1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
|
from IsoSpecPy import IsoBinned
# Here we will compute a binned isotopic spectrum of a molecule
# C275H440N80O90S6, with resolution of 0.01 Da, and print the resulting bins
# The bins are centered starting at 0.0, which means that the first bin covers
# the range [-0.005 Da, 0.005 Da), the second one covers [0.005 Da, 0.015 Da), etc.
# The spectrum will be computed until cumulative probability of 0.9999 is reached.
formula = "C275H440N80O90S6"
resolution = 0.01 # in Da
bin_centers_start = 0.0 # in Da
precision = 0.9999
binned_spectrum = IsoBinned(bin_width=resolution,
bin_middle=bin_centers_start,
formula=formula,
target_total_prob=precision)
from matplotlib import pyplot as plt
plt.bar(list(binned_spectrum.masses),
list(binned_spectrum.probs),
width=resolution,
align='center')
plt.xlabel('Mass (Da)')
plt.ylabel('Probability')
plt.title(f'Binned isotopic spectrum of {formula}')
plt.show()
# Now, let's compute the same at 1.0 Da resolution, but suppose you want the bins
# to be centered at 0.5, i.e., the first bin should cover the range [0.0 Da, 1.0 Da),
# the second one [1.0 Da, 2.0 Da), etc.
resolution = 1.0 # in Da
bin_centers_start = 0.5 # in Da
binned_spectrum = IsoBinned(bin_width=resolution,
bin_middle=bin_centers_start,
formula=formula,
target_total_prob=precision)
plt.bar(list(binned_spectrum.masses),
list(binned_spectrum.probs),
width=resolution,
align='center')
plt.xlabel('Mass (Da)')
plt.ylabel('Probability')
plt.title(f'Binned isotopic spectrum of {formula} at 1 Da resolution')
plt.show()
|