File: options_serial.cpp

package info (click to toggle)
ispc 1.28.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 97,620 kB
  • sloc: cpp: 77,067; python: 8,303; yacc: 3,337; lex: 1,126; ansic: 631; sh: 475; makefile: 17
file content (75 lines) | stat: -rw-r--r-- 2,053 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
/*
  Copyright (c) 2010-2023, Intel Corporation

  SPDX-License-Identifier: BSD-3-Clause
*/

#ifdef _MSC_VER
#define _CRT_SECURE_NO_WARNINGS
#define NOMINMAX
#pragma warning(disable : 4244)
#pragma warning(disable : 4305)
#endif

#include "options_defs.h"
#include <algorithm>
#include <math.h>

// Cumulative normal distribution function
static inline float CND(float X) {
    float L = fabsf(X);

    float k = 1.f / (1.f + 0.2316419f * L);
    float k2 = k * k;
    float k3 = k2 * k;
    float k4 = k2 * k2;
    float k5 = k3 * k2;

    const float invSqrt2Pi = 0.39894228040f;
    float w = (0.31938153f * k - 0.356563782f * k2 + 1.781477937f * k3 + -1.821255978f * k4 + 1.330274429f * k5);
    w *= invSqrt2Pi * expf(-L * L * .5f);

    if (X > 0.f)
        w = 1.f - w;
    return w;
}

void black_scholes_serial(float Sa[], float Xa[], float Ta[], float ra[], float va[], float result[], int count) {
    for (int i = 0; i < count; ++i) {
        float S = Sa[i], X = Xa[i];
        float T = Ta[i], r = ra[i];
        float v = va[i];

        float d1 = (logf(S / X) + (r + v * v * .5f) * T) / (v * sqrtf(T));
        float d2 = d1 - v * sqrtf(T);

        result[i] = S * CND(d1) - X * expf(-r * T) * CND(d2);
    }
}

void binomial_put_serial(float Sa[], float Xa[], float Ta[], float ra[], float va[], float result[], int count) {
    float V[BINOMIAL_NUM];

    for (int i = 0; i < count; ++i) {
        float S = Sa[i], X = Xa[i];
        float T = Ta[i], r = ra[i];
        float v = va[i];

        float dt = T / BINOMIAL_NUM;
        float u = expf(v * sqrtf(dt));
        float d = 1.f / u;
        float disc = expf(r * dt);
        float Pu = (disc - d) / (u - d);

        for (int j = 0; j < BINOMIAL_NUM; ++j) {
            float upow = powf(u, (float)(2 * j - BINOMIAL_NUM));
            V[j] = std::max(0.f, X - S * upow);
        }

        for (int j = BINOMIAL_NUM - 1; j >= 0; --j)
            for (int k = 0; k < j; ++k)
                V[k] = ((1 - Pu) * V[k] + Pu * V[k + 1]) / disc;

        result[i] = V[0];
    }
}