1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
|
/*
Copyright (c) 2011-2025, Intel Corporation
SPDX-License-Identifier: BSD-3-Clause
*/
#include "deferred.h"
#include "kernels_ispc.h"
#include <algorithm>
#include <assert.h>
#include <math.h>
#include <stdint.h>
#ifdef _MSC_VER
#define ISPC_IS_WINDOWS
#elif defined(__linux__) || defined(__FreeBSD__)
#define ISPC_IS_LINUX
#elif defined(__APPLE__)
#define ISPC_IS_APPLE
#else
#error "Host OS was not detected"
#endif
#ifdef ISPC_IS_LINUX
#include <malloc.h>
#endif // ISPC_IS_LINUX
// Currently tile widths must be a multiple of SIMD width (i.e. 8 for ispc sse4x2)!
#define MIN_TILE_WIDTH 16
#define MIN_TILE_HEIGHT 16
#define DYNAMIC_TREE_LEVELS 5
// If this is set to 1 then the result will be identical to the static version
#define DYNAMIC_MIN_LIGHTS_TO_SUBDIVIDE 1
static void *lAlignedMalloc(size_t size, int32_t alignment) {
#ifdef ISPC_IS_WINDOWS
return _aligned_malloc(size, alignment);
#elif defined ISPC_IS_LINUX
return memalign(alignment, size);
#elif defined ISPC_IS_APPLE
void *mem = malloc(size + (alignment - 1) + sizeof(void *));
char *amem = ((char *)mem) + sizeof(void *);
amem = amem + uint32_t(alignment - (reinterpret_cast<uint64_t>(amem) & (alignment - 1)));
((void **)amem)[-1] = mem;
return amem;
#else
#error "Host OS was not detected"
#endif
}
static void lAlignedFree(void *ptr) {
#ifdef ISPC_IS_WINDOWS
_aligned_free(ptr);
#elif defined ISPC_IS_LINUX
free(ptr);
#elif defined ISPC_IS_APPLE
free(((void **)ptr)[-1]);
#else
#error "Host OS was not detected"
#endif
}
static void ComputeZBounds(int tileStartX, int tileEndX, int tileStartY, int tileEndY,
// G-buffer data
float zBuffer[], int gBufferWidth,
// Camera data
float cameraProj_33, float cameraProj_43, float cameraNear, float cameraFar,
// Output
float *minZ, float *maxZ) {
// Find Z bounds
float laneMinZ = cameraFar;
float laneMaxZ = cameraNear;
for (int y = tileStartY; y < tileEndY; ++y) {
for (int x = tileStartX; x < tileEndX; ++x) {
// Unproject depth buffer Z value into view space
float z = zBuffer[(y * gBufferWidth + x)];
float viewSpaceZ = cameraProj_43 / (z - cameraProj_33);
// Work out Z bounds for our samples
// Avoid considering skybox/background or otherwise invalid pixels
if ((viewSpaceZ < cameraFar) && (viewSpaceZ >= cameraNear)) {
laneMinZ = std::min(laneMinZ, viewSpaceZ);
laneMaxZ = std::max(laneMaxZ, viewSpaceZ);
}
}
}
*minZ = laneMinZ;
*maxZ = laneMaxZ;
}
static void ComputeZBoundsRow(int tileY, int tileWidth, int tileHeight, int numTilesX, int numTilesY,
// G-buffer data
float zBuffer[], int gBufferWidth,
// Camera data
float cameraProj_33, float cameraProj_43, float cameraNear, float cameraFar,
// Output
float minZArray[], float maxZArray[]) {
for (int tileX = 0; tileX < numTilesX; ++tileX) {
float minZ, maxZ;
ComputeZBounds(tileX * tileWidth, tileX * tileWidth + tileWidth, tileY * tileHeight,
tileY * tileHeight + tileHeight, zBuffer, gBufferWidth, cameraProj_33, cameraProj_43, cameraNear,
cameraFar, &minZ, &maxZ);
minZArray[tileX] = minZ;
maxZArray[tileX] = maxZ;
}
}
class MinMaxZTree {
public:
// Currently (min) tile dimensions must divide gBuffer dimensions evenly
// Levels must be small enough that neither dimension goes below one tile
MinMaxZTree(int tileWidth, int tileHeight, int levels, int gBufferWidth, int gBufferHeight)
: mTileWidth(tileWidth), mTileHeight(tileHeight), mLevels(levels) {
mNumTilesX = gBufferWidth / mTileWidth;
mNumTilesY = gBufferHeight / mTileHeight;
// Allocate arrays
mMinZArrays = (float **)lAlignedMalloc(sizeof(float *) * mLevels, 16);
mMaxZArrays = (float **)lAlignedMalloc(sizeof(float *) * mLevels, 16);
for (int i = 0; i < mLevels; ++i) {
int x = NumTilesX(i);
int y = NumTilesY(i);
assert(x > 0);
assert(y > 0);
// NOTE: If the following two asserts fire it probably means that
// the base tile dimensions do not evenly divide the G-buffer dimensions
assert(x * (mTileWidth << i) >= gBufferWidth);
assert(y * (mTileHeight << i) >= gBufferHeight);
mMinZArrays[i] = (float *)lAlignedMalloc(sizeof(float) * x * y, 16);
mMaxZArrays[i] = (float *)lAlignedMalloc(sizeof(float) * x * y, 16);
}
}
void Update(float *zBuffer, int gBufferPitchInElements, float cameraProj_33, float cameraProj_43, float cameraNear,
float cameraFar) {
for (int tileY = 0; tileY < mNumTilesY; ++tileY) {
ComputeZBoundsRow(tileY, mTileWidth, mTileHeight, mNumTilesX, mNumTilesY, zBuffer, gBufferPitchInElements,
cameraProj_33, cameraProj_43, cameraNear, cameraFar,
mMinZArrays[0] + (tileY * mNumTilesX), mMaxZArrays[0] + (tileY * mNumTilesX));
}
// Generate other levels
for (int level = 1; level < mLevels; ++level) {
int destTilesX = NumTilesX(level);
int destTilesY = NumTilesY(level);
int srcLevel = level - 1;
int srcTilesX = NumTilesX(srcLevel);
int srcTilesY = NumTilesY(srcLevel);
for (int y = 0; y < destTilesY; ++y) {
for (int x = 0; x < destTilesX; ++x) {
int srcX = x << 1;
int srcY = y << 1;
// NOTE: Ugly branches to deal with non-multiple dimensions at some levels
// TODO: SSE branchless min/max is probably better...
float minZ = mMinZArrays[srcLevel][(srcY)*srcTilesX + (srcX)];
float maxZ = mMaxZArrays[srcLevel][(srcY)*srcTilesX + (srcX)];
if (srcX + 1 < srcTilesX) {
minZ = std::min(minZ, mMinZArrays[srcLevel][(srcY)*srcTilesX + (srcX + 1)]);
maxZ = std::max(maxZ, mMaxZArrays[srcLevel][(srcY)*srcTilesX + (srcX + 1)]);
if (srcY + 1 < srcTilesY) {
minZ = std::min(minZ, mMinZArrays[srcLevel][(srcY + 1) * srcTilesX + (srcX + 1)]);
maxZ = std::max(maxZ, mMaxZArrays[srcLevel][(srcY + 1) * srcTilesX + (srcX + 1)]);
}
}
if (srcY + 1 < srcTilesY) {
minZ = std::min(minZ, mMinZArrays[srcLevel][(srcY + 1) * srcTilesX + (srcX)]);
maxZ = std::max(maxZ, mMaxZArrays[srcLevel][(srcY + 1) * srcTilesX + (srcX)]);
}
mMinZArrays[level][y * destTilesX + x] = minZ;
mMaxZArrays[level][y * destTilesX + x] = maxZ;
}
}
}
}
~MinMaxZTree() {
for (int i = 0; i < mLevels; ++i) {
lAlignedFree(mMinZArrays[i]);
lAlignedFree(mMaxZArrays[i]);
}
lAlignedFree(mMinZArrays);
lAlignedFree(mMaxZArrays);
}
int Levels() const { return mLevels; }
// These round UP, so beware that the last tile for a given level may not be completely full
// TODO: Verify this...
int NumTilesX(int level = 0) const { return (mNumTilesX + (1 << level) - 1) >> level; }
int NumTilesY(int level = 0) const { return (mNumTilesY + (1 << level) - 1) >> level; }
int TileWidth(int level = 0) const { return (mTileWidth << level); }
int TileHeight(int level = 0) const { return (mTileHeight << level); }
float MinZ(int level, int tileX, int tileY) const { return mMinZArrays[level][tileY * NumTilesX(level) + tileX]; }
float MaxZ(int level, int tileX, int tileY) const { return mMaxZArrays[level][tileY * NumTilesX(level) + tileX]; }
private:
int mTileWidth;
int mTileHeight;
int mLevels;
int mNumTilesX;
int mNumTilesY;
// One array for each "level" in the tree
float **mMinZArrays;
float **mMaxZArrays;
};
static MinMaxZTree *gMinMaxZTree = 0;
void InitDynamicC(InputData *input) {
gMinMaxZTree = new MinMaxZTree(MIN_TILE_WIDTH, MIN_TILE_HEIGHT, DYNAMIC_TREE_LEVELS, input->header.framebufferWidth,
input->header.framebufferHeight);
}
/* We're going to split a tile into 4 sub-tiles. This function
reclassifies the tile's lights with respect to the sub-tiles. */
static void SplitTileMinMax(int tileMidX, int tileMidY,
// Subtile data (00, 10, 01, 11)
float subtileMinZ[], float subtileMaxZ[],
// G-buffer data
int gBufferWidth, int gBufferHeight,
// Camera data
float cameraProj_11, float cameraProj_22,
// Light Data
int lightIndices[], int numLights, float light_positionView_x_array[],
float light_positionView_y_array[], float light_positionView_z_array[],
float light_attenuationEnd_array[],
// Outputs
int subtileIndices[], int subtileIndicesPitch, int subtileNumLights[]) {
float gBufferScale_x = 0.5f * (float)gBufferWidth;
float gBufferScale_y = 0.5f * (float)gBufferHeight;
float frustumPlanes_xy[2] = {-(cameraProj_11 * gBufferScale_x), (cameraProj_22 * gBufferScale_y)};
float frustumPlanes_z[2] = {tileMidX - gBufferScale_x, tileMidY - gBufferScale_y};
for (int i = 0; i < 2; ++i) {
// Normalize
float norm = 1.f / sqrtf(frustumPlanes_xy[i] * frustumPlanes_xy[i] + frustumPlanes_z[i] * frustumPlanes_z[i]);
frustumPlanes_xy[i] *= norm;
frustumPlanes_z[i] *= norm;
}
// Initialize
int subtileLightOffset[4];
subtileLightOffset[0] = 0 * subtileIndicesPitch;
subtileLightOffset[1] = 1 * subtileIndicesPitch;
subtileLightOffset[2] = 2 * subtileIndicesPitch;
subtileLightOffset[3] = 3 * subtileIndicesPitch;
for (int i = 0; i < numLights; ++i) {
int lightIndex = lightIndices[i];
float light_positionView_x = light_positionView_x_array[lightIndex];
float light_positionView_y = light_positionView_y_array[lightIndex];
float light_positionView_z = light_positionView_z_array[lightIndex];
float light_attenuationEnd = light_attenuationEnd_array[lightIndex];
float light_attenuationEndNeg = -light_attenuationEnd;
// Test lights again against subtile z bounds
bool inFrustum[4];
inFrustum[0] = (light_positionView_z - subtileMinZ[0] >= light_attenuationEndNeg) &&
(subtileMaxZ[0] - light_positionView_z >= light_attenuationEndNeg);
inFrustum[1] = (light_positionView_z - subtileMinZ[1] >= light_attenuationEndNeg) &&
(subtileMaxZ[1] - light_positionView_z >= light_attenuationEndNeg);
inFrustum[2] = (light_positionView_z - subtileMinZ[2] >= light_attenuationEndNeg) &&
(subtileMaxZ[2] - light_positionView_z >= light_attenuationEndNeg);
inFrustum[3] = (light_positionView_z - subtileMinZ[3] >= light_attenuationEndNeg) &&
(subtileMaxZ[3] - light_positionView_z >= light_attenuationEndNeg);
float dx = light_positionView_z * frustumPlanes_z[0] + light_positionView_x * frustumPlanes_xy[0];
float dy = light_positionView_z * frustumPlanes_z[1] + light_positionView_y * frustumPlanes_xy[1];
if (fabsf(dx) > light_attenuationEnd) {
bool positiveX = dx > 0.0f;
inFrustum[0] = inFrustum[0] && positiveX; // 00 subtile
inFrustum[1] = inFrustum[1] && !positiveX; // 10 subtile
inFrustum[2] = inFrustum[2] && positiveX; // 01 subtile
inFrustum[3] = inFrustum[3] && !positiveX; // 11 subtile
}
if (fabsf(dy) > light_attenuationEnd) {
bool positiveY = dy > 0.0f;
inFrustum[0] = inFrustum[0] && positiveY; // 00 subtile
inFrustum[1] = inFrustum[1] && positiveY; // 10 subtile
inFrustum[2] = inFrustum[2] && !positiveY; // 01 subtile
inFrustum[3] = inFrustum[3] && !positiveY; // 11 subtile
}
if (inFrustum[0])
subtileIndices[subtileLightOffset[0]++] = lightIndex;
if (inFrustum[1])
subtileIndices[subtileLightOffset[1]++] = lightIndex;
if (inFrustum[2])
subtileIndices[subtileLightOffset[2]++] = lightIndex;
if (inFrustum[3])
subtileIndices[subtileLightOffset[3]++] = lightIndex;
}
subtileNumLights[0] = subtileLightOffset[0] - 0 * subtileIndicesPitch;
subtileNumLights[1] = subtileLightOffset[1] - 1 * subtileIndicesPitch;
subtileNumLights[2] = subtileLightOffset[2] - 2 * subtileIndicesPitch;
subtileNumLights[3] = subtileLightOffset[3] - 3 * subtileIndicesPitch;
}
static inline float dot3(float x, float y, float z, float a, float b, float c) { return (x * a + y * b + z * c); }
static inline void normalize3(float x, float y, float z, float &ox, float &oy, float &oz) {
float n = 1.f / sqrtf(x * x + y * y + z * z);
ox = x * n;
oy = y * n;
oz = z * n;
}
static inline float Unorm8ToFloat32(uint8_t u) { return (float)u * (1.0f / 255.0f); }
static inline uint8_t Float32ToUnorm8(float f) { return (uint8_t)(f * 255.0f); }
static inline float half_to_float_fast(uint16_t h) {
uint32_t hs = h & (int32_t)0x8000u; // Pick off sign bit
uint32_t he = h & (int32_t)0x7C00u; // Pick off exponent bits
uint32_t hm = h & (int32_t)0x03FFu; // Pick off mantissa bits
// sign
uint32_t xs = ((uint32_t)hs) << 16;
// Exponent: unbias the halfp, then bias the single
int32_t xes = ((int32_t)(he >> 10)) - 15 + 127;
// Exponent
uint32_t xe = (uint32_t)(xes << 23);
// Mantissa
uint32_t xm = ((uint32_t)hm) << 13;
uint32_t bits = (xs | xe | xm);
// Use a union for safe type punning.
union {
uint32_t u;
float f;
} conv;
conv.u = bits;
return conv.f;
}
static void ShadeTileC(int32_t tileStartX, int32_t tileEndX, int32_t tileStartY, int32_t tileEndY, int32_t gBufferWidth,
int32_t gBufferHeight, const ispc::InputDataArrays &inputData,
// Camera data
float cameraProj_11, float cameraProj_22, float cameraProj_33, float cameraProj_43,
// Light list
int32_t tileLightIndices[], int32_t tileNumLights,
// UI
bool visualizeLightCount,
// Output
uint8_t framebuffer_r[], uint8_t framebuffer_g[], uint8_t framebuffer_b[]) {
if (tileNumLights == 0 || visualizeLightCount) {
uint8_t c = (uint8_t)(std::min(tileNumLights << 2, 255));
for (int32_t y = tileStartY; y < tileEndY; ++y) {
for (int32_t x = tileStartX; x < tileEndX; ++x) {
int32_t framebufferIndex = (y * gBufferWidth + x);
framebuffer_r[framebufferIndex] = c;
framebuffer_g[framebufferIndex] = c;
framebuffer_b[framebufferIndex] = c;
}
}
} else {
float twoOverGBufferWidth = 2.0f / gBufferWidth;
float twoOverGBufferHeight = 2.0f / gBufferHeight;
for (int32_t y = tileStartY; y < tileEndY; ++y) {
float positionScreen_y = -(((0.5f + y) * twoOverGBufferHeight) - 1.f);
for (int32_t x = tileStartX; x < tileEndX; ++x) {
int32_t gBufferOffset = y * gBufferWidth + x;
// Reconstruct position and (negative) view vector from G-buffer
float surface_positionView_x, surface_positionView_y, surface_positionView_z;
float Vneg_x, Vneg_y, Vneg_z;
float z = inputData.zBuffer[gBufferOffset];
// Compute screen/clip-space position
// NOTE: Mind DX11 viewport transform and pixel center!
float positionScreen_x = (0.5f + (float)(x)) * twoOverGBufferWidth - 1.0f;
// Unproject depth buffer Z value into view space
surface_positionView_z = cameraProj_43 / (z - cameraProj_33);
surface_positionView_x = positionScreen_x * surface_positionView_z / cameraProj_11;
surface_positionView_y = positionScreen_y * surface_positionView_z / cameraProj_22;
// We actually end up with a vector pointing *at* the
// surface (i.e. the negative view vector)
normalize3(surface_positionView_x, surface_positionView_y, surface_positionView_z, Vneg_x, Vneg_y,
Vneg_z);
// Reconstruct normal from G-buffer
float surface_normal_x, surface_normal_y, surface_normal_z;
float normal_x = half_to_float_fast(inputData.normalEncoded_x[gBufferOffset]);
float normal_y = half_to_float_fast(inputData.normalEncoded_y[gBufferOffset]);
float f = (normal_x - normal_x * normal_x) + (normal_y - normal_y * normal_y);
float m = sqrtf(4.0f * f - 1.0f);
surface_normal_x = m * (4.0f * normal_x - 2.0f);
surface_normal_y = m * (4.0f * normal_y - 2.0f);
surface_normal_z = 3.0f - 8.0f * f;
// Load other G-buffer parameters
float surface_specularAmount = half_to_float_fast(inputData.specularAmount[gBufferOffset]);
float surface_specularPower = half_to_float_fast(inputData.specularPower[gBufferOffset]);
float surface_albedo_x = Unorm8ToFloat32(inputData.albedo_x[gBufferOffset]);
float surface_albedo_y = Unorm8ToFloat32(inputData.albedo_y[gBufferOffset]);
float surface_albedo_z = Unorm8ToFloat32(inputData.albedo_z[gBufferOffset]);
float lit_x = 0.0f;
float lit_y = 0.0f;
float lit_z = 0.0f;
for (int32_t tileLightIndex = 0; tileLightIndex < tileNumLights; ++tileLightIndex) {
int32_t lightIndex = tileLightIndices[tileLightIndex];
// Gather light data relevant to initial culling
float light_positionView_x = inputData.lightPositionView_x[lightIndex];
float light_positionView_y = inputData.lightPositionView_y[lightIndex];
float light_positionView_z = inputData.lightPositionView_z[lightIndex];
float light_attenuationEnd = inputData.lightAttenuationEnd[lightIndex];
// Compute light vector
float L_x = light_positionView_x - surface_positionView_x;
float L_y = light_positionView_y - surface_positionView_y;
float L_z = light_positionView_z - surface_positionView_z;
float distanceToLight2 = dot3(L_x, L_y, L_z, L_x, L_y, L_z);
// Clip at end of attenuation
float light_attenutaionEnd2 = light_attenuationEnd * light_attenuationEnd;
if (distanceToLight2 < light_attenutaionEnd2) {
float distanceToLight = sqrtf(distanceToLight2);
float distanceToLightRcp = 1.f / distanceToLight;
L_x *= distanceToLightRcp;
L_y *= distanceToLightRcp;
L_z *= distanceToLightRcp;
// Start computing brdf
float NdotL = dot3(surface_normal_x, surface_normal_y, surface_normal_z, L_x, L_y, L_z);
// Clip back facing
if (NdotL > 0.0f) {
float light_attenuationBegin = inputData.lightAttenuationBegin[lightIndex];
// Light distance attenuation (linstep)
float lightRange = (light_attenuationEnd - light_attenuationBegin);
float falloffPosition = (light_attenuationEnd - distanceToLight);
float attenuation = std::min(falloffPosition / lightRange, 1.0f);
float H_x = (L_x - Vneg_x);
float H_y = (L_y - Vneg_y);
float H_z = (L_z - Vneg_z);
normalize3(H_x, H_y, H_z, H_x, H_y, H_z);
float NdotH = dot3(surface_normal_x, surface_normal_y, surface_normal_z, H_x, H_y, H_z);
NdotH = std::max(NdotH, 0.0f);
float specular = powf(NdotH, surface_specularPower);
float specularNorm = (surface_specularPower + 2.0f) * (1.0f / 8.0f);
float specularContrib = surface_specularAmount * specularNorm * specular;
float k = attenuation * NdotL * (1.0f + specularContrib);
float light_color_x = inputData.lightColor_x[lightIndex];
float light_color_y = inputData.lightColor_y[lightIndex];
float light_color_z = inputData.lightColor_z[lightIndex];
float lightContrib_x = surface_albedo_x * light_color_x;
float lightContrib_y = surface_albedo_y * light_color_y;
float lightContrib_z = surface_albedo_z * light_color_z;
lit_x += lightContrib_x * k;
lit_y += lightContrib_y * k;
lit_z += lightContrib_z * k;
}
}
}
// Gamma correct
float gamma = 1.0 / 2.2f;
lit_x = powf(std::min(std::max(lit_x, 0.0f), 1.0f), gamma);
lit_y = powf(std::min(std::max(lit_y, 0.0f), 1.0f), gamma);
lit_z = powf(std::min(std::max(lit_z, 0.0f), 1.0f), gamma);
framebuffer_r[gBufferOffset] = Float32ToUnorm8(lit_x);
framebuffer_g[gBufferOffset] = Float32ToUnorm8(lit_y);
framebuffer_b[gBufferOffset] = Float32ToUnorm8(lit_z);
}
}
}
}
void ShadeDynamicTileRecurse(InputData *input, int level, int tileX, int tileY, int *lightIndices, int numLights,
Framebuffer *framebuffer) {
const MinMaxZTree *minMaxZTree = gMinMaxZTree;
// If we few enough lights or this is the base case (last level), shade
// this full tile directly
if (level == 0 || numLights < DYNAMIC_MIN_LIGHTS_TO_SUBDIVIDE) {
int width = minMaxZTree->TileWidth(level);
int height = minMaxZTree->TileHeight(level);
int startX = tileX * width;
int startY = tileY * height;
int endX = std::min(input->header.framebufferWidth, startX + width);
int endY = std::min(input->header.framebufferHeight, startY + height);
// Skip entirely offscreen tiles
if (endX > startX && endY > startY) {
ShadeTileC(startX, endX, startY, endY, input->header.framebufferWidth, input->header.framebufferHeight,
input->arrays, input->header.cameraProj[0][0], input->header.cameraProj[1][1],
input->header.cameraProj[2][2], input->header.cameraProj[3][2], lightIndices, numLights,
VISUALIZE_LIGHT_COUNT, framebuffer->r, framebuffer->g, framebuffer->b);
}
} else {
// Otherwise, subdivide and 4-way recurse using X and Y splitting planes
// Move down a level in the tree
--level;
tileX <<= 1;
tileY <<= 1;
int width = minMaxZTree->TileWidth(level);
int height = minMaxZTree->TileHeight(level);
// Work out splitting coords
int midX = (tileX + 1) * width;
int midY = (tileY + 1) * height;
// Read subtile min/max data
// NOTE: We must be sure to handle out-of-bounds access here since
// sometimes we'll only have 1 or 2 subtiles for non-pow-2
// framebuffer sizes.
bool rightTileExists = (tileX + 1 < minMaxZTree->NumTilesX(level));
bool bottomTileExists = (tileY + 1 < minMaxZTree->NumTilesY(level));
// NOTE: Order is 00, 10, 01, 11
// Set defaults up to cull all lights if the tile doesn't exist (offscreen)
float minZ[4] = {input->header.cameraFar, input->header.cameraFar, input->header.cameraFar,
input->header.cameraFar};
float maxZ[4] = {input->header.cameraNear, input->header.cameraNear, input->header.cameraNear,
input->header.cameraNear};
minZ[0] = minMaxZTree->MinZ(level, tileX, tileY);
maxZ[0] = minMaxZTree->MaxZ(level, tileX, tileY);
if (rightTileExists) {
minZ[1] = minMaxZTree->MinZ(level, tileX + 1, tileY);
maxZ[1] = minMaxZTree->MaxZ(level, tileX + 1, tileY);
if (bottomTileExists) {
minZ[3] = minMaxZTree->MinZ(level, tileX + 1, tileY + 1);
maxZ[3] = minMaxZTree->MaxZ(level, tileX + 1, tileY + 1);
}
}
if (bottomTileExists) {
minZ[2] = minMaxZTree->MinZ(level, tileX, tileY + 1);
maxZ[2] = minMaxZTree->MaxZ(level, tileX, tileY + 1);
}
// Cull lights into subtile lists
#ifdef ISPC_IS_WINDOWS
__declspec(align(ALIGNMENT_BYTES))
#endif
int subtileLightIndices[4][MAX_LIGHTS]
#ifndef ISPC_IS_WINDOWS
__attribute__((aligned(ALIGNMENT_BYTES)))
#endif
;
int subtileNumLights[4];
SplitTileMinMax(midX, midY, minZ, maxZ, input->header.framebufferWidth, input->header.framebufferHeight,
input->header.cameraProj[0][0], input->header.cameraProj[1][1], lightIndices, numLights,
input->arrays.lightPositionView_x, input->arrays.lightPositionView_y,
input->arrays.lightPositionView_z, input->arrays.lightAttenuationEnd, subtileLightIndices[0],
MAX_LIGHTS, subtileNumLights);
// Recurse into subtiles
ShadeDynamicTileRecurse(input, level, tileX, tileY, subtileLightIndices[0], subtileNumLights[0], framebuffer);
ShadeDynamicTileRecurse(input, level, tileX + 1, tileY, subtileLightIndices[1], subtileNumLights[1],
framebuffer);
ShadeDynamicTileRecurse(input, level, tileX, tileY + 1, subtileLightIndices[2], subtileNumLights[2],
framebuffer);
ShadeDynamicTileRecurse(input, level, tileX + 1, tileY + 1, subtileLightIndices[3], subtileNumLights[3],
framebuffer);
}
}
static int IntersectLightsWithTileMinMax(int tileStartX, int tileEndX, int tileStartY, int tileEndY,
// Tile data
float minZ, float maxZ,
// G-buffer data
int gBufferWidth, int gBufferHeight,
// Camera data
float cameraProj_11, float cameraProj_22,
// Light Data
int numLights, float light_positionView_x_array[],
float light_positionView_y_array[], float light_positionView_z_array[],
float light_attenuationEnd_array[],
// Output
int tileLightIndices[]) {
float gBufferScale_x = 0.5f * (float)gBufferWidth;
float gBufferScale_y = 0.5f * (float)gBufferHeight;
float frustumPlanes_xy[4];
float frustumPlanes_z[4];
// This one is totally constant over the whole screen... worth pulling it up at all?
float frustumPlanes_xy_v[4] = {-(cameraProj_11 * gBufferScale_x), (cameraProj_11 * gBufferScale_x),
(cameraProj_22 * gBufferScale_y), -(cameraProj_22 * gBufferScale_y)};
float frustumPlanes_z_v[4] = {tileEndX - gBufferScale_x, -tileStartX + gBufferScale_x, tileEndY - gBufferScale_y,
-tileStartY + gBufferScale_y};
for (int i = 0; i < 4; ++i) {
float norm =
1.f / sqrtf(frustumPlanes_xy_v[i] * frustumPlanes_xy_v[i] + frustumPlanes_z_v[i] * frustumPlanes_z_v[i]);
frustumPlanes_xy_v[i] *= norm;
frustumPlanes_z_v[i] *= norm;
frustumPlanes_xy[i] = frustumPlanes_xy_v[i];
frustumPlanes_z[i] = frustumPlanes_z_v[i];
}
int tileNumLights = 0;
for (int lightIndex = 0; lightIndex < numLights; ++lightIndex) {
float light_positionView_z = light_positionView_z_array[lightIndex];
float light_attenuationEnd = light_attenuationEnd_array[lightIndex];
float light_attenuationEndNeg = -light_attenuationEnd;
float d = light_positionView_z - minZ;
bool inFrustum = (d >= light_attenuationEndNeg);
d = maxZ - light_positionView_z;
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
if (!inFrustum)
continue;
float light_positionView_x = light_positionView_x_array[lightIndex];
float light_positionView_y = light_positionView_y_array[lightIndex];
d = light_positionView_z * frustumPlanes_z[0] + light_positionView_x * frustumPlanes_xy[0];
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
d = light_positionView_z * frustumPlanes_z[1] + light_positionView_x * frustumPlanes_xy[1];
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
d = light_positionView_z * frustumPlanes_z[2] + light_positionView_y * frustumPlanes_xy[2];
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
d = light_positionView_z * frustumPlanes_z[3] + light_positionView_y * frustumPlanes_xy[3];
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
// Pack and store intersecting lights
if (inFrustum)
tileLightIndices[tileNumLights++] = lightIndex;
}
return tileNumLights;
}
void ShadeDynamicTile(InputData *input, int level, int tileX, int tileY, Framebuffer *framebuffer) {
const MinMaxZTree *minMaxZTree = gMinMaxZTree;
// Get Z min/max for this tile
int width = minMaxZTree->TileWidth(level);
int height = minMaxZTree->TileHeight(level);
float minZ = minMaxZTree->MinZ(level, tileX, tileY);
float maxZ = minMaxZTree->MaxZ(level, tileX, tileY);
int startX = tileX * width;
int startY = tileY * height;
int endX = std::min(input->header.framebufferWidth, startX + width);
int endY = std::min(input->header.framebufferHeight, startY + height);
// This is a root tile, so first do a full 6-plane cull
#ifdef ISPC_IS_WINDOWS
__declspec(align(ALIGNMENT_BYTES))
#endif
int lightIndices[MAX_LIGHTS]
#ifndef ISPC_IS_WINDOWS
__attribute__((aligned(ALIGNMENT_BYTES)))
#endif
;
int numLights = IntersectLightsWithTileMinMax(
startX, endX, startY, endY, minZ, maxZ, input->header.framebufferWidth, input->header.framebufferHeight,
input->header.cameraProj[0][0], input->header.cameraProj[1][1], MAX_LIGHTS, input->arrays.lightPositionView_x,
input->arrays.lightPositionView_y, input->arrays.lightPositionView_z, input->arrays.lightAttenuationEnd,
lightIndices);
// Now kick off the recursive process for this tile
ShadeDynamicTileRecurse(input, level, tileX, tileY, lightIndices, numLights, framebuffer);
}
void DispatchDynamicC(InputData *input, Framebuffer *framebuffer) {
MinMaxZTree *minMaxZTree = gMinMaxZTree;
// Update min/max Z tree
minMaxZTree->Update(input->arrays.zBuffer, input->header.framebufferWidth, input->header.cameraProj[2][2],
input->header.cameraProj[3][2], input->header.cameraNear, input->header.cameraFar);
int rootLevel = minMaxZTree->Levels() - 1;
int rootTilesX = minMaxZTree->NumTilesX(rootLevel);
int rootTilesY = minMaxZTree->NumTilesY(rootLevel);
int rootTiles = rootTilesX * rootTilesY;
for (int g = 0; g < rootTiles; ++g) {
uint32_t tileY = g / rootTilesX;
uint32_t tileX = g % rootTilesX;
ShadeDynamicTile(input, rootLevel, tileX, tileY, framebuffer);
}
}
|