File: isl_ilp.c

package info (click to toggle)
isl 0.20-2
  • links: PTS
  • area: main
  • in suites: buster, sid
  • size: 12,708 kB
  • sloc: ansic: 125,702; python: 5,770; sh: 4,291; cpp: 1,057; makefile: 497; lisp: 54; perl: 9
file content (898 lines) | stat: -rw-r--r-- 24,084 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
/*
 * Copyright 2008-2009 Katholieke Universiteit Leuven
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, K.U.Leuven, Departement
 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
 */

#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl/ilp.h>
#include <isl/union_set.h>
#include "isl_sample.h"
#include <isl_seq.h>
#include "isl_equalities.h"
#include <isl_aff_private.h>
#include <isl_local_space_private.h>
#include <isl_mat_private.h>
#include <isl_val_private.h>
#include <isl_vec_private.h>
#include <isl_lp_private.h>
#include <isl_ilp_private.h>

/* Given a basic set "bset", construct a basic set U such that for
 * each element x in U, the whole unit box positioned at x is inside
 * the given basic set.
 * Note that U may not contain all points that satisfy this property.
 *
 * We simply add the sum of all negative coefficients to the constant
 * term.  This ensures that if x satisfies the resulting constraints,
 * then x plus any sum of unit vectors satisfies the original constraints.
 */
static __isl_give isl_basic_set *unit_box_base_points(
	__isl_take isl_basic_set *bset)
{
	int i, j, k;
	struct isl_basic_set *unit_box = NULL;
	unsigned total;

	if (!bset)
		goto error;

	if (bset->n_eq != 0) {
		isl_space *space = isl_basic_set_get_space(bset);
		isl_basic_set_free(bset);
		return isl_basic_set_empty(space);
	}

	total = isl_basic_set_total_dim(bset);
	unit_box = isl_basic_set_alloc_space(isl_basic_set_get_space(bset),
					0, 0, bset->n_ineq);

	for (i = 0; i < bset->n_ineq; ++i) {
		k = isl_basic_set_alloc_inequality(unit_box);
		if (k < 0)
			goto error;
		isl_seq_cpy(unit_box->ineq[k], bset->ineq[i], 1 + total);
		for (j = 0; j < total; ++j) {
			if (isl_int_is_nonneg(unit_box->ineq[k][1 + j]))
				continue;
			isl_int_add(unit_box->ineq[k][0],
				unit_box->ineq[k][0], unit_box->ineq[k][1 + j]);
		}
	}

	isl_basic_set_free(bset);
	return unit_box;
error:
	isl_basic_set_free(bset);
	isl_basic_set_free(unit_box);
	return NULL;
}

/* Find an integer point in "bset", preferably one that is
 * close to minimizing "f".
 *
 * We first check if we can easily put unit boxes inside bset.
 * If so, we take the best base point of any of the unit boxes we can find
 * and round it up to the nearest integer.
 * If not, we simply pick any integer point in "bset".
 */
static __isl_give isl_vec *initial_solution(__isl_keep isl_basic_set *bset,
	isl_int *f)
{
	enum isl_lp_result res;
	struct isl_basic_set *unit_box;
	struct isl_vec *sol;

	unit_box = unit_box_base_points(isl_basic_set_copy(bset));

	res = isl_basic_set_solve_lp(unit_box, 0, f, bset->ctx->one,
					NULL, NULL, &sol);
	if (res == isl_lp_ok) {
		isl_basic_set_free(unit_box);
		return isl_vec_ceil(sol);
	}

	isl_basic_set_free(unit_box);

	return isl_basic_set_sample_vec(isl_basic_set_copy(bset));
}

/* Restrict "bset" to those points with values for f in the interval [l, u].
 */
static __isl_give isl_basic_set *add_bounds(__isl_take isl_basic_set *bset,
	isl_int *f, isl_int l, isl_int u)
{
	int k;
	unsigned total;

	total = isl_basic_set_total_dim(bset);
	bset = isl_basic_set_extend_constraints(bset, 0, 2);

	k = isl_basic_set_alloc_inequality(bset);
	if (k < 0)
		goto error;
	isl_seq_cpy(bset->ineq[k], f, 1 + total);
	isl_int_sub(bset->ineq[k][0], bset->ineq[k][0], l);

	k = isl_basic_set_alloc_inequality(bset);
	if (k < 0)
		goto error;
	isl_seq_neg(bset->ineq[k], f, 1 + total);
	isl_int_add(bset->ineq[k][0], bset->ineq[k][0], u);

	return bset;
error:
	isl_basic_set_free(bset);
	return NULL;
}

/* Find an integer point in "bset" that minimizes f (in any) such that
 * the value of f lies inside the interval [l, u].
 * Return this integer point if it can be found.
 * Otherwise, return sol.
 *
 * We perform a number of steps until l > u.
 * In each step, we look for an integer point with value in either
 * the whole interval [l, u] or half of the interval [l, l+floor(u-l-1/2)].
 * The choice depends on whether we have found an integer point in the
 * previous step.  If so, we look for the next point in half of the remaining
 * interval.
 * If we find a point, the current solution is updated and u is set
 * to its value minus 1.
 * If no point can be found, we update l to the upper bound of the interval
 * we checked (u or l+floor(u-l-1/2)) plus 1.
 */
static __isl_give isl_vec *solve_ilp_search(__isl_keep isl_basic_set *bset,
	isl_int *f, isl_int *opt, __isl_take isl_vec *sol, isl_int l, isl_int u)
{
	isl_int tmp;
	int divide = 1;

	isl_int_init(tmp);

	while (isl_int_le(l, u)) {
		struct isl_basic_set *slice;
		struct isl_vec *sample;

		if (!divide)
			isl_int_set(tmp, u);
		else {
			isl_int_sub(tmp, u, l);
			isl_int_fdiv_q_ui(tmp, tmp, 2);
			isl_int_add(tmp, tmp, l);
		}
		slice = add_bounds(isl_basic_set_copy(bset), f, l, tmp);
		sample = isl_basic_set_sample_vec(slice);
		if (!sample) {
			isl_vec_free(sol);
			sol = NULL;
			break;
		}
		if (sample->size > 0) {
			isl_vec_free(sol);
			sol = sample;
			isl_seq_inner_product(f, sol->el, sol->size, opt);
			isl_int_sub_ui(u, *opt, 1);
			divide = 1;
		} else {
			isl_vec_free(sample);
			if (!divide)
				break;
			isl_int_add_ui(l, tmp, 1);
			divide = 0;
		}
	}

	isl_int_clear(tmp);

	return sol;
}

/* Find an integer point in "bset" that minimizes f (if any).
 * If sol_p is not NULL then the integer point is returned in *sol_p.
 * The optimal value of f is returned in *opt.
 *
 * The algorithm maintains a currently best solution and an interval [l, u]
 * of values of f for which integer solutions could potentially still be found.
 * The initial value of the best solution so far is any solution.
 * The initial value of l is minimal value of f over the rationals
 * (rounded up to the nearest integer).
 * The initial value of u is the value of f at the initial solution minus 1.
 *
 * We then call solve_ilp_search to perform a binary search on the interval.
 */
static enum isl_lp_result solve_ilp(__isl_keep isl_basic_set *bset,
	isl_int *f, isl_int *opt, __isl_give isl_vec **sol_p)
{
	enum isl_lp_result res;
	isl_int l, u;
	struct isl_vec *sol;

	res = isl_basic_set_solve_lp(bset, 0, f, bset->ctx->one,
					opt, NULL, &sol);
	if (res == isl_lp_ok && isl_int_is_one(sol->el[0])) {
		if (sol_p)
			*sol_p = sol;
		else
			isl_vec_free(sol);
		return isl_lp_ok;
	}
	isl_vec_free(sol);
	if (res == isl_lp_error || res == isl_lp_empty)
		return res;

	sol = initial_solution(bset, f);
	if (!sol)
		return isl_lp_error;
	if (sol->size == 0) {
		isl_vec_free(sol);
		return isl_lp_empty;
	}
	if (res == isl_lp_unbounded) {
		isl_vec_free(sol);
		return isl_lp_unbounded;
	}

	isl_int_init(l);
	isl_int_init(u);

	isl_int_set(l, *opt);

	isl_seq_inner_product(f, sol->el, sol->size, opt);
	isl_int_sub_ui(u, *opt, 1);

	sol = solve_ilp_search(bset, f, opt, sol, l, u);
	if (!sol)
		res = isl_lp_error;

	isl_int_clear(l);
	isl_int_clear(u);

	if (sol_p)
		*sol_p = sol;
	else
		isl_vec_free(sol);

	return res;
}

static enum isl_lp_result solve_ilp_with_eq(__isl_keep isl_basic_set *bset,
	int max, isl_int *f, isl_int *opt, __isl_give isl_vec **sol_p)
{
	unsigned dim;
	enum isl_lp_result res;
	struct isl_mat *T = NULL;
	struct isl_vec *v;

	bset = isl_basic_set_copy(bset);
	dim = isl_basic_set_total_dim(bset);
	v = isl_vec_alloc(bset->ctx, 1 + dim);
	if (!v)
		goto error;
	isl_seq_cpy(v->el, f, 1 + dim);
	bset = isl_basic_set_remove_equalities(bset, &T, NULL);
	v = isl_vec_mat_product(v, isl_mat_copy(T));
	if (!v)
		goto error;
	res = isl_basic_set_solve_ilp(bset, max, v->el, opt, sol_p);
	isl_vec_free(v);
	if (res == isl_lp_ok && sol_p) {
		*sol_p = isl_mat_vec_product(T, *sol_p);
		if (!*sol_p)
			res = isl_lp_error;
	} else
		isl_mat_free(T);
	isl_basic_set_free(bset);
	return res;
error:
	isl_mat_free(T);
	isl_basic_set_free(bset);
	return isl_lp_error;
}

/* Find an integer point in "bset" that minimizes (or maximizes if max is set)
 * f (if any).
 * If sol_p is not NULL then the integer point is returned in *sol_p.
 * The optimal value of f is returned in *opt.
 *
 * If there is any equality among the points in "bset", then we first
 * project it out.  Otherwise, we continue with solve_ilp above.
 */
enum isl_lp_result isl_basic_set_solve_ilp(__isl_keep isl_basic_set *bset,
	int max, isl_int *f, isl_int *opt, __isl_give isl_vec **sol_p)
{
	unsigned dim;
	enum isl_lp_result res;

	if (!bset)
		return isl_lp_error;
	if (sol_p)
		*sol_p = NULL;

	isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0,
		return isl_lp_error);

	if (isl_basic_set_plain_is_empty(bset))
		return isl_lp_empty;

	if (bset->n_eq)
		return solve_ilp_with_eq(bset, max, f, opt, sol_p);

	dim = isl_basic_set_total_dim(bset);

	if (max)
		isl_seq_neg(f, f, 1 + dim);

	res = solve_ilp(bset, f, opt, sol_p);

	if (max) {
		isl_seq_neg(f, f, 1 + dim);
		isl_int_neg(*opt, *opt);
	}

	return res;
}

static enum isl_lp_result basic_set_opt(__isl_keep isl_basic_set *bset, int max,
	__isl_keep isl_aff *obj, isl_int *opt)
{
	enum isl_lp_result res;

	if (!obj)
		return isl_lp_error;
	bset = isl_basic_set_copy(bset);
	bset = isl_basic_set_underlying_set(bset);
	res = isl_basic_set_solve_ilp(bset, max, obj->v->el + 1, opt, NULL);
	isl_basic_set_free(bset);
	return res;
}

static __isl_give isl_mat *extract_divs(__isl_keep isl_basic_set *bset)
{
	int i;
	isl_ctx *ctx = isl_basic_set_get_ctx(bset);
	isl_mat *div;

	div = isl_mat_alloc(ctx, bset->n_div,
			    1 + 1 + isl_basic_set_total_dim(bset));
	if (!div)
		return NULL;

	for (i = 0; i < bset->n_div; ++i)
		isl_seq_cpy(div->row[i], bset->div[i], div->n_col);

	return div;
}

enum isl_lp_result isl_basic_set_opt(__isl_keep isl_basic_set *bset, int max,
	__isl_keep isl_aff *obj, isl_int *opt)
{
	int *exp1 = NULL;
	int *exp2 = NULL;
	isl_ctx *ctx;
	isl_mat *bset_div = NULL;
	isl_mat *div = NULL;
	enum isl_lp_result res;
	int bset_n_div, obj_n_div;

	if (!bset || !obj)
		return isl_lp_error;

	ctx = isl_aff_get_ctx(obj);
	if (!isl_space_is_equal(bset->dim, obj->ls->dim))
		isl_die(ctx, isl_error_invalid,
			"spaces don't match", return isl_lp_error);
	if (!isl_int_is_one(obj->v->el[0]))
		isl_die(ctx, isl_error_unsupported,
			"expecting integer affine expression",
			return isl_lp_error);

	bset_n_div = isl_basic_set_dim(bset, isl_dim_div);
	obj_n_div = isl_aff_dim(obj, isl_dim_div);
	if (bset_n_div == 0 && obj_n_div == 0)
		return basic_set_opt(bset, max, obj, opt);

	bset = isl_basic_set_copy(bset);
	obj = isl_aff_copy(obj);

	bset_div = extract_divs(bset);
	exp1 = isl_alloc_array(ctx, int, bset_n_div);
	exp2 = isl_alloc_array(ctx, int, obj_n_div);
	if (!bset_div || (bset_n_div && !exp1) || (obj_n_div && !exp2))
		goto error;

	div = isl_merge_divs(bset_div, obj->ls->div, exp1, exp2);

	bset = isl_basic_set_expand_divs(bset, isl_mat_copy(div), exp1);
	obj = isl_aff_expand_divs(obj, isl_mat_copy(div), exp2);

	res = basic_set_opt(bset, max, obj, opt);

	isl_mat_free(bset_div);
	isl_mat_free(div);
	free(exp1);
	free(exp2);
	isl_basic_set_free(bset);
	isl_aff_free(obj);

	return res;
error:
	isl_mat_free(div);
	isl_mat_free(bset_div);
	free(exp1);
	free(exp2);
	isl_basic_set_free(bset);
	isl_aff_free(obj);
	return isl_lp_error;
}

/* Compute the minimum (maximum if max is set) of the integer affine
 * expression obj over the points in set and put the result in *opt.
 *
 * The parameters are assumed to have been aligned.
 */
static enum isl_lp_result isl_set_opt_aligned(__isl_keep isl_set *set, int max,
	__isl_keep isl_aff *obj, isl_int *opt)
{
	int i;
	enum isl_lp_result res;
	int empty = 1;
	isl_int opt_i;

	if (!set || !obj)
		return isl_lp_error;
	if (set->n == 0)
		return isl_lp_empty;

	res = isl_basic_set_opt(set->p[0], max, obj, opt);
	if (res == isl_lp_error || res == isl_lp_unbounded)
		return res;
	if (set->n == 1)
		return res;
	if (res == isl_lp_ok)
		empty = 0;

	isl_int_init(opt_i);
	for (i = 1; i < set->n; ++i) {
		res = isl_basic_set_opt(set->p[i], max, obj, &opt_i);
		if (res == isl_lp_error || res == isl_lp_unbounded) {
			isl_int_clear(opt_i);
			return res;
		}
		if (res == isl_lp_empty)
			continue;
		empty = 0;
		if (max ? isl_int_gt(opt_i, *opt) : isl_int_lt(opt_i, *opt))
			isl_int_set(*opt, opt_i);
	}
	isl_int_clear(opt_i);

	return empty ? isl_lp_empty : isl_lp_ok;
}

/* Compute the minimum (maximum if max is set) of the integer affine
 * expression obj over the points in set and put the result in *opt.
 */
enum isl_lp_result isl_set_opt(__isl_keep isl_set *set, int max,
	__isl_keep isl_aff *obj, isl_int *opt)
{
	enum isl_lp_result res;
	isl_bool aligned;

	if (!set || !obj)
		return isl_lp_error;

	aligned = isl_set_space_has_equal_params(set, obj->ls->dim);
	if (aligned < 0)
		return isl_lp_error;
	if (aligned)
		return isl_set_opt_aligned(set, max, obj, opt);

	set = isl_set_copy(set);
	obj = isl_aff_copy(obj);
	set = isl_set_align_params(set, isl_aff_get_domain_space(obj));
	obj = isl_aff_align_params(obj, isl_set_get_space(set));

	res = isl_set_opt_aligned(set, max, obj, opt);

	isl_set_free(set);
	isl_aff_free(obj);

	return res;
}

/* Convert the result of a function that returns an isl_lp_result
 * to an isl_val.  The numerator of "v" is set to the optimal value
 * if lp_res is isl_lp_ok.  "max" is set if a maximum was computed.
 *
 * Return "v" with denominator set to 1 if lp_res is isl_lp_ok.
 * Return NULL on error.
 * Return a NaN if lp_res is isl_lp_empty.
 * Return infinity or negative infinity if lp_res is isl_lp_unbounded,
 * depending on "max".
 */
static __isl_give isl_val *convert_lp_result(enum isl_lp_result lp_res,
	__isl_take isl_val *v, int max)
{
	isl_ctx *ctx;

	if (lp_res == isl_lp_ok) {
		isl_int_set_si(v->d, 1);
		return isl_val_normalize(v);
	}
	ctx = isl_val_get_ctx(v);
	isl_val_free(v);
	if (lp_res == isl_lp_error)
		return NULL;
	if (lp_res == isl_lp_empty)
		return isl_val_nan(ctx);
	if (max)
		return isl_val_infty(ctx);
	else
		return isl_val_neginfty(ctx);
}

/* Return the minimum (maximum if max is set) of the integer affine
 * expression "obj" over the points in "bset".
 *
 * Return infinity or negative infinity if the optimal value is unbounded and
 * NaN if "bset" is empty.
 *
 * Call isl_basic_set_opt and translate the results.
 */
__isl_give isl_val *isl_basic_set_opt_val(__isl_keep isl_basic_set *bset,
	int max, __isl_keep isl_aff *obj)
{
	isl_ctx *ctx;
	isl_val *res;
	enum isl_lp_result lp_res;

	if (!bset || !obj)
		return NULL;

	ctx = isl_aff_get_ctx(obj);
	res = isl_val_alloc(ctx);
	if (!res)
		return NULL;
	lp_res = isl_basic_set_opt(bset, max, obj, &res->n);
	return convert_lp_result(lp_res, res, max);
}

/* Return the maximum of the integer affine
 * expression "obj" over the points in "bset".
 *
 * Return infinity or negative infinity if the optimal value is unbounded and
 * NaN if "bset" is empty.
 */
__isl_give isl_val *isl_basic_set_max_val(__isl_keep isl_basic_set *bset,
	__isl_keep isl_aff *obj)
{
	return isl_basic_set_opt_val(bset, 1, obj);
}

/* Return the minimum (maximum if max is set) of the integer affine
 * expression "obj" over the points in "set".
 *
 * Return infinity or negative infinity if the optimal value is unbounded and
 * NaN if "set" is empty.
 *
 * Call isl_set_opt and translate the results.
 */
__isl_give isl_val *isl_set_opt_val(__isl_keep isl_set *set, int max,
	__isl_keep isl_aff *obj)
{
	isl_ctx *ctx;
	isl_val *res;
	enum isl_lp_result lp_res;

	if (!set || !obj)
		return NULL;

	ctx = isl_aff_get_ctx(obj);
	res = isl_val_alloc(ctx);
	if (!res)
		return NULL;
	lp_res = isl_set_opt(set, max, obj, &res->n);
	return convert_lp_result(lp_res, res, max);
}

/* Return the minimum of the integer affine
 * expression "obj" over the points in "set".
 *
 * Return infinity or negative infinity if the optimal value is unbounded and
 * NaN if "set" is empty.
 */
__isl_give isl_val *isl_set_min_val(__isl_keep isl_set *set,
	__isl_keep isl_aff *obj)
{
	return isl_set_opt_val(set, 0, obj);
}

/* Return the maximum of the integer affine
 * expression "obj" over the points in "set".
 *
 * Return infinity or negative infinity if the optimal value is unbounded and
 * NaN if "set" is empty.
 */
__isl_give isl_val *isl_set_max_val(__isl_keep isl_set *set,
	__isl_keep isl_aff *obj)
{
	return isl_set_opt_val(set, 1, obj);
}

/* Return the optimum (min or max depending on "max") of "v1" and "v2",
 * where either may be NaN, signifying an uninitialized value.
 * That is, if either is NaN, then return the other one.
 */
static __isl_give isl_val *val_opt(__isl_take isl_val *v1,
	__isl_take isl_val *v2, int max)
{
	if (!v1 || !v2)
		goto error;
	if (isl_val_is_nan(v1)) {
		isl_val_free(v1);
		return v2;
	}
	if (isl_val_is_nan(v2)) {
		isl_val_free(v2);
		return v1;
	}
	if (max)
		return isl_val_max(v1, v2);
	else
		return isl_val_min(v1, v2);
error:
	isl_val_free(v1);
	isl_val_free(v2);
	return NULL;
}

/* Internal data structure for isl_pw_aff_opt_val.
 *
 * "max" is set if the maximum should be computed.
 * "res" contains the current optimum and is initialized to NaN.
 */
struct isl_pw_aff_opt_data {
	int max;

	isl_val *res;
};

/* Update the optimum in data->res with respect to the affine function
 * "aff" defined over "set".
 */
static isl_stat piece_opt(__isl_take isl_set *set, __isl_take isl_aff *aff,
	void *user)
{
	struct isl_pw_aff_opt_data *data = user;
	isl_val *opt;

	opt = isl_set_opt_val(set, data->max, aff);
	isl_set_free(set);
	isl_aff_free(aff);

	data->res = val_opt(data->res, opt, data->max);
	if (!data->res)
		return isl_stat_error;

	return isl_stat_ok;
}

/* Return the minimum (maximum if "max" is set) of the integer piecewise affine
 * expression "pa" over its definition domain.
 *
 * Return infinity or negative infinity if the optimal value is unbounded and
 * NaN if the domain of "pa" is empty.
 *
 * Initialize the result to NaN and then update it for each of the pieces
 * in "pa".
 */
static __isl_give isl_val *isl_pw_aff_opt_val(__isl_take isl_pw_aff *pa,
	int max)
{
	struct isl_pw_aff_opt_data data = { max };

	data.res = isl_val_nan(isl_pw_aff_get_ctx(pa));
	if (isl_pw_aff_foreach_piece(pa, &piece_opt, &data) < 0)
		data.res = isl_val_free(data.res);

	isl_pw_aff_free(pa);
	return data.res;
}

/* Internal data structure for isl_union_pw_aff_opt_val.
 *
 * "max" is set if the maximum should be computed.
 * "res" contains the current optimum and is initialized to NaN.
 */
struct isl_union_pw_aff_opt_data {
	int max;

	isl_val *res;
};

/* Update the optimum in data->res with the optimum of "pa".
 */
static isl_stat pw_aff_opt(__isl_take isl_pw_aff *pa, void *user)
{
	struct isl_union_pw_aff_opt_data *data = user;
	isl_val *opt;

	opt = isl_pw_aff_opt_val(pa, data->max);

	data->res = val_opt(data->res, opt, data->max);
	if (!data->res)
		return isl_stat_error;

	return isl_stat_ok;
}

/* Return the minimum (maximum if "max" is set) of the integer piecewise affine
 * expression "upa" over its definition domain.
 *
 * Return infinity or negative infinity if the optimal value is unbounded and
 * NaN if the domain of the expression is empty.
 *
 * Initialize the result to NaN and then update it
 * for each of the piecewise affine expressions in "upa".
 */
static __isl_give isl_val *isl_union_pw_aff_opt_val(
	__isl_take isl_union_pw_aff *upa, int max)
{
	struct isl_union_pw_aff_opt_data data = { max };

	data.res = isl_val_nan(isl_union_pw_aff_get_ctx(upa));
	if (isl_union_pw_aff_foreach_pw_aff(upa, &pw_aff_opt, &data) < 0)
		data.res = isl_val_free(data.res);
	isl_union_pw_aff_free(upa);

	return data.res;
}

/* Return the minimum of the integer piecewise affine
 * expression "upa" over its definition domain.
 *
 * Return negative infinity if the optimal value is unbounded and
 * NaN if the domain of the expression is empty.
 */
__isl_give isl_val *isl_union_pw_aff_min_val(__isl_take isl_union_pw_aff *upa)
{
	return isl_union_pw_aff_opt_val(upa, 0);
}

/* Return the maximum of the integer piecewise affine
 * expression "upa" over its definition domain.
 *
 * Return infinity if the optimal value is unbounded and
 * NaN if the domain of the expression is empty.
 */
__isl_give isl_val *isl_union_pw_aff_max_val(__isl_take isl_union_pw_aff *upa)
{
	return isl_union_pw_aff_opt_val(upa, 1);
}

/* Return a list of minima (maxima if "max" is set)
 * for each of the expressions in "mupa" over their domains.
 *
 * An element in the list is infinity or negative infinity if the optimal
 * value of the corresponding expression is unbounded and
 * NaN if the domain of the expression is empty.
 *
 * Iterate over all the expressions in "mupa" and collect the results.
 */
static __isl_give isl_multi_val *isl_multi_union_pw_aff_opt_multi_val(
	__isl_take isl_multi_union_pw_aff *mupa, int max)
{
	int i, n;
	isl_multi_val *mv;

	if (!mupa)
		return NULL;

	n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set);
	mv = isl_multi_val_zero(isl_multi_union_pw_aff_get_space(mupa));

	for (i = 0; i < n; ++i) {
		isl_val *v;
		isl_union_pw_aff *upa;

		upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i);
		v = isl_union_pw_aff_opt_val(upa, max);
		mv = isl_multi_val_set_val(mv, i, v);
	}

	isl_multi_union_pw_aff_free(mupa);
	return mv;
}

/* Return a list of minima (maxima if "max" is set) over the points in "uset"
 * for each of the expressions in "obj".
 *
 * An element in the list is infinity or negative infinity if the optimal
 * value of the corresponding expression is unbounded and
 * NaN if the intersection of "uset" with the domain of the expression
 * is empty.
 */
static __isl_give isl_multi_val *isl_union_set_opt_multi_union_pw_aff(
	__isl_keep isl_union_set *uset, int max,
	__isl_keep isl_multi_union_pw_aff *obj)
{
	uset = isl_union_set_copy(uset);
	obj = isl_multi_union_pw_aff_copy(obj);
	obj = isl_multi_union_pw_aff_intersect_domain(obj, uset);
	return isl_multi_union_pw_aff_opt_multi_val(obj, max);
}

/* Return a list of minima over the points in "uset"
 * for each of the expressions in "obj".
 *
 * An element in the list is infinity or negative infinity if the optimal
 * value of the corresponding expression is unbounded and
 * NaN if the intersection of "uset" with the domain of the expression
 * is empty.
 */
__isl_give isl_multi_val *isl_union_set_min_multi_union_pw_aff(
	__isl_keep isl_union_set *uset, __isl_keep isl_multi_union_pw_aff *obj)
{
	return isl_union_set_opt_multi_union_pw_aff(uset, 0, obj);
}

/* Return a list of minima
 * for each of the expressions in "mupa" over their domains.
 *
 * An element in the list is negative infinity if the optimal
 * value of the corresponding expression is unbounded and
 * NaN if the domain of the expression is empty.
 */
__isl_give isl_multi_val *isl_multi_union_pw_aff_min_multi_val(
	__isl_take isl_multi_union_pw_aff *mupa)
{
	return isl_multi_union_pw_aff_opt_multi_val(mupa, 0);
}

/* Return a list of maxima
 * for each of the expressions in "mupa" over their domains.
 *
 * An element in the list is infinity if the optimal
 * value of the corresponding expression is unbounded and
 * NaN if the domain of the expression is empty.
 */
__isl_give isl_multi_val *isl_multi_union_pw_aff_max_multi_val(
	__isl_take isl_multi_union_pw_aff *mupa)
{
	return isl_multi_union_pw_aff_opt_multi_val(mupa, 1);
}

/* Return the maximal value attained by the given set dimension,
 * independently of the parameter values and of any other dimensions.
 *
 * Return infinity if the optimal value is unbounded and
 * NaN if "bset" is empty.
 */
__isl_give isl_val *isl_basic_set_dim_max_val(__isl_take isl_basic_set *bset,
	int pos)
{
	isl_local_space *ls;
	isl_aff *obj;
	isl_val *v;

	if (!bset)
		return NULL;
	if (pos < 0 || pos >= isl_basic_set_dim(bset, isl_dim_set))
		isl_die(isl_basic_set_get_ctx(bset), isl_error_invalid,
			"position out of bounds", goto error);
	ls = isl_local_space_from_space(isl_basic_set_get_space(bset));
	obj = isl_aff_var_on_domain(ls, isl_dim_set, pos);
	v = isl_basic_set_max_val(bset, obj);
	isl_aff_free(obj);
	isl_basic_set_free(bset);

	return v;
error:
	isl_basic_set_free(bset);
	return NULL;
}