninputs = ninputs;
	    s->noutputs = noutputs;
	    s->res = (float *)malloc(2 * noutputs * sizeof(float));

	    for (i = 0; i < (noutputs * 2); i++)
	    {
		double dres;
		result = Tcl_ListObjIndex(irsiminterp, olist, i, &elem);
		result = Tcl_GetDoubleFromObj(irsiminterp, elem, &dres);
		if (dres <= 0.001) {
		   dres = 500.0;
		   lprintf(stderr, "\tError: bad resistance %g\n", dres);
		}
		s->res[i] = (result == TCL_OK) ? dres : 500.0;
	    }
	    Tcl_ResetResult(irsiminterp);
	    *inst = sl->inst;
	    return s;
	}
    }
    return NULL;
}

#else

/*------------------------------*/
/* Method 2:			*/
/* Simple fixed-size hash table */
/*------------------------------*/

#define SUBSTBLSIZE	16

private SubCircuit *substbl[SUBSTBLSIZE];

private int HashSub();

public void init_subs(userSubCircuit *subckts)
{
    register int n;
    register userSubCircuit *s;
    register SubCircuit *sl;

    for (n=0; n < SUBSTBLSIZE; n++)
	substbl[n] = NULL;
    for (s = subckts; s->name != NULL; s++) {
	sl = (SubCircuit *)malloc(sizeof(SubCircuit));
	sl->subckt = s;
	sl->inst = 0;
	n = HashSub(s->name);
	sl->next = substbl[n];
	substbl[n] = sl;
    }
}

private int HashSub(char *name)
{
    register int  hashcode = 0;

    do
	hashcode = (hashcode << 1) ^ (*name | 0x20);
    while (*(++name));
    return (((hashcode >= 0) ? hashcode : ~hashcode) % SUBSTBLSIZE);
}

public userSubCircuit *subckt_instantiate(char *sname, int *inst, uptr *udatap)
{
    register int n;
    register SubCircuit *s;

    *udatap = NULL;		/* placeholder, used by Tcl version only */
    n = HashSub(sname);
    
    for (s = substbl[n]; s != NULL; s = s->next) {
	if (str_eql(s->subckt->name, sname) == 0) {
	    s->inst++;
	    *inst = s->inst;
	    return s->subckt;
	}
    }
    return NULL;
}

#endif	/* !TCL_IRSIM */
	
/*
 *------------------------------------------------------------------
 * Evalutate a subcircuit model
 *------------------------------------------------------------------
 */

public void subckt_model_C(tptr t)
{
    int i;
    SubcktT *subptr = (SubcktT *)(t->subptr);
    short nins = subptr->subckt->ninputs;
    short nouts = subptr->subckt->noutputs;
    nptr *nodes = subptr->nodes;
    uptr udata = subptr->udata;
#ifdef TCL_IRSIM
    int result;
#endif
    
    char *in, *out = NULL;
    double *delay;

    in  = (char *) malloc((nins + 1) * sizeof(char));
    out = (char *) malloc((nouts + 1) * sizeof(char));
    delay = (double *) malloc(nouts * sizeof(double));

    for (i = 0; i < nins; i++)
	in[i] = nodes[i]->npot;
    for (i = 0; i < nouts; i++)
	out[i] = nodes[i+nins]->npot;

    if (subptr->subckt->model != NULL)
	(*subptr->subckt->model)(in, out, delay, udata);

#ifdef TCL_IRSIM
    else
    {
	Tcl_Obj *objv[4];

	/* The Tcl version of IRSIM allows subcircuit to be defined as	*/
	/* Tcl procedures.  This procedure must return a list whose	*/
	/* first element is a string of all the output values, followed	*/
	/* by time delays to all of the outputs.			*/

	for (i = 0; i < nins; i++)
	    in[i] = pot2ch[in[i]];
	in[nins] = '\0';
	for (i = 0; i < nouts; i++)
	    out[i] = pot2ch[out[i]];
	out[nouts] = '\0';

	objv[0] = Tcl_NewStringObj(subptr->subckt->name, -1);
	Tcl_AppendToObj(objv[0], "_eval", 5);
	objv[1] = Tcl_NewStringObj(in, nins);
	objv[2] = Tcl_NewStringObj(out, nouts);
	objv[3] = (Tcl_Obj *)udata;
	result = Tcl_EvalObjv(irsiminterp, 4, objv, 0);

	if (result == TCL_OK)
	{
	    int listlen;
	    double dval;
	    char *newoutvals;
	    Tcl_Obj *elem, *rlist;

	    rlist = Tcl_GetObjResult(irsiminterp);
	    result = Tcl_ListObjLength(irsiminterp, rlist, &listlen);
	    if (result == TCL_OK && listlen == 1 + nouts)
	    {
		result = Tcl_ListObjIndex(irsiminterp, rlist, 0, &elem);
		newoutvals = Tcl_GetString(elem);
		if (strlen(newoutvals) == nouts)
		{
		    for (i = 0; i < nouts; i++)
		    {
			result = Tcl_ListObjIndex(irsiminterp, rlist, i + 1, &elem);
			result = Tcl_GetDoubleFromObj(irsiminterp, elem, &delay[i]);
			switch (tolower(newoutvals[i]))
			{
			    case '0': case 'l':
				out[i] = LOW;
				break;
			    case '1': case 'h':
				out[i] = HIGH;
				break;
			    case 'z':
				out[i] = HIGH_Z;
				break;
			    default:
				out[i] = X;
				break;
			}
		    }

		    /* Clear the interpreter result */
		    Tcl_ResetResult(irsiminterp);
		}
		else
		{
		    Tcl_SetResult(irsiminterp, "Subcircuit result does not match"
				" the number of defined outputs", 0);
		    nouts = 0;
		}
	    }
	    else
	    {
		if (result == TCL_OK)
		    Tcl_SetResult(irsiminterp, "Subcircuit evaluator did not"
				 " return the correct size list", 0);
		nouts = 0;
	    }
	}
	else nouts = 0;
    }
#endif

    for (i = 0; i < nouts; i++ ) {
	switch (out[i]) {
	    case LOW:
	    	QueueFVal(nodes[i+nins], HIGH, (double) 1.0, delay[i]);
	    	QueueFVal(nodes[i+nins+nouts], HIGH, (double) 1.0, delay[i]);
		break;
	    case X:
	    	QueueFVal(nodes[i+nins], X, (double) 1.0, delay[i]);
	    	QueueFVal(nodes[i+nins+nouts], X, (double) 1.0, delay[i]);
		break;
	    case HIGH_Z:
	    	QueueFVal(nodes[i+nins], HIGH, (double) 1.0, delay[i]);
	    	QueueFVal(nodes[i+nins+nouts], LOW, (double) 1.0, delay[i]);
		break;
	    case HIGH:
	    	QueueFVal(nodes[i+nins], LOW, (double) 1.0, delay[i]);
	    	QueueFVal(nodes[i+nins+nouts], LOW, (double) 1.0, delay[i]);
		break;
	}
    }

    free(in); 
    free(out); 
    free(delay);
}

/*
 *------------------------------------------------------------------
 * Create a new subcircuit from the .sim file line
 * "x <inputs> <outputs> [<parameters>] <subcircuit_name>"
 *
 * The subcircuit definition is assumed to be already known;
 * otherwise, this routine returns an error result (-1).
 * Return 0 on success.
 *------------------------------------------------------------------
 */

public int newsubckt(targc, targv)
   int  targc;
   char *targv[];
{
    userSubCircuit *subcircuit;
    SubcktT *subptr, *subptr2;
    int i, n, ninputs, noutputs;
    float rtf;
    ufun init;
    register tptr t = 0;
    tptr t2; lptr l;
    char *sname, *out_name_Ub, *out_name_D;
    int subckt_out_counter = 0;
    nptr *nodes;
    lptr diodes = (lptr)NULL, d;
    uptr usrData = NULL;
    int inst, result = 0;

    subcircuit = subckt_instantiate(targv[targc - 1], &inst, &usrData);
    if (subcircuit == NULL) {
	lprintf(stderr, "\tError: subcircuit \"%s\" is not defined!\n",
			targv[targc - 1]);
	return -1;
    }

    ninputs = subcircuit->ninputs;
    noutputs = subcircuit->noutputs;
    sname = subcircuit->name;

    if (targc < ninputs + noutputs + 2) {
	lprintf(stderr, "\tError: wrong # args %d\n", targc);
	lprintf(stderr, "\tsubcircuit %s has %d input nodes, %d output nodes\n",
		subcircuit->name, ninputs, noutputs);
	return -1;
    } 

    out_name_Ub = (char *)malloc(strlen(targv[targc-1]) + 20);
    out_name_D  = (char *)malloc(strlen(targv[targc-1]) + 20);

    targc--;
    targv++;
    nodes = (nptr *)malloc((ninputs + 2 * noutputs) * sizeof(nptr));
      
    lprintf(stdout, "defining new subcircuit \"%s\" instance %d #i:%d #o:%d\n",
		subcircuit->name, inst, ninputs, noutputs);

    /* If the functions are compiled from C code, the C code init	*/
    /* function is responsible for interpreting any parameters given to	*/
    /* the device instance in the .sim file.				*/

    if (subcircuit->init)
       	usrData = (uptr)(*subcircuit->init)(targc - ninputs - noutputs,
			targv + ninputs + noutputs);
#ifdef TCL_IRSIM
    else if (targc >= ninputs + noutputs + 2) {

	/* Extra user data list has been specified in the .sim	*/
	/* file.  Append this to the current user data object.	*/
	/* We assume that the evaluator procedure knows how to	*/
	/* deal with the extra data.				*/

	Tcl_Obj *sobj, *uobj = (Tcl_Obj *)usrData;

	if (uobj == NULL) {
	    uobj = Tcl_NewListObj(0, NULL);
	    Tcl_IncrRefCount(uobj);
	}
	for (i = ninputs + noutputs + 1; i < targc; i++)
	{
	    sobj = Tcl_NewStringObj(targv[i], -1);
	    Tcl_ListObjAppendElement(irsiminterp, uobj, sobj);
	}
    }
#endif
	    
    for (i = 0; i < ninputs; i++) {	/* create new "transistor" */
	NEW_TRANS(t);		
	NEW_SUBCKT(subptr);
	t->subptr = (char *)subptr;
	t->ttype = SUBCKT; 
	t->gate = RsimGetNode(targv[i]);
	subptr->nodes = nodes; 
	t->source = VDD_node; 
	t->drain = t->gate;

	/* link it to the list */
	t->scache.t = rd_tlist; rd_tlist = t; 
	t->r = requiv(RESIST, (int)2, (int)(1000000 * LAMBDACM));
	subptr->subckt = subcircuit;

	/* All this can be referenced by a pointer to a subckt structure */
	NEW_LINK(d); d->xtor = t; d->next = diodes;
	subptr->ndiode = d; diodes = d;
	nodes[i] = t->gate;
	subptr->udata = usrData;
    } 
    for (l = subptr->ndiode; l != NULL; l = l->next) {
	t2 = l->xtor;
	subptr2 = (SubcktT *)(t2->subptr);
	subptr2->ndiode = diodes;
    }

    n = 0;
    for (; i < ninputs + noutputs; i++) {

	/* define two transistors for each output : */

	sprintf(out_name_Ub, "%sUb_%d_%d", sname, inst, subckt_out_counter);
	sprintf(out_name_D , "%sD_%d_%d", sname, inst, subckt_out_counter++);
	if (find(out_name_Ub) || find(out_name_D)) {
	    lprintf(stderr,"Error: nodes named %s or %s already exist\n",
			out_name_Ub, out_name_D);
	    result = -1;
	    goto donesubckt;
	}

	NEW_TRANS(t);	/* Add pmos output driver */
	t->ttype    = PCHAN;
	t->gate     = RsimGetNode(out_name_Ub);
	nodes[i]    = t->gate;
	t->drain    = VDD_node;
	t->source   = RsimGetNode(targv[i]);
	t->scache.t = rd_tlist; /* link it to the list */
	rd_tlist    = t;
	rtf 	    = subcircuit->res[n++];
	t->r        = requiv(RESIST, (int)2, (int)(rtf * LAMBDACM));

	NEW_TRANS(t);	/* Add nmos output driver */
	t->ttype    = NCHAN;
	t->gate     = RsimGetNode(out_name_D);
	t->drain    = RsimGetNode(targv[i]);
	nodes[i + noutputs]    = t->gate;
	t->source   = GND_node;
	t->scache.t = rd_tlist; /* link it to the list */
	rd_tlist    = t;
	rtf 	    = subcircuit->res[n++];
	t->r        = requiv(RESIST, (int)2, (int)(rtf * LAMBDACM));
    } /* for loop over outputs */

donesubckt:
    free(out_name_D);
    free(out_name_Ub);
    return result;
}

#endif /* USER_SUBCKT */