1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
/*
Copyright (c) 2011-2023, Intel Corporation
SPDX-License-Identifier: BSD-3-Clause
*/
#ifdef _MSC_VER
#define _CRT_SECURE_NO_WARNINGS
#define NOMINMAX
#pragma warning(disable : 4244)
#pragma warning(disable : 4305)
#endif
#include "../../common/timing.h"
#include "volume_ispc.h"
#include <algorithm>
#include <cstdlib>
#include <stdio.h>
using namespace ispc;
extern void volume_serial(float density[], int nVoxels[3], const float raster2camera[4][4],
const float camera2world[4][4], int width, int height, float image[]);
/* Write a PPM image file with the image */
static void writePPM(float *buf, int width, int height, const char *fn) {
FILE *fp = fopen(fn, "wb");
if (!fp) {
printf("Couldn't open a file '%s'\n", fn);
exit(1);
}
fprintf(fp, "P6\n");
fprintf(fp, "%d %d\n", width, height);
fprintf(fp, "255\n");
for (int i = 0; i < width * height; ++i) {
float v = buf[i] * 255.f;
if (v < 0.f)
v = 0.f;
else if (v > 255.f)
v = 255.f;
unsigned char c = (unsigned char)v;
for (int j = 0; j < 3; ++j)
fputc(c, fp);
}
fclose(fp);
printf("Wrote image file %s\n", fn);
}
/* Load image and viewing parameters from a camera data file.
FIXME: we should add support to be able to specify viewing parameters
in the program here directly. */
static void loadCamera(const char *fn, int *width, int *height, float raster2camera[4][4], float camera2world[4][4]) {
FILE *f = fopen(fn, "r");
if (!f) {
perror(fn);
exit(1);
}
if (fscanf(f, "%d %d", width, height) != 2) {
fprintf(stderr, "Unexpected end of file in camera file\n");
exit(1);
}
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
if (fscanf(f, "%f", &raster2camera[i][j]) != 1) {
fprintf(stderr, "Unexpected end of file in camera file\n");
exit(1);
}
}
}
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
if (fscanf(f, "%f", &camera2world[i][j]) != 1) {
fprintf(stderr, "Unexpected end of file in camera file\n");
exit(1);
}
}
}
fclose(f);
}
/* Load a volume density file. Expects the number of x, y, and z samples
as the first three values (as integer strings), then x*y*z
floating-point values (also as strings) to give the densities. */
static float *loadVolume(const char *fn, int n[3]) {
FILE *f = fopen(fn, "r");
if (!f) {
perror(fn);
exit(1);
}
if (fscanf(f, "%d %d %d", &n[0], &n[1], &n[2]) != 3) {
fprintf(stderr, "Couldn't find resolution at start of density file\n");
fclose(f);
exit(1);
}
int count = n[0] * n[1] * n[2];
float *v = new float[count];
for (int i = 0; i < count; ++i) {
if (fscanf(f, "%f", &v[i]) != 1) {
fprintf(stderr, "Unexpected end of file at %d'th density value\n", i);
fclose(f);
exit(1);
}
}
fclose(f);
return v;
}
int main(int argc, char *argv[]) {
static unsigned int test_iterations[] = {3, 7, 1};
if (argc < 3) {
fprintf(stderr, "usage: volume <camera.dat> <volume_density.vol> [ispc iterations] [tasks iterations] [serial "
"iterations]\n");
return 1;
}
if (argc == 6) {
for (int i = 0; i < 3; i++) {
test_iterations[i] = atoi(argv[3 + i]);
}
}
//
// Load viewing data and the volume density data
//
int width, height;
float raster2camera[4][4], camera2world[4][4];
loadCamera(argv[1], &width, &height, raster2camera, camera2world);
float *image = new float[width * height];
int n[3];
float *density = loadVolume(argv[2], n);
//
// Compute the image using the ispc implementation; report the minimum
// time of three runs.
//
double minISPC = 1e30;
for (unsigned int i = 0; i < test_iterations[0]; ++i) {
reset_and_start_timer();
volume_ispc(density, n, raster2camera, camera2world, width, height, image);
double dt = get_elapsed_mcycles();
printf("@time of ISPC run:\t\t\t[%.3f] million cycles\n", dt);
minISPC = std::min(minISPC, dt);
}
printf("[volume ispc 1 core]:\t\t[%.3f] million cycles\n", minISPC);
writePPM(image, width, height, "volume-ispc-1core.ppm");
// Clear out the buffer
for (int i = 0; i < width * height; ++i)
image[i] = 0.;
//
// Compute the image using the ispc implementation that also uses
// tasks; report the minimum time of three runs.
//
double minISPCtasks = 1e30;
for (unsigned int i = 0; i < test_iterations[1]; ++i) {
reset_and_start_timer();
volume_ispc_tasks(density, n, raster2camera, camera2world, width, height, image);
double dt = get_elapsed_mcycles();
printf("@time of ISPC + TASKS run:\t\t\t[%.3f] million cycles\n", dt);
minISPCtasks = std::min(minISPCtasks, dt);
}
printf("[volume ispc + tasks]:\t\t[%.3f] million cycles\n", minISPCtasks);
writePPM(image, width, height, "volume-ispc-tasks.ppm");
// Clear out the buffer
for (int i = 0; i < width * height; ++i)
image[i] = 0.;
//
// And run the serial implementation 3 times, again reporting the
// minimum time.
//
double minSerial = 1e30;
for (unsigned int i = 0; i < test_iterations[2]; ++i) {
reset_and_start_timer();
volume_serial(density, n, raster2camera, camera2world, width, height, image);
double dt = get_elapsed_mcycles();
printf("@time of serial run:\t\t\t[%.3f] million cycles\n", dt);
minSerial = std::min(minSerial, dt);
}
printf("[volume serial]:\t\t[%.3f] million cycles\n", minSerial);
writePPM(image, width, height, "volume-serial.ppm");
printf("\t\t\t\t(%.2fx speedup from ISPC, %.2fx speedup from ISPC + tasks)\n", minSerial / minISPC,
minSerial / minISPCtasks);
return 0;
}
|