1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
|
/*
Copyright (c) 2010-2023, Intel Corporation
SPDX-License-Identifier: BSD-3-Clause
*/
#include "deferred.h"
struct InputDataArrays
{
float *zBuffer;
unsigned int16 *normalEncoded_x; // half float
unsigned int16 *normalEncoded_y; // half float
unsigned int16 *specularAmount; // half float
unsigned int16 *specularPower; // half float
unsigned int8 *albedo_x; // unorm8
unsigned int8 *albedo_y; // unorm8
unsigned int8 *albedo_z; // unorm8
float *lightPositionView_x;
float *lightPositionView_y;
float *lightPositionView_z;
float *lightAttenuationBegin;
float *lightColor_x;
float *lightColor_y;
float *lightColor_z;
float *lightAttenuationEnd;
};
struct InputHeader
{
float cameraProj[4][4];
float cameraNear;
float cameraFar;
int32 framebufferWidth;
int32 framebufferHeight;
int32 numLights;
int32 inputDataChunkSize;
int32 inputDataArrayOffsets[idaNum];
};
///////////////////////////////////////////////////////////////////////////
// Common utility routines
static inline float
dot3(float x, float y, float z, float a, float b, float c) {
return (x*a + y*b + z*c);
}
static inline void
normalize3(float x, float y, float z, float &ox, float &oy, float &oz) {
float n = rsqrt(x*x + y*y + z*z);
ox = x * n;
oy = y * n;
oz = z * n;
}
static inline float
Unorm8ToFloat32(unsigned int8 u) {
#pragma ignore warning(perf)
return (float)u * (1.0f / 255.0f);
}
static inline unsigned int8
Float32ToUnorm8(float f) {
#pragma ignore warning(perf)
return (unsigned int8)(f * 255.0f);
}
static void
ComputeZBounds(
uniform int32 tileStartX, uniform int32 tileEndX,
uniform int32 tileStartY, uniform int32 tileEndY,
// G-buffer data
uniform float zBuffer[],
uniform int32 gBufferWidth,
// Camera data
uniform float cameraProj_33, uniform float cameraProj_43,
uniform float cameraNear, uniform float cameraFar,
// Output
uniform float &minZ,
uniform float &maxZ
)
{
// Find Z bounds
float laneMinZ = cameraFar;
float laneMaxZ = cameraNear;
for (uniform int32 y = tileStartY; y < tileEndY; ++y) {
foreach (x = tileStartX ... tileEndX) {
// Unproject depth buffer Z value into view space
float z = zBuffer[y * gBufferWidth + x];
float viewSpaceZ = cameraProj_43 / (z - cameraProj_33);
// Work out Z bounds for our samples
// Avoid considering skybox/background or otherwise invalid pixels
if ((viewSpaceZ < cameraFar) && (viewSpaceZ >= cameraNear)) {
laneMinZ = min(laneMinZ, viewSpaceZ);
laneMaxZ = max(laneMaxZ, viewSpaceZ);
}
}
}
minZ = reduce_min(laneMinZ);
maxZ = reduce_max(laneMaxZ);
}
export uniform int32
IntersectLightsWithTileMinMax(
uniform int32 tileStartX, uniform int32 tileEndX,
uniform int32 tileStartY, uniform int32 tileEndY,
// Tile data
uniform float minZ,
uniform float maxZ,
// G-buffer data
uniform int32 gBufferWidth, uniform int32 gBufferHeight,
// Camera data
uniform float cameraProj_11, uniform float cameraProj_22,
// Light Data
uniform int32 numLights,
uniform float light_positionView_x_array[],
uniform float light_positionView_y_array[],
uniform float light_positionView_z_array[],
uniform float light_attenuationEnd_array[],
// Output
uniform int32 tileLightIndices[]
)
{
uniform float gBufferScale_x = 0.5f * (float)gBufferWidth;
uniform float gBufferScale_y = 0.5f * (float)gBufferHeight;
uniform float frustumPlanes_xy[4] = {
-(cameraProj_11 * gBufferScale_x),
(cameraProj_11 * gBufferScale_x),
(cameraProj_22 * gBufferScale_y),
-(cameraProj_22 * gBufferScale_y) };
uniform float frustumPlanes_z[4] = {
tileEndX - gBufferScale_x,
-tileStartX + gBufferScale_x,
tileEndY - gBufferScale_y,
-tileStartY + gBufferScale_y };
for (uniform int i = 0; i < 4; ++i) {
uniform float norm = rsqrt(frustumPlanes_xy[i] * frustumPlanes_xy[i] +
frustumPlanes_z[i] * frustumPlanes_z[i]);
frustumPlanes_xy[i] *= norm;
frustumPlanes_z[i] *= norm;
}
uniform int32 tileNumLights = 0;
foreach (lightIndex = 0 ... numLights) {
float light_positionView_z = light_positionView_z_array[lightIndex];
float light_attenuationEnd = light_attenuationEnd_array[lightIndex];
float light_attenuationEndNeg = -light_attenuationEnd;
float d = light_positionView_z - minZ;
bool inFrustum = (d >= light_attenuationEndNeg);
d = maxZ - light_positionView_z;
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
// This seems better than cif(!inFrustum) ccontinue; here since we
// don't actually need to mask the rest of this function - this is
// just a greedy early-out. Could also structure all of this as
// nested if() statements, but this a bit easier to read
if (any(inFrustum)) {
float light_positionView_x = light_positionView_x_array[lightIndex];
float light_positionView_y = light_positionView_y_array[lightIndex];
d = light_positionView_z * frustumPlanes_z[0] +
light_positionView_x * frustumPlanes_xy[0];
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
d = light_positionView_z * frustumPlanes_z[1] +
light_positionView_x * frustumPlanes_xy[1];
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
d = light_positionView_z * frustumPlanes_z[2] +
light_positionView_y * frustumPlanes_xy[2];
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
d = light_positionView_z * frustumPlanes_z[3] +
light_positionView_y * frustumPlanes_xy[3];
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
// Pack and store intersecting lights
cif (inFrustum) {
tileNumLights += packed_store_active(&tileLightIndices[tileNumLights],
lightIndex);
}
}
}
return tileNumLights;
}
static uniform int32
IntersectLightsWithTile(
uniform int32 tileStartX, uniform int32 tileEndX,
uniform int32 tileStartY, uniform int32 tileEndY,
uniform int32 gBufferWidth, uniform int32 gBufferHeight,
// G-buffer data
uniform float zBuffer[],
// Camera data
uniform float cameraProj_11, uniform float cameraProj_22,
uniform float cameraProj_33, uniform float cameraProj_43,
uniform float cameraNear, uniform float cameraFar,
// Light Data
uniform int32 numLights,
uniform float light_positionView_x_array[],
uniform float light_positionView_y_array[],
uniform float light_positionView_z_array[],
uniform float light_attenuationEnd_array[],
// Output
uniform int32 tileLightIndices[]
)
{
uniform float minZ, maxZ;
ComputeZBounds(tileStartX, tileEndX, tileStartY, tileEndY,
zBuffer, gBufferWidth, cameraProj_33, cameraProj_43, cameraNear, cameraFar,
minZ, maxZ);
uniform int32 tileNumLights = IntersectLightsWithTileMinMax(
tileStartX, tileEndX, tileStartY, tileEndY, minZ, maxZ,
gBufferWidth, gBufferHeight, cameraProj_11, cameraProj_22,
MAX_LIGHTS, light_positionView_x_array, light_positionView_y_array,
light_positionView_z_array, light_attenuationEnd_array,
tileLightIndices);
return tileNumLights;
}
export void
ShadeTile(
uniform int32 tileStartX, uniform int32 tileEndX,
uniform int32 tileStartY, uniform int32 tileEndY,
uniform int32 gBufferWidth, uniform int32 gBufferHeight,
uniform InputDataArrays &inputData,
// Camera data
uniform float cameraProj_11, uniform float cameraProj_22,
uniform float cameraProj_33, uniform float cameraProj_43,
// Light list
uniform int32 tileLightIndices[],
uniform int32 tileNumLights,
// UI
uniform bool visualizeLightCount,
// Output
uniform unsigned int8 framebuffer_r[],
uniform unsigned int8 framebuffer_g[],
uniform unsigned int8 framebuffer_b[]
)
{
if (tileNumLights == 0 || visualizeLightCount) {
uniform unsigned int8 c = (unsigned int8)(min(tileNumLights << 2, 255));
for (uniform int32 y = tileStartY; y < tileEndY; ++y) {
foreach (x = tileStartX ... tileEndX) {
int32 framebufferIndex = (y * gBufferWidth + x);
framebuffer_r[framebufferIndex] = c;
framebuffer_g[framebufferIndex] = c;
framebuffer_b[framebufferIndex] = c;
}
}
} else {
uniform float twoOverGBufferWidth = 2.0f / gBufferWidth;
uniform float twoOverGBufferHeight = 2.0f / gBufferHeight;
for (uniform int32 y = tileStartY; y < tileEndY; ++y) {
uniform float positionScreen_y = -(((0.5f + y) * twoOverGBufferHeight) - 1.f);
foreach (x = tileStartX ... tileEndX) {
int32 gBufferOffset = y * gBufferWidth + x;
// Reconstruct position and (negative) view vector from G-buffer
float surface_positionView_x, surface_positionView_y, surface_positionView_z;
float Vneg_x, Vneg_y, Vneg_z;
float z = inputData.zBuffer[gBufferOffset];
// Compute screen/clip-space position
// NOTE: Mind DX11 viewport transform and pixel center!
float positionScreen_x = (0.5f + (float)(x)) *
twoOverGBufferWidth - 1.0f;
// Unproject depth buffer Z value into view space
surface_positionView_z = cameraProj_43 / (z - cameraProj_33);
surface_positionView_x = positionScreen_x * surface_positionView_z /
cameraProj_11;
surface_positionView_y = positionScreen_y * surface_positionView_z /
cameraProj_22;
// We actually end up with a vector pointing *at* the
// surface (i.e. the negative view vector)
normalize3(surface_positionView_x, surface_positionView_y,
surface_positionView_z, Vneg_x, Vneg_y, Vneg_z);
// Reconstruct normal from G-buffer
float surface_normal_x, surface_normal_y, surface_normal_z;
float normal_x = half_to_float(inputData.normalEncoded_x[gBufferOffset]);
float normal_y = half_to_float(inputData.normalEncoded_y[gBufferOffset]);
float f = (normal_x - normal_x * normal_x) + (normal_y - normal_y * normal_y);
float m = sqrt(4.0f * f - 1.0f);
surface_normal_x = m * (4.0f * normal_x - 2.0f);
surface_normal_y = m * (4.0f * normal_y - 2.0f);
surface_normal_z = 3.0f - 8.0f * f;
// Load other G-buffer parameters
float surface_specularAmount =
half_to_float(inputData.specularAmount[gBufferOffset]);
float surface_specularPower =
half_to_float(inputData.specularPower[gBufferOffset]);
float surface_albedo_x = Unorm8ToFloat32(inputData.albedo_x[gBufferOffset]);
float surface_albedo_y = Unorm8ToFloat32(inputData.albedo_y[gBufferOffset]);
float surface_albedo_z = Unorm8ToFloat32(inputData.albedo_z[gBufferOffset]);
float lit_x = 0.0f;
float lit_y = 0.0f;
float lit_z = 0.0f;
for (uniform int32 tileLightIndex = 0; tileLightIndex < tileNumLights;
++tileLightIndex) {
uniform int32 lightIndex = tileLightIndices[tileLightIndex];
// Gather light data relevant to initial culling
uniform float light_positionView_x =
inputData.lightPositionView_x[lightIndex];
uniform float light_positionView_y =
inputData.lightPositionView_y[lightIndex];
uniform float light_positionView_z =
inputData.lightPositionView_z[lightIndex];
uniform float light_attenuationEnd =
inputData.lightAttenuationEnd[lightIndex];
// Compute light vector
float L_x = light_positionView_x - surface_positionView_x;
float L_y = light_positionView_y - surface_positionView_y;
float L_z = light_positionView_z - surface_positionView_z;
float distanceToLight2 = dot3(L_x, L_y, L_z, L_x, L_y, L_z);
// Clip at end of attenuation
float light_attenutaionEnd2 = light_attenuationEnd * light_attenuationEnd;
cif (distanceToLight2 < light_attenutaionEnd2) {
float distanceToLight = sqrt(distanceToLight2);
// HLSL "rcp" is allowed to be fairly inaccurate
float distanceToLightRcp = rcp(distanceToLight);
L_x *= distanceToLightRcp;
L_y *= distanceToLightRcp;
L_z *= distanceToLightRcp;
// Start computing brdf
float NdotL = dot3(surface_normal_x, surface_normal_y,
surface_normal_z, L_x, L_y, L_z);
// Clip back facing
cif (NdotL > 0.0f) {
uniform float light_attenuationBegin =
inputData.lightAttenuationBegin[lightIndex];
// Light distance attenuation (linstep)
float lightRange = (light_attenuationEnd - light_attenuationBegin);
float falloffPosition = (light_attenuationEnd - distanceToLight);
float attenuation = min(falloffPosition / lightRange, 1.0f);
float H_x = (L_x - Vneg_x);
float H_y = (L_y - Vneg_y);
float H_z = (L_z - Vneg_z);
normalize3(H_x, H_y, H_z, H_x, H_y, H_z);
float NdotH = dot3(surface_normal_x, surface_normal_y,
surface_normal_z, H_x, H_y, H_z);
NdotH = max(NdotH, 0.0f);
float specular = pow(NdotH, surface_specularPower);
float specularNorm = (surface_specularPower + 2.0f) *
(1.0f / 8.0f);
float specularContrib = surface_specularAmount *
specularNorm * specular;
float k = attenuation * NdotL * (1.0f + specularContrib);
uniform float light_color_x = inputData.lightColor_x[lightIndex];
uniform float light_color_y = inputData.lightColor_y[lightIndex];
uniform float light_color_z = inputData.lightColor_z[lightIndex];
float lightContrib_x = surface_albedo_x * light_color_x;
float lightContrib_y = surface_albedo_y * light_color_y;
float lightContrib_z = surface_albedo_z * light_color_z;
lit_x += lightContrib_x * k;
lit_y += lightContrib_y * k;
lit_z += lightContrib_z * k;
}
}
}
// Gamma correct
// These pows are pretty slow right now, but we can do
// something faster if really necessary to squeeze every
// last bit of performance out of it
float gamma = 1.0 / 2.2f;
lit_x = pow(clamp(lit_x, 0.0f, 1.0f), gamma);
lit_y = pow(clamp(lit_y, 0.0f, 1.0f), gamma);
lit_z = pow(clamp(lit_z, 0.0f, 1.0f), gamma);
framebuffer_r[gBufferOffset] = Float32ToUnorm8(lit_x);
framebuffer_g[gBufferOffset] = Float32ToUnorm8(lit_y);
framebuffer_b[gBufferOffset] = Float32ToUnorm8(lit_z);
}
}
}
}
///////////////////////////////////////////////////////////////////////////
// Static decomposition
task void
RenderTile(uniform int num_groups_x, uniform int num_groups_y,
uniform InputHeader &inputHeader,
uniform InputDataArrays &inputData,
uniform int visualizeLightCount,
// Output
uniform unsigned int8 framebuffer_r[],
uniform unsigned int8 framebuffer_g[],
uniform unsigned int8 framebuffer_b[]) {
uniform int32 group_y = taskIndex / num_groups_x;
uniform int32 group_x = taskIndex % num_groups_x;
uniform int32 tile_start_x = group_x * MIN_TILE_WIDTH;
uniform int32 tile_start_y = group_y * MIN_TILE_HEIGHT;
uniform int32 tile_end_x = tile_start_x + MIN_TILE_WIDTH;
uniform int32 tile_end_y = tile_start_y + MIN_TILE_HEIGHT;
uniform int framebufferWidth = inputHeader.framebufferWidth;
uniform int framebufferHeight = inputHeader.framebufferHeight;
uniform float cameraProj_00 = inputHeader.cameraProj[0][0];
uniform float cameraProj_11 = inputHeader.cameraProj[1][1];
uniform float cameraProj_22 = inputHeader.cameraProj[2][2];
uniform float cameraProj_32 = inputHeader.cameraProj[3][2];
// Light intersection: figure out which lights illuminate this tile.
uniform int tileLightIndices[MAX_LIGHTS]; // Light list for the tile
uniform int numTileLights =
IntersectLightsWithTile(tile_start_x, tile_end_x,
tile_start_y, tile_end_y,
framebufferWidth, framebufferHeight,
inputData.zBuffer,
cameraProj_00, cameraProj_11,
cameraProj_22, cameraProj_32,
inputHeader.cameraNear, inputHeader.cameraFar,
MAX_LIGHTS,
inputData.lightPositionView_x,
inputData.lightPositionView_y,
inputData.lightPositionView_z,
inputData.lightAttenuationEnd,
tileLightIndices);
// And now shade the tile, using the lights in tileLightIndices
ShadeTile(tile_start_x, tile_end_x, tile_start_y, tile_end_y,
framebufferWidth, framebufferHeight, inputData,
cameraProj_00, cameraProj_11, cameraProj_22, cameraProj_32,
tileLightIndices, numTileLights, visualizeLightCount,
framebuffer_r, framebuffer_g, framebuffer_b);
}
export void
RenderStatic(uniform InputHeader &inputHeader,
uniform InputDataArrays &inputData,
uniform int visualizeLightCount,
// Output
uniform unsigned int8 framebuffer_r[],
uniform unsigned int8 framebuffer_g[],
uniform unsigned int8 framebuffer_b[]) {
uniform int num_groups_x = (inputHeader.framebufferWidth +
MIN_TILE_WIDTH - 1) / MIN_TILE_WIDTH;
uniform int num_groups_y = (inputHeader.framebufferHeight +
MIN_TILE_HEIGHT - 1) / MIN_TILE_HEIGHT;
uniform int num_groups = num_groups_x * num_groups_y;
// Launch a task to render each tile, each of which is MIN_TILE_WIDTH
// by MIN_TILE_HEIGHT pixels.
launch[num_groups] RenderTile(num_groups_x, num_groups_y,
inputHeader, inputData, visualizeLightCount,
framebuffer_r, framebuffer_g, framebuffer_b);
}
///////////////////////////////////////////////////////////////////////////
// Routines for dynamic decomposition path
// This computes the z min/max range for a whole row worth of tiles.
export void
ComputeZBoundsRow(
uniform int32 tileY,
uniform int32 tileWidth, uniform int32 tileHeight,
uniform int32 numTilesX, uniform int32 numTilesY,
// G-buffer data
uniform float zBuffer[],
uniform int32 gBufferWidth,
// Camera data
uniform float cameraProj_33, uniform float cameraProj_43,
uniform float cameraNear, uniform float cameraFar,
// Output
uniform float minZArray[],
uniform float maxZArray[]
)
{
for (uniform int32 tileX = 0; tileX < numTilesX; ++tileX) {
uniform float minZ, maxZ;
ComputeZBounds(
tileX * tileWidth, tileX * tileWidth + tileWidth,
tileY * tileHeight, tileY * tileHeight + tileHeight,
zBuffer, gBufferWidth,
cameraProj_33, cameraProj_43, cameraNear, cameraFar,
minZ, maxZ);
minZArray[tileX] = minZ;
maxZArray[tileX] = maxZ;
}
}
// Reclassifies the lights with respect to four sub-tiles when we refine a tile.
// numLights need not be a multiple of programCount here, but the input and output arrays
// should be able to handle programCount-sized load/stores.
export void
SplitTileMinMax(
uniform int32 tileMidX, uniform int32 tileMidY,
// Subtile data (00, 10, 01, 11)
uniform float subtileMinZ[],
uniform float subtileMaxZ[],
// G-buffer data
uniform int32 gBufferWidth, uniform int32 gBufferHeight,
// Camera data
uniform float cameraProj_11, uniform float cameraProj_22,
// Light Data
uniform int32 lightIndices[],
uniform int32 numLights,
uniform float light_positionView_x_array[],
uniform float light_positionView_y_array[],
uniform float light_positionView_z_array[],
uniform float light_attenuationEnd_array[],
// Outputs
uniform int32 subtileIndices[],
uniform int32 subtileIndicesPitch,
uniform int32 subtileNumLights[]
)
{
uniform float gBufferScale_x = 0.5f * (float)gBufferWidth;
uniform float gBufferScale_y = 0.5f * (float)gBufferHeight;
uniform float frustumPlanes_xy[2] = { -(cameraProj_11 * gBufferScale_x),
(cameraProj_22 * gBufferScale_y) };
uniform float frustumPlanes_z[2] = { tileMidX - gBufferScale_x,
tileMidY - gBufferScale_y };
// Normalize
uniform float norm[2] = { rsqrt(frustumPlanes_xy[0] * frustumPlanes_xy[0] +
frustumPlanes_z[0] * frustumPlanes_z[0]),
rsqrt(frustumPlanes_xy[1] * frustumPlanes_xy[1] +
frustumPlanes_z[1] * frustumPlanes_z[1]) };
frustumPlanes_xy[0] *= norm[0];
frustumPlanes_xy[1] *= norm[1];
frustumPlanes_z[0] *= norm[0];
frustumPlanes_z[1] *= norm[1];
// Initialize
uniform int32 subtileLightOffset[4];
subtileLightOffset[0] = 0 * subtileIndicesPitch;
subtileLightOffset[1] = 1 * subtileIndicesPitch;
subtileLightOffset[2] = 2 * subtileIndicesPitch;
subtileLightOffset[3] = 3 * subtileIndicesPitch;
foreach (i = 0 ... numLights) {
int32 lightIndex = lightIndices[i];
#pragma ignore warning(perf)
float light_positionView_x = light_positionView_x_array[lightIndex];
#pragma ignore warning(perf)
float light_positionView_y = light_positionView_y_array[lightIndex];
#pragma ignore warning(perf)
float light_positionView_z = light_positionView_z_array[lightIndex];
#pragma ignore warning(perf)
float light_attenuationEnd = light_attenuationEnd_array[lightIndex];
float light_attenuationEndNeg = -light_attenuationEnd;
// Test lights again subtile z bounds
bool inFrustum[4];
inFrustum[0] = (light_positionView_z - subtileMinZ[0] >= light_attenuationEndNeg) &&
(subtileMaxZ[0] - light_positionView_z >= light_attenuationEndNeg);
inFrustum[1] = (light_positionView_z - subtileMinZ[1] >= light_attenuationEndNeg) &&
(subtileMaxZ[1] - light_positionView_z >= light_attenuationEndNeg);
inFrustum[2] = (light_positionView_z - subtileMinZ[2] >= light_attenuationEndNeg) &&
(subtileMaxZ[2] - light_positionView_z >= light_attenuationEndNeg);
inFrustum[3] = (light_positionView_z - subtileMinZ[3] >= light_attenuationEndNeg) &&
(subtileMaxZ[3] - light_positionView_z >= light_attenuationEndNeg);
float dx = light_positionView_z * frustumPlanes_z[0] +
light_positionView_x * frustumPlanes_xy[0];
float dy = light_positionView_z * frustumPlanes_z[1] +
light_positionView_y * frustumPlanes_xy[1];
cif (abs(dx) > light_attenuationEnd) {
bool positiveX = dx > 0.0f;
inFrustum[0] = inFrustum[0] && positiveX; // 00 subtile
inFrustum[1] = inFrustum[1] && !positiveX; // 10 subtile
inFrustum[2] = inFrustum[2] && positiveX; // 01 subtile
inFrustum[3] = inFrustum[3] && !positiveX; // 11 subtile
}
cif (abs(dy) > light_attenuationEnd) {
bool positiveY = dy > 0.0f;
inFrustum[0] = inFrustum[0] && positiveY; // 00 subtile
inFrustum[1] = inFrustum[1] && positiveY; // 10 subtile
inFrustum[2] = inFrustum[2] && !positiveY; // 01 subtile
inFrustum[3] = inFrustum[3] && !positiveY; // 11 subtile
}
// Pack and store intersecting lights
// TODO: Experiment with a loop here instead
cif (inFrustum[0])
subtileLightOffset[0] +=
packed_store_active(&subtileIndices[subtileLightOffset[0]],
lightIndex);
cif (inFrustum[1])
subtileLightOffset[1] +=
packed_store_active(&subtileIndices[subtileLightOffset[1]],
lightIndex);
cif (inFrustum[2])
subtileLightOffset[2] +=
packed_store_active(&subtileIndices[subtileLightOffset[2]],
lightIndex);
cif (inFrustum[3])
subtileLightOffset[3] +=
packed_store_active(&subtileIndices[subtileLightOffset[3]],
lightIndex);
}
subtileNumLights[0] = subtileLightOffset[0] - 0 * subtileIndicesPitch;
subtileNumLights[1] = subtileLightOffset[1] - 1 * subtileIndicesPitch;
subtileNumLights[2] = subtileLightOffset[2] - 2 * subtileIndicesPitch;
subtileNumLights[3] = subtileLightOffset[3] - 3 * subtileIndicesPitch;
}
|