1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
/*
Copyright (c) 2012-2023, Intel Corporation
SPDX-License-Identifier: BSD-3-Clause
*/
/*===========================================================================*\
|* Includes
\*===========================================================================*/
#include "algorithm.h"
#include "debug.h"
#include "stdio.h"
/*===========================================================================*\
|* GMRES
\*===========================================================================*/
/* upper_triangular_right_solve:
* ----------------------------
* Given upper triangular matrix R and rhs vector b, solve for
* x. This "solve" ignores the rows, columns of R that are greater than the
* dimensions of x.
*/
void upper_triangular_right_solve(const DenseMatrix &R, const Vector &b, Vector &x) {
// Dimensionality check
ASSERT(R.rows() >= b.size());
ASSERT(R.cols() >= x.size());
ASSERT(b.size() >= x.size());
int max_row = x.size() - 1;
// first solve step:
x[max_row] = b[max_row] / R(max_row, max_row);
for (int row = max_row - 1; row >= 0; row--) {
double xi = b[row];
for (int col = max_row; col > row; col--)
xi -= x[col] * R(row, col);
x[row] = xi / R(row, row);
}
}
/* create_rotation (used in gmres):
* -------------------------------
* Construct a Givens rotation to zero out the lowest non-zero entry in a partially
* factored Hessenburg matrix. Note that the previous Givens rotations should be
* applied to this column before creating a new rotation.
*/
void create_rotation(const DenseMatrix &H, size_t col, Vector &Cn, Vector &Sn) {
double a = H(col, col);
double b = H(col + 1, col);
double r;
if (b == 0) {
Cn[col] = copysign(1, a);
Sn[col] = 0;
} else if (a == 0) {
Cn[col] = 0;
Sn[col] = copysign(1, b);
} else {
r = sqrt(a * a + b * b);
Sn[col] = -b / r;
Cn[col] = a / r;
}
}
/* Applies the 'col'th Givens rotation stored in vectors Sn and Cn to the 'col'th
* column of the DenseMatrix M. (Previous columns don't need the rotation applied b/c
* presumeably, the first col-1 columns are already upper triangular, and so their
* entries in the col and col+1 rows are 0.)
*/
void apply_rotation(DenseMatrix &H, size_t col, Vector &Cn, Vector &Sn) {
double c = Cn[col];
double s = Sn[col];
double tmp = c * H(col, col) - s * H(col + 1, col);
H(col + 1, col) = s * H(col, col) + c * H(col + 1, col);
H(col, col) = tmp;
}
/* Applies the 'col'th Givens rotation to the vector.
*/
void apply_rotation(Vector &v, size_t col, Vector &Cn, Vector &Sn) {
double a = v[col];
double b = v[col + 1];
double c = Cn[col];
double s = Sn[col];
v[col] = c * a - s * b;
v[col + 1] = s * a + c * b;
}
/* Applies the first 'col' Givens rotations to the newly-created column
* of H. (Leaves other columns alone.)
*/
void update_column(DenseMatrix &H, size_t col, Vector &Cn, Vector &Sn) {
for (size_t i = 0; i < col; i++) {
double c = Cn[i];
double s = Sn[i];
double t = c * H(i, col) - s * H(i + 1, col);
H(i + 1, col) = s * H(i, col) + c * H(i + 1, col);
H(i, col) = t;
}
}
/* After a new column has been added to the hessenburg matrix, factor it back into
* an upper-triangular matrix by:
* - applying the previous Givens rotations to the new column
* - computing the new Givens rotation to make the column upper triangluar
* - applying the new Givens rotation to the column, and
* - applying the new Givens rotation to the solution vector
*/
void update_qr_decomp(DenseMatrix &H, Vector &s, size_t col, Vector &Cn, Vector &Sn) {
update_column(H, col, Cn, Sn);
create_rotation(H, col, Cn, Sn);
apply_rotation(H, col, Cn, Sn);
apply_rotation(s, col, Cn, Sn);
}
void gmres(const Matrix &A, const Vector &b, Vector &x, int num_iters, double max_err) {
DEBUG_PRINT("gmres starting!\n");
x.zero();
ASSERT(A.rows() == A.cols());
DenseMatrix Qstar(num_iters + 1, A.rows());
DenseMatrix H(num_iters + 1, num_iters);
// arrays for storing parameters of givens rotations
Vector Sn(num_iters);
Vector Cn(num_iters);
// array for storing the rhs projected onto the hessenburg's column space
Vector G(num_iters + 1);
G.zero();
double beta = b.norm();
G[0] = beta;
// temp vector, stores Aqi
Vector w(A.rows());
w.copy(b);
w.normalize();
Qstar.set_row(0, w);
int iter = 0;
Vector temp(A.rows(), false);
double rel_err;
while (iter < num_iters) {
// w = Aqi
Qstar.row(iter, temp);
A.multiply(temp, w);
// construct ith column of H, i+1th row of Qstar:
for (int row = 0; row <= iter; row++) {
Qstar.row(row, temp);
H(row, iter) = temp.dot(w);
w.add_ax(-H(row, iter), temp);
}
H(iter + 1, iter) = w.norm();
w.divide(H(iter + 1, iter));
Qstar.set_row(iter + 1, w);
update_qr_decomp(H, G, iter, Cn, Sn);
rel_err = fabs(G[iter + 1] / beta);
if (rel_err < max_err)
break;
if (iter % 100 == 0)
DEBUG_PRINT("Iter %d: %f err\n", iter, rel_err);
iter++;
}
if (iter == num_iters) {
fprintf(stderr, "Error: gmres failed to converge in %d iterations (relative err: %f)\n", num_iters, rel_err);
exit(-1);
}
// We've reached an acceptable solution (?):
DEBUG_PRINT("gmres completed in %d iterations (rel. resid. %f, max %f)\n", iter, rel_err, max_err);
Vector y(iter + 1);
upper_triangular_right_solve(H, G, y);
for (int i = 0; i < iter + 1; i++) {
Qstar.row(i, temp);
x.add_ax(y[i], temp);
}
}
|