1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
|
/*
Copyright (c) 2011-2023, Intel Corporation
SPDX-License-Identifier: BSD-3-Clause
*/
/*
This file implements simple task systems that provide the three
entrypoints used by ispc-generated to code to handle 'launch' and 'sync'
statements in ispc programs. See the section "Task Parallelism: Language
Syntax" in the ispc documentation for information about using task
parallelism in ispc programs, and see the section "Task Parallelism:
Runtime Requirements" for information about the task-related entrypoints
that are implemented here.
There are several task systems in this file, built using:
- Microsoft's Concurrency Runtime (ISPC_USE_CONCRT)
- Apple's Grand Central Dispatch (ISPC_USE_GCD)
- bare pthreads (ISPC_USE_PTHREADS, ISPC_USE_PTHREADS_FULLY_SUBSCRIBED)
- TBB (ISPC_USE_TBB_TASK_GROUP, ISPC_USE_TBB_PARALLEL_FOR)
- OpenMP (ISPC_USE_OMP)
- HPX (ISPC_USE_HPX)
The task system implementation can be selected at compile time, by defining
the appropriate preprocessor symbol on the command line (for e.g.: -D ISPC_USE_TBB).
Not all combinations of platform and task system are meaningful.
If no task system is requested, a reasonable default task system for the platform
is selected. Here are the task systems that can be selected:
#define ISPC_USE_GCD
#define ISPC_USE_CONCRT
#define ISPC_USE_PTHREADS
#define ISPC_USE_PTHREADS_FULLY_SUBSCRIBED
#define ISPC_USE_OMP
#define ISPC_USE_TBB_TASK_GROUP
#define ISPC_USE_TBB_PARALLEL_FOR
The ISPC_USE_PTHREADS_FULLY_SUBSCRIBED model essentially takes over the machine
by assigning one pthread to each hyper-thread, and then uses spinlocks and atomics
for task management. This model is useful for KNC where tasks can take over
the machine, but less so when there are other tasks that need running on the machine.
#define ISPC_USE_CREW
#define ISPC_USE_HPX
The HPX model requires the HPX runtime environment to be set up. This can be
done manually, e.g. with hpx::init, or by including hpx/hpx_main.hpp which
uses the main() function as entry point and sets up the runtime system.
Number of threads can be specified as commandline parameter with
--hpx:threads, use "all" to spawn one thread per processing unit.
*/
#if !(defined ISPC_USE_CONCRT || defined ISPC_USE_GCD || defined ISPC_USE_PTHREADS || \
defined ISPC_USE_PTHREADS_FULLY_SUBSCRIBED || defined ISPC_USE_TBB_TASK_GROUP || \
defined ISPC_USE_TBB_PARALLEL_FOR || defined ISPC_USE_OMP || defined ISPC_USE_HPX)
// If no task model chosen from the compiler cmdline, pick a reasonable default
#if defined(_WIN32) || defined(_WIN64)
#define ISPC_USE_CONCRT
#elif defined(__linux__) || defined(__FreeBSD__)
#define ISPC_USE_PTHREADS
#elif defined(__APPLE__)
#define ISPC_USE_GCD
#endif
#endif // No task model specified on compiler cmdline
#if defined(_WIN32) || defined(_WIN64)
#define ISPC_IS_WINDOWS
#elif defined(__linux__) || defined(__FreeBSD__) // pretty much the same for these purposes
#define ISPC_IS_LINUX
#elif defined(__APPLE__)
#define ISPC_IS_APPLE
#endif
#define DBG(x)
#ifdef ISPC_IS_WINDOWS
#define NOMINMAX
#include <windows.h>
#endif // ISPC_IS_WINDOWS
#ifdef ISPC_USE_CONCRT
#include <concrt.h>
using namespace Concurrency;
#endif // ISPC_USE_CONCRT
#ifdef ISPC_USE_GCD
#include <dispatch/dispatch.h>
#include <pthread.h>
#endif // ISPC_USE_GCD
#ifdef ISPC_USE_PTHREADS
#include <algorithm>
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <semaphore.h>
#include <sys/param.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <vector>
#endif // ISPC_USE_PTHREADS
#ifdef ISPC_USE_PTHREADS_FULLY_SUBSCRIBED
#include <algorithm>
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <semaphore.h>
#include <sys/param.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <vector>
//#include <stdexcept>
#include <stack>
#endif // ISPC_USE_PTHREADS_FULLY_SUBSCRIBED
#ifdef ISPC_USE_TBB_PARALLEL_FOR
#include <tbb/parallel_for.h>
#endif // ISPC_USE_TBB_PARALLEL_FOR
#ifdef ISPC_USE_TBB_TASK_GROUP
#include <tbb/task_group.h>
#endif // ISPC_USE_TBB_TASK_GROUP
#ifdef ISPC_USE_OMP
#include <omp.h>
#endif // ISPC_USE_OMP
#ifdef ISPC_USE_HPX
#include <hpx/include/async.hpp>
#include <hpx/lcos/wait_all.hpp>
#endif // ISPC_USE_HPX
#ifdef ISPC_IS_LINUX
#include <stdlib.h>
#endif // ISPC_IS_LINUX
#include <algorithm>
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// Signature of ispc-generated 'task' functions
typedef void (*TaskFuncType)(void *data, int threadIndex, int threadCount, int taskIndex, int taskCount, int taskIndex0,
int taskIndex1, int taskIndex2, int taskCount0, int taskCount1, int taskCount2);
// Small structure used to hold the data for each task
struct TaskInfo {
TaskFuncType func;
void *data;
int taskIndex;
int taskCount3d[3];
#if defined(ISPC_USE_CONCRT)
event taskEvent;
#endif
int taskCount() const { return taskCount3d[0] * taskCount3d[1] * taskCount3d[2]; }
int taskIndex0() const { return taskIndex % taskCount3d[0]; }
int taskIndex1() const { return (taskIndex / taskCount3d[0]) % taskCount3d[1]; }
int taskIndex2() const { return taskIndex / (taskCount3d[0] * taskCount3d[1]); }
int taskCount0() const { return taskCount3d[0]; }
int taskCount1() const { return taskCount3d[1]; }
int taskCount2() const { return taskCount3d[2]; }
TaskInfo() = default;
};
// ispc expects these functions to have C linkage / not be mangled
extern "C" {
void ISPCLaunch(void **handlePtr, void *f, void *data, int countx, int county, int countz);
void *ISPCAlloc(void **handlePtr, int64_t size, int32_t alignment);
void ISPCSync(void *handle);
}
///////////////////////////////////////////////////////////////////////////
// TaskGroupBase
#define LOG_TASK_QUEUE_CHUNK_SIZE 14
#define MAX_TASK_QUEUE_CHUNKS 128
#define TASK_QUEUE_CHUNK_SIZE (1 << LOG_TASK_QUEUE_CHUNK_SIZE)
#define MAX_LAUNCHED_TASKS (MAX_TASK_QUEUE_CHUNKS * TASK_QUEUE_CHUNK_SIZE)
#define NUM_MEM_BUFFERS 16
class TaskGroup;
/** The TaskGroupBase structure provides common functionality for "task
groups"; a task group is the set of tasks launched from within a single
ispc function. When the function is ready to return, it waits for all
of the tasks in its task group to finish before it actually returns.
*/
class TaskGroupBase {
public:
void Reset();
int AllocTaskInfo(int count);
TaskInfo *GetTaskInfo(int index);
void *AllocMemory(int64_t size, int32_t alignment);
protected:
TaskGroupBase();
~TaskGroupBase();
int nextTaskInfoIndex;
private:
/* We allocate blocks of TASK_QUEUE_CHUNK_SIZE TaskInfo structures as
needed by the calling function. We hold up to MAX_TASK_QUEUE_CHUNKS
of these (and then exit at runtime if more than this many tasks are
launched.)
*/
TaskInfo *taskInfo[MAX_TASK_QUEUE_CHUNKS];
/* We also allocate chunks of memory to service ISPCAlloc() calls. The
memBuffers[] array holds pointers to this memory. The first element
of this array is initialized to point to mem and then any subsequent
elements required are initialized with dynamic allocation.
*/
int curMemBuffer, curMemBufferOffset;
int memBufferSize[NUM_MEM_BUFFERS];
char *memBuffers[NUM_MEM_BUFFERS];
char mem[256];
};
inline TaskGroupBase::TaskGroupBase() {
nextTaskInfoIndex = 0;
curMemBuffer = 0;
curMemBufferOffset = 0;
memBuffers[0] = mem;
memBufferSize[0] = sizeof(mem) / sizeof(mem[0]);
for (int i = 1; i < NUM_MEM_BUFFERS; ++i) {
memBuffers[i] = nullptr;
memBufferSize[i] = 0;
}
for (int i = 0; i < MAX_TASK_QUEUE_CHUNKS; ++i)
taskInfo[i] = nullptr;
}
inline TaskGroupBase::~TaskGroupBase() {
// Note: don't delete memBuffers[0], since it points to the start of
// the "mem" member!
for (int i = 1; i < NUM_MEM_BUFFERS; ++i)
delete[](memBuffers[i]);
}
inline void TaskGroupBase::Reset() {
nextTaskInfoIndex = 0;
curMemBuffer = 0;
curMemBufferOffset = 0;
}
inline int TaskGroupBase::AllocTaskInfo(int count) {
int ret = nextTaskInfoIndex;
nextTaskInfoIndex += count;
return ret;
}
inline TaskInfo *TaskGroupBase::GetTaskInfo(int index) {
int chunk = (index >> LOG_TASK_QUEUE_CHUNK_SIZE);
int offset = index & (TASK_QUEUE_CHUNK_SIZE - 1);
if (chunk == MAX_TASK_QUEUE_CHUNKS) {
fprintf(stderr,
"A total of %d tasks have been launched from the "
"current function--the simple built-in task system can handle "
"no more. You can increase the values of TASK_QUEUE_CHUNK_SIZE "
"and LOG_TASK_QUEUE_CHUNK_SIZE to work around this limitation. "
"Sorry! Exiting.\n",
index);
exit(1);
}
if (taskInfo[chunk] == nullptr)
taskInfo[chunk] = new TaskInfo[TASK_QUEUE_CHUNK_SIZE];
return &taskInfo[chunk][offset];
}
inline void *TaskGroupBase::AllocMemory(int64_t size, int32_t alignment) {
char *basePtr = memBuffers[curMemBuffer];
intptr_t iptr = (intptr_t)(basePtr + curMemBufferOffset);
iptr = (iptr + (alignment - 1)) & ~(alignment - 1);
int newOffset = int(iptr - (intptr_t)basePtr + size);
if (newOffset < memBufferSize[curMemBuffer]) {
curMemBufferOffset = newOffset;
return (char *)iptr;
}
++curMemBuffer;
curMemBufferOffset = 0;
assert(curMemBuffer < NUM_MEM_BUFFERS);
int allocSize = 1 << (12 + curMemBuffer);
allocSize = std::max(int(size + alignment), allocSize);
char *newBuf = new char[allocSize];
memBufferSize[curMemBuffer] = allocSize;
memBuffers[curMemBuffer] = newBuf;
return AllocMemory(size, alignment);
}
///////////////////////////////////////////////////////////////////////////
// Atomics and the like
static inline void lMemFence() {
// Windows atomic functions already contain the fence
#if !defined ISPC_IS_WINDOWS
__sync_synchronize();
#endif
}
static void *lAtomicCompareAndSwapPointer(void **v, void *newValue, void *oldValue) {
#ifdef ISPC_IS_WINDOWS
return InterlockedCompareExchangePointer(v, newValue, oldValue);
#else
void *result = __sync_val_compare_and_swap(v, oldValue, newValue);
lMemFence();
return result;
#endif // ISPC_IS_WINDOWS
}
static int32_t lAtomicCompareAndSwap32(volatile int32_t *v, int32_t newValue, int32_t oldValue) {
#ifdef ISPC_IS_WINDOWS
return InterlockedCompareExchange((volatile LONG *)v, newValue, oldValue);
#else
int32_t result = __sync_val_compare_and_swap(v, oldValue, newValue);
lMemFence();
return result;
#endif // ISPC_IS_WINDOWS
}
static inline int32_t lAtomicAdd(volatile int32_t *v, int32_t delta) {
#ifdef ISPC_IS_WINDOWS
return InterlockedExchangeAdd((volatile LONG *)v, delta) + delta;
#else
return __sync_fetch_and_add(v, delta);
#endif
}
///////////////////////////////////////////////////////////////////////////
#ifdef ISPC_USE_CONCRT
// With ConcRT, we don't need to extend TaskGroupBase at all.
class TaskGroup : public TaskGroupBase {
public:
void Launch(int baseIndex, int count);
void Sync();
};
#endif // ISPC_USE_CONCRT
#ifdef ISPC_USE_GCD
/* With Grand Central Dispatch, we associate a GCD dispatch group with each
task group. (We'll later wait on this dispatch group when we need to
wait on all of the tasks in the group to finish.)
*/
class TaskGroup : public TaskGroupBase {
public:
TaskGroup() { gcdGroup = dispatch_group_create(); }
void Launch(int baseIndex, int count);
void Sync();
private:
dispatch_group_t gcdGroup;
};
#endif // ISPC_USE_GCD
#ifdef ISPC_USE_PTHREADS
static void *lTaskEntry(void *arg);
class TaskGroup : public TaskGroupBase {
public:
TaskGroup() {
numUnfinishedTasks = 0;
waitingTasks.reserve(128);
inActiveList = false;
}
void Reset() {
TaskGroupBase::Reset();
numUnfinishedTasks = 0;
assert(inActiveList == false);
lMemFence();
}
void Launch(int baseIndex, int count);
void Sync();
private:
friend void *lTaskEntry(void *arg);
int32_t numUnfinishedTasks;
int32_t pad[3];
std::vector<int> waitingTasks;
bool inActiveList;
};
#endif // ISPC_USE_PTHREADS
#ifdef ISPC_USE_OMP
class TaskGroup : public TaskGroupBase {
public:
void Launch(int baseIndex, int count);
void Sync();
};
#endif // ISPC_USE_OMP
#ifdef ISPC_USE_TBB_PARALLEL_FOR
class TaskGroup : public TaskGroupBase {
public:
void Launch(int baseIndex, int count);
void Sync();
};
#endif // ISPC_USE_TBB_PARALLEL_FOR
#ifdef ISPC_USE_TBB_TASK_GROUP
class TaskGroup : public TaskGroupBase {
public:
void Launch(int baseIndex, int count);
void Sync();
private:
tbb::task_group tbbTaskGroup;
};
#endif // ISPC_USE_TBB_TASK_GROUP
#ifdef ISPC_USE_HPX
class TaskGroup : public TaskGroupBase {
public:
void Launch(int baseIndex, int count);
void Sync();
private:
std::vector<hpx::future<void>> futures;
};
#endif // ISPC_USE_HPX
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
// Grand Central Dispatch
#ifdef ISPC_USE_GCD
/* A simple task system for ispc programs based on Apple's Grand Central
Dispatch. */
static dispatch_queue_t gcdQueue;
static volatile int32_t lock = 0;
static void InitTaskSystem() {
if (gcdQueue != nullptr)
return;
while (1) {
if (lAtomicCompareAndSwap32(&lock, 1, 0) == 0) {
if (gcdQueue == nullptr) {
gcdQueue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
assert(gcdQueue != nullptr);
lMemFence();
}
lock = 0;
break;
}
}
}
static void lRunTask(void *ti) {
TaskInfo *taskInfo = (TaskInfo *)ti;
// FIXME: these are bogus values; may cause bugs in code that depends
// on them having unique values in different threads.
int threadIndex = 0;
int threadCount = 1;
// Actually run the task
taskInfo->func(taskInfo->data, threadIndex, threadCount, taskInfo->taskIndex, taskInfo->taskCount(),
taskInfo->taskIndex0(), taskInfo->taskIndex1(), taskInfo->taskIndex2(), taskInfo->taskCount0(),
taskInfo->taskCount1(), taskInfo->taskCount2());
}
inline void TaskGroup::Launch(int baseIndex, int count) {
for (int i = 0; i < count; ++i) {
TaskInfo *ti = GetTaskInfo(baseIndex + i);
dispatch_group_async_f(gcdGroup, gcdQueue, ti, lRunTask);
}
}
inline void TaskGroup::Sync() { dispatch_group_wait(gcdGroup, DISPATCH_TIME_FOREVER); }
#endif // ISPC_USE_GCD
///////////////////////////////////////////////////////////////////////////
// Concurrency Runtime
#ifdef ISPC_USE_CONCRT
static void InitTaskSystem() {
// No initialization needed
}
static void __cdecl lRunTask(LPVOID param) {
TaskInfo *ti = (TaskInfo *)param;
// Actually run the task.
// FIXME: like the GCD implementation for OS X, this is passing bogus
// values for the threadIndex and threadCount builtins, which in turn
// will cause bugs in code that uses those.
int threadIndex = 0;
int threadCount = 1;
ti->func(ti->data, threadIndex, threadCount, ti->taskIndex, ti->taskCount(), ti->taskIndex0(), ti->taskIndex1(),
ti->taskIndex2(), ti->taskCount0(), ti->taskCount1(), ti->taskCount2());
// Signal the event that this task is done
ti->taskEvent.set();
}
inline void TaskGroup::Launch(int baseIndex, int count) {
for (int i = 0; i < count; ++i)
CurrentScheduler::ScheduleTask(lRunTask, GetTaskInfo(baseIndex + i));
}
inline void TaskGroup::Sync() {
for (int i = 0; i < nextTaskInfoIndex; ++i) {
TaskInfo *ti = GetTaskInfo(i);
ti->taskEvent.wait();
ti->taskEvent.reset();
}
}
#endif // ISPC_USE_CONCRT
///////////////////////////////////////////////////////////////////////////
// pthreads
#ifdef ISPC_USE_PTHREADS
static volatile int32_t lock = 0;
static int nThreads;
static pthread_t *threads = nullptr;
static pthread_mutex_t taskSysMutex;
static std::vector<TaskGroup *> activeTaskGroups;
static sem_t *workerSemaphore;
static void *lTaskEntry(void *arg) {
int threadIndex = (int)((int64_t)arg);
int threadCount = nThreads;
while (1) {
int err;
//
// Wait on the semaphore until we're woken up due to the arrival of
// more work.
//
if ((err = sem_wait(workerSemaphore)) != 0) {
fprintf(stderr, "Error from sem_wait: %s\n", strerror(err));
exit(1);
}
//
// Acquire the mutex
//
if ((err = pthread_mutex_lock(&taskSysMutex)) != 0) {
fprintf(stderr, "Error from pthread_mutex_lock: %s\n", strerror(err));
exit(1);
}
if (activeTaskGroups.size() == 0) {
//
// Task queue is empty, go back and wait on the semaphore
//
if ((err = pthread_mutex_unlock(&taskSysMutex)) != 0) {
fprintf(stderr, "Error from pthread_mutex_unlock: %s\n", strerror(err));
exit(1);
}
continue;
}
//
// Get the last task group on the active list and the last task
// from its waiting tasks list.
//
TaskGroup *tg = activeTaskGroups.back();
assert(tg->waitingTasks.size() > 0);
int taskNumber = tg->waitingTasks.back();
tg->waitingTasks.pop_back();
if (tg->waitingTasks.size() == 0) {
// We just took the last task from this task group, so remove
// it from the active list.
activeTaskGroups.pop_back();
tg->inActiveList = false;
}
if ((err = pthread_mutex_unlock(&taskSysMutex)) != 0) {
fprintf(stderr, "Error from pthread_mutex_unlock: %s\n", strerror(err));
exit(1);
}
//
// And now actually run the task
//
DBG(fprintf(stderr, "running task %d from group %p\n", taskNumber, tg));
TaskInfo *myTask = tg->GetTaskInfo(taskNumber);
myTask->func(myTask->data, threadIndex, threadCount, myTask->taskIndex, myTask->taskCount(),
myTask->taskIndex0(), myTask->taskIndex1(), myTask->taskIndex2(), myTask->taskCount0(),
myTask->taskCount1(), myTask->taskCount2());
//
// Decrement the "number of unfinished tasks" counter in the task
// group.
//
lMemFence();
lAtomicAdd(&tg->numUnfinishedTasks, -1);
}
pthread_exit(nullptr);
return 0;
}
static void InitTaskSystem() {
if (threads == nullptr) {
while (1) {
if (lAtomicCompareAndSwap32(&lock, 1, 0) == 0) {
if (threads == nullptr) {
// We launch one fewer thread than there are cores,
// since the main thread here will also grab jobs from
// the task queue itself.
nThreads = sysconf(_SC_NPROCESSORS_ONLN) - 1;
int err;
if ((err = pthread_mutex_init(&taskSysMutex, nullptr)) != 0) {
fprintf(stderr, "Error creating mutex: %s\n", strerror(err));
exit(1);
}
constexpr std::size_t FILENAME_MAX_LEN{1024UL};
char name[FILENAME_MAX_LEN];
bool success = false;
srand(time(nullptr));
for (int i = 0; i < 10; i++) {
// Some platforms (e.g. FreeBSD) require the name to begin with a slash
snprintf(name, FILENAME_MAX_LEN, "/ispc_task.%d.%d", static_cast<int>(getpid()), static_cast<int>(rand()));
workerSemaphore = sem_open(name, O_CREAT, S_IRUSR | S_IWUSR, 0);
if (workerSemaphore != SEM_FAILED) {
success = true;
break;
}
fprintf(stderr, "Failed to create %s\n", name);
}
if (!success) {
fprintf(stderr, "Error creating semaphore (%s): %s\n", name, strerror(errno));
exit(1);
}
threads = (pthread_t *)malloc(nThreads * sizeof(pthread_t));
if (threads == nullptr) {
fprintf(stderr, "Error creating pthreads: %s\n", strerror(err));
exit(1);
}
for (int i = 0; i < nThreads; ++i) {
err = pthread_create(&threads[i], nullptr, &lTaskEntry, (void *)((long long)i));
if (err != 0) {
fprintf(stderr, "Error creating pthread %d: %s\n", i, strerror(err));
exit(1);
}
}
activeTaskGroups.reserve(64);
}
// Make sure all of the above goes to memory before we
// clear the lock.
lMemFence();
lock = 0;
break;
}
}
}
}
inline void TaskGroup::Launch(int baseCoord, int count) {
//
// Acquire mutex, add task
//
int err;
if ((err = pthread_mutex_lock(&taskSysMutex)) != 0) {
fprintf(stderr, "Error from pthread_mutex_lock: %s\n", strerror(err));
exit(1);
}
// Add the corresponding set of tasks to the waiting-to-be-run list for
// this task group.
//
// FIXME: it's a little ugly to hold a global mutex for this when we
// only need to make sure no one else is accessing this task group's
// waitingTasks list. (But a small experiment in switching to a
// per-TaskGroup mutex showed worse performance!)
for (int i = 0; i < count; ++i)
waitingTasks.push_back(baseCoord + i);
// Add the task group to the global active list if it isn't there
// already.
if (inActiveList == false) {
activeTaskGroups.push_back(this);
inActiveList = true;
}
if ((err = pthread_mutex_unlock(&taskSysMutex)) != 0) {
fprintf(stderr, "Error from pthread_mutex_unlock: %s\n", strerror(err));
exit(1);
}
//
// Update the count of the number of tasks left to run in this task
// group.
//
lMemFence();
lAtomicAdd(&numUnfinishedTasks, count);
//
// Post to the worker semaphore to wake up worker threads that are
// sleeping waiting for tasks to show up
//
for (int i = 0; i < count; ++i)
if ((err = sem_post(workerSemaphore)) != 0) {
fprintf(stderr, "Error from sem_post: %s\n", strerror(err));
exit(1);
}
}
inline void TaskGroup::Sync() {
DBG(fprintf(stderr, "syncing %p - %d unfinished\n", tg, numUnfinishedTasks));
while (numUnfinishedTasks > 0) {
// All of the tasks in this group aren't finished yet. We'll try
// to help out here since we don't have anything else to do...
DBG(fprintf(stderr, "while syncing %p - %d unfinished\n", tg, numUnfinishedTasks));
//
// Acquire the global task system mutex to grab a task to work on
//
int err;
if ((err = pthread_mutex_lock(&taskSysMutex)) != 0) {
fprintf(stderr, "Error from pthread_mutex_lock: %s\n", strerror(err));
exit(1);
}
TaskInfo *myTask = nullptr;
TaskGroup *runtg = this;
if (waitingTasks.size() > 0) {
int taskNumber = waitingTasks.back();
waitingTasks.pop_back();
if (waitingTasks.size() == 0) {
// There's nothing left to start running from this group,
// so remove it from the active task list.
activeTaskGroups.erase(std::find(activeTaskGroups.begin(), activeTaskGroups.end(), this));
inActiveList = false;
}
myTask = GetTaskInfo(taskNumber);
DBG(fprintf(stderr, "running task %d from group %p in sync\n", taskNumber, tg));
} else {
// Other threads are already working on all of the tasks in
// this group, so we can't help out by running one ourself.
// We'll try to run one from another group to make ourselves
// useful here.
if (activeTaskGroups.size() == 0) {
// No active task groups left--there's nothing for us to do.
if ((err = pthread_mutex_unlock(&taskSysMutex)) != 0) {
fprintf(stderr, "Error from pthread_mutex_unlock: %s\n", strerror(err));
exit(1);
}
// FIXME: We basically end up busy-waiting here, which is
// extra wasteful in a world with hyper-threading. It would
// be much better to put this thread to sleep on a
// condition variable that was signaled when the last task
// in this group was finished.
usleep(1);
continue;
}
// Get a task to run from another task group.
runtg = activeTaskGroups.back();
assert(runtg->waitingTasks.size() > 0);
int taskNumber = runtg->waitingTasks.back();
runtg->waitingTasks.pop_back();
if (runtg->waitingTasks.size() == 0) {
// There's left to start running from this group, so remove
// it from the active task list.
activeTaskGroups.pop_back();
runtg->inActiveList = false;
}
myTask = runtg->GetTaskInfo(taskNumber);
DBG(fprintf(stderr, "running task %d from other group %p in sync\n", taskNumber, runtg));
}
if ((err = pthread_mutex_unlock(&taskSysMutex)) != 0) {
fprintf(stderr, "Error from pthread_mutex_unlock: %s\n", strerror(err));
exit(1);
}
//
// Do work for _myTask_
//
// FIXME: bogus values for thread index/thread count here as well..
myTask->func(myTask->data, 0, 1, myTask->taskIndex, myTask->taskCount(), myTask->taskIndex0(),
myTask->taskIndex1(), myTask->taskIndex2(), myTask->taskCount0(), myTask->taskCount1(),
myTask->taskCount2());
//
// Decrement the number of unfinished tasks counter
//
lMemFence();
lAtomicAdd(&runtg->numUnfinishedTasks, -1);
}
DBG(fprintf(stderr, "sync for %p done!n", tg));
}
#endif // ISPC_USE_PTHREADS
///////////////////////////////////////////////////////////////////////////
// OpenMP
#ifdef ISPC_USE_OMP
static void InitTaskSystem() {
// No initialization needed
}
inline void TaskGroup::Launch(int baseIndex, int count) {
#pragma omp parallel
{
const int threadIndex = omp_get_thread_num();
const int threadCount = omp_get_num_threads();
#pragma omp for schedule(runtime)
for (int i = 0; i < count; i++) {
TaskInfo *ti = GetTaskInfo(baseIndex + i);
// Actually run the task.
ti->func(ti->data, threadIndex, threadCount, ti->taskIndex, ti->taskCount(), ti->taskIndex0(),
ti->taskIndex1(), ti->taskIndex2(), ti->taskCount0(), ti->taskCount1(), ti->taskCount2());
}
}
}
inline void TaskGroup::Sync() {}
#endif // ISPC_USE_OMP
///////////////////////////////////////////////////////////////////////////
// Thread Building Blocks
#ifdef ISPC_USE_TBB_PARALLEL_FOR
static void InitTaskSystem() {
// No initialization needed by default
// tbb::task_scheduler_init();
}
inline void TaskGroup::Launch(int baseIndex, int count) {
tbb::parallel_for(0, count, [=](int i) {
TaskInfo *ti = GetTaskInfo(baseIndex + i);
// Actually run the task.
// TBB does not expose the task -> thread mapping so we pretend it's 1:1
int threadIndex = ti->taskIndex;
int threadCount = ti->taskCount();
ti->func(ti->data, threadIndex, threadCount, ti->taskIndex, ti->taskCount(), ti->taskIndex0(), ti->taskIndex1(),
ti->taskIndex2(), ti->taskCount0(), ti->taskCount1(), ti->taskCount2());
});
}
inline void TaskGroup::Sync() {}
#endif // ISPC_USE_TBB_PARALLEL_FOR
#ifdef ISPC_USE_TBB_TASK_GROUP
static void InitTaskSystem() {
// No initialization needed by default
// tbb::task_scheduler_init();
}
inline void TaskGroup::Launch(int baseIndex, int count) {
for (int i = 0; i < count; i++) {
tbbTaskGroup.run([=]() {
TaskInfo *ti = GetTaskInfo(baseIndex + i);
// TBB does not expose the task -> thread mapping so we pretend it's 1:1
int threadIndex = ti->taskIndex;
int threadCount = ti->taskCount();
ti->func(ti->data, threadIndex, threadCount, ti->taskIndex, ti->taskCount(), ti->taskIndex0(),
ti->taskIndex1(), ti->taskIndex2(), ti->taskCount0(), ti->taskCount1(), ti->taskCount2());
});
}
}
inline void TaskGroup::Sync() { tbbTaskGroup.wait(); }
#endif // ISPC_USE_TBB_TASK_GROUP
///////////////////////////////////////////////////////////////////////////
// ISPC_USE_HPX
#ifdef ISPC_USE_HPX
static void InitTaskSystem() {}
inline void TaskGroup::Launch(int baseIndex, int count) {
for (int i = 0; i < count; ++i) {
TaskInfo *ti = GetTaskInfo(baseIndex + i);
int threadIndex = i;
int threadCount = count;
futures.push_back(hpx::async(ti->func, ti->data, threadIndex, threadCount, ti->taskIndex, ti->taskCount(),
ti->taskIndex0(), ti->taskIndex1(), ti->taskIndex2(), ti->taskCount0(),
ti->taskCount1(), ti->taskCount2()));
}
}
inline void TaskGroup::Sync() {
hpx::wait_all(futures);
futures.clear();
}
#endif
///////////////////////////////////////////////////////////////////////////
#ifndef ISPC_USE_PTHREADS_FULLY_SUBSCRIBED
#define MAX_FREE_TASK_GROUPS 64
static TaskGroup *freeTaskGroups[MAX_FREE_TASK_GROUPS];
static inline TaskGroup *AllocTaskGroup() {
for (int i = 0; i < MAX_FREE_TASK_GROUPS; ++i) {
TaskGroup *tg = freeTaskGroups[i];
if (tg != nullptr) {
void *ptr = lAtomicCompareAndSwapPointer((void **)(&freeTaskGroups[i]), nullptr, tg);
if (ptr != nullptr) {
return (TaskGroup *)ptr;
}
}
}
return new TaskGroup;
}
static inline void FreeTaskGroup(TaskGroup *tg) {
tg->Reset();
for (int i = 0; i < MAX_FREE_TASK_GROUPS; ++i) {
if (freeTaskGroups[i] == nullptr) {
void *ptr = lAtomicCompareAndSwapPointer((void **)&freeTaskGroups[i], tg, nullptr);
if (ptr == nullptr)
return;
}
}
delete tg;
}
///////////////////////////////////////////////////////////////////////////
void ISPCLaunch(void **taskGroupPtr, void *func, void *data, int count0, int count1, int count2) {
const int count = count0 * count1 * count2;
TaskGroup *taskGroup;
if (*taskGroupPtr == nullptr) {
InitTaskSystem();
taskGroup = AllocTaskGroup();
*taskGroupPtr = taskGroup;
} else
taskGroup = (TaskGroup *)(*taskGroupPtr);
int baseIndex = taskGroup->AllocTaskInfo(count);
for (int i = 0; i < count; ++i) {
TaskInfo *ti = taskGroup->GetTaskInfo(baseIndex + i);
ti->func = (TaskFuncType)func;
ti->data = data;
ti->taskIndex = i;
ti->taskCount3d[0] = count0;
ti->taskCount3d[1] = count1;
ti->taskCount3d[2] = count2;
}
taskGroup->Launch(baseIndex, count);
}
void ISPCSync(void *h) {
TaskGroup *taskGroup = (TaskGroup *)h;
if (taskGroup != nullptr) {
taskGroup->Sync();
FreeTaskGroup(taskGroup);
}
}
void *ISPCAlloc(void **taskGroupPtr, int64_t size, int32_t alignment) {
TaskGroup *taskGroup;
if (*taskGroupPtr == nullptr) {
InitTaskSystem();
taskGroup = AllocTaskGroup();
*taskGroupPtr = taskGroup;
} else
taskGroup = (TaskGroup *)(*taskGroupPtr);
return taskGroup->AllocMemory(size, alignment);
}
#else // ISPC_USE_PTHREADS_FULLY_SUBSCRIBED
#define MAX_LIVE_TASKS 1024
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
// Small structure used to hold the data for each task
struct Task {
public:
TaskFuncType func;
void *data;
volatile int32_t taskIndex;
int taskCount;
volatile int numDone;
int liveIndex; // index in live task queue
inline int noMoreWork() { return taskIndex >= taskCount; }
/*! given thread is done working on this task --> decrease num locks */
// inline void lock() { lAtomicAdd(&locks,1); }
// inline void unlock() { lAtomicAdd(&locks,-1); }
inline int nextJob() { return lAtomicAdd(&taskIndex, 1); }
inline int numJobs() { return taskCount; }
inline void schedule(int idx) {
taskIndex = 0;
numDone = 0;
liveIndex = idx;
}
inline void run(int idx, int threadIdx);
inline void markOneDone() { lAtomicAdd(&numDone, 1); }
inline void wait() {
while (!noMoreWork()) {
int next = nextJob();
if (next < numJobs())
run(next, 0);
}
while (numDone != taskCount) {
usleep(1);
}
}
};
///////////////////////////////////////////////////////////////////////////
class TaskSys {
static int numThreadsRunning;
struct LiveTask {
volatile int locks; /*!< num locks on this task. gets
initialized to NUM_THREADS+1, then counted
down by every thread that sees this. this
value is only valid when 'active' is set
to true */
volatile int active; /*! workers will spin on this until it
becomes active */
Task *task;
inline void doneWithThis() { lAtomicAdd(&locks, -1); }
LiveTask() : active(0), locks(-1) {}
};
public:
volatile int nextScheduleIndex; /*! next index in the task queue
where we'll insert a live task */
// inline int inc_begin() { int old = begin; begin = (begin+1)%MAX_TASKS; return old; }
// inline int inc_end() { int old = end; end = (end+1)%MAX_TASKS; return old; }
LiveTask taskQueue[MAX_LIVE_TASKS];
std::stack<Task *> taskMem;
static TaskSys *global;
TaskSys() : nextScheduleIndex(0) {
TaskSys::global = this;
Task *mem = new Task[MAX_LIVE_TASKS]; //< could actually be more than _live_ tasks
for (int i = 0; i < MAX_LIVE_TASKS; i++) {
taskMem.push(mem + i);
}
createThreads();
}
inline Task *allocOne() {
pthread_mutex_lock(&mutex);
if (taskMem.empty()) {
fprintf(stderr, "Too many live tasks. "
"Change the value of MAX_LIVE_TASKS and recompile.\n");
exit(1);
}
Task *task = taskMem.top();
taskMem.pop();
pthread_mutex_unlock(&mutex);
return task;
}
static inline void init() {
if (global)
return;
pthread_mutex_lock(&mutex);
if (global == nullptr)
global = new TaskSys;
pthread_mutex_unlock(&mutex);
}
void createThreads();
int nThreads;
pthread_t *thread;
void threadFct();
inline void schedule(Task *t) {
pthread_mutex_lock(&mutex);
int liveIndex = nextScheduleIndex;
nextScheduleIndex = (nextScheduleIndex + 1) % MAX_LIVE_TASKS;
if (taskQueue[liveIndex].active) {
fprintf(stderr, "Out of task queue resources. "
"Change the value of MAX_LIVE_TASKS and recompile.\n");
exit(1);
}
taskQueue[liveIndex].task = t;
t->schedule(liveIndex);
taskQueue[liveIndex].locks = numThreadsRunning + 1; // num _worker_ threads plus creator
taskQueue[liveIndex].active = true;
pthread_mutex_unlock(&mutex);
}
void sync(Task *task) {
task->wait();
int liveIndex = task->liveIndex;
while (taskQueue[liveIndex].locks > 1) {
usleep(1);
}
_mm_free(task->data);
pthread_mutex_lock(&mutex);
taskMem.push(task); // recycle task index
taskQueue[liveIndex].active = false;
pthread_mutex_unlock(&mutex);
}
};
void TaskSys::threadFct() {
int myIndex = 0; // lAtomicAdd(&threadIdx,1);
while (1) {
while (!taskQueue[myIndex].active) {
usleep(4);
continue;
}
Task *mine = taskQueue[myIndex].task;
while (!mine->noMoreWork()) {
int job = mine->nextJob();
if (job >= mine->numJobs())
break;
mine->run(job, myIndex);
}
taskQueue[myIndex].doneWithThis();
myIndex = (myIndex + 1) % MAX_LIVE_TASKS;
}
}
inline void Task::run(int idx, int threadIdx) {
(*this->func)(data, threadIdx, TaskSys::global->nThreads, idx, taskCount);
markOneDone();
}
void *_threadFct(void *data) {
((TaskSys *)data)->threadFct();
return nullptr;
}
void TaskSys::createThreads() {
init();
int reserved = 4;
int minid = 2;
nThreads = sysconf(_SC_NPROCESSORS_ONLN) - reserved;
thread = (pthread_t *)malloc(nThreads * sizeof(pthread_t));
numThreadsRunning = 0;
for (int i = 0; i < nThreads; ++i) {
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setstacksize(&attr, 2 * 1024 * 1024);
int threadID = minid + i;
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(threadID, &cpuset);
int ret = pthread_attr_setaffinity_np(&attr, sizeof(cpuset), &cpuset);
int err = pthread_create(&thread[i], &attr, &_threadFct, this);
++numThreadsRunning;
if (err != 0) {
fprintf(stderr, "Error creating pthread %d: %s\n", i, strerror(err));
exit(1);
}
}
}
TaskSys *TaskSys::global = nullptr;
int TaskSys::numThreadsRunning = 0;
///////////////////////////////////////////////////////////////////////////
void ISPCLaunch(void **taskGroupPtr, void *func, void *data, int count) {
Task *ti = *(Task **)taskGroupPtr;
ti->func = (TaskFuncType)func;
ti->data = data;
ti->taskIndex = 0;
ti->taskCount = count;
TaskSys::global->schedule(ti);
}
void ISPCSync(void *h) {
Task *task = (Task *)h;
assert(task);
TaskSys::global->sync(task);
}
void *ISPCAlloc(void **taskGroupPtr, int64_t size, int32_t alignment) {
TaskSys::init();
Task *task = TaskSys::global->allocOne();
*taskGroupPtr = task;
task->data = _mm_malloc(size, alignment);
return task->data; //*taskGroupPtr;
}
#endif // ISPC_USE_PTHREADS_FULLY_SUBSCRIBED
|