1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
/*
Copyright (c) 2011-2023, Intel Corporation
SPDX-License-Identifier: BSD-3-Clause
*/
typedef float<3> float3;
struct Ray {
float3 origin, dir;
};
static void
generateRay(const uniform float raster2camera[4][4],
const uniform float camera2world[4][4],
float x, float y, Ray &ray) {
// transform raster coordinate (x, y, 0) to camera space
float camx = raster2camera[0][0] * x + raster2camera[0][1] * y + raster2camera[0][3];
float camy = raster2camera[1][0] * x + raster2camera[1][1] * y + raster2camera[1][3];
float camz = raster2camera[2][3];
float camw = raster2camera[3][3];
camx /= camw;
camy /= camw;
camz /= camw;
ray.dir.x = camera2world[0][0] * camx + camera2world[0][1] * camy + camera2world[0][2] * camz;
ray.dir.y = camera2world[1][0] * camx + camera2world[1][1] * camy + camera2world[1][2] * camz;
ray.dir.z = camera2world[2][0] * camx + camera2world[2][1] * camy + camera2world[2][2] * camz;
ray.origin.x = camera2world[0][3] / camera2world[3][3];
ray.origin.y = camera2world[1][3] / camera2world[3][3];
ray.origin.z = camera2world[2][3] / camera2world[3][3];
}
static inline bool
Inside(float3 p, float3 pMin, float3 pMax) {
return (p.x >= pMin.x && p.x <= pMax.x &&
p.y >= pMin.y && p.y <= pMax.y &&
p.z >= pMin.z && p.z <= pMax.z);
}
static bool
IntersectP(Ray ray, float3 pMin, float3 pMax, float &hit0, float &hit1) {
float t0 = -1e30, t1 = 1e30;
float3 tNear = (pMin - ray.origin) / ray.dir;
float3 tFar = (pMax - ray.origin) / ray.dir;
if (tNear.x > tFar.x) {
float tmp = tNear.x;
tNear.x = tFar.x;
tFar.x = tmp;
}
t0 = max(tNear.x, t0);
t1 = min(tFar.x, t1);
if (tNear.y > tFar.y) {
float tmp = tNear.y;
tNear.y = tFar.y;
tFar.y = tmp;
}
t0 = max(tNear.y, t0);
t1 = min(tFar.y, t1);
if (tNear.z > tFar.z) {
float tmp = tNear.z;
tNear.z = tFar.z;
tFar.z = tmp;
}
t0 = max(tNear.z, t0);
t1 = min(tFar.z, t1);
if (t0 <= t1) {
hit0 = t0;
hit1 = t1;
return true;
}
else
return false;
}
static inline float Lerp(float t, float a, float b) {
return (1.f - t) * a + t * b;
}
static inline float D(int x, int y, int z, uniform int nVoxels[3],
uniform float density[]) {
x = clamp(x, 0, nVoxels[0]-1);
y = clamp(y, 0, nVoxels[1]-1);
z = clamp(z, 0, nVoxels[2]-1);
#pragma ignore warning(perf)
return density[z*nVoxels[0]*nVoxels[1] + y*nVoxels[0] + x];
}
static inline float3 Offset(float3 p, float3 pMin, float3 pMax) {
return (p - pMin) / (pMax - pMin);
}
static float Density(float3 Pobj, float3 pMin, float3 pMax,
uniform float density[], uniform int nVoxels[3]) {
if (!Inside(Pobj, pMin, pMax))
return 0;
// Compute voxel coordinates and offsets for _Pobj_
float3 vox = Offset(Pobj, pMin, pMax);
vox.x = vox.x * nVoxels[0] - .5f;
vox.y = vox.y * nVoxels[1] - .5f;
vox.z = vox.z * nVoxels[2] - .5f;
int vx = (int)(vox.x), vy = (int)(vox.y), vz = (int)(vox.z);
float dx = vox.x - vx, dy = vox.y - vy, dz = vox.z - vz;
// Trilinearly interpolate density values to compute local density
float d00 = Lerp(dx, D(vx, vy, vz, nVoxels, density),
D(vx+1, vy, vz, nVoxels, density));
float d10 = Lerp(dx, D(vx, vy+1, vz, nVoxels, density),
D(vx+1, vy+1, vz, nVoxels, density));
float d01 = Lerp(dx, D(vx, vy, vz+1, nVoxels, density),
D(vx+1, vy, vz+1, nVoxels, density));
float d11 = Lerp(dx, D(vx, vy+1, vz+1, nVoxels, density),
D(vx+1, vy+1, vz+1, nVoxels, density));
float d0 = Lerp(dy, d00, d10);
float d1 = Lerp(dy, d01, d11);
return Lerp(dz, d0, d1);
}
/* Returns the transmittance between two points p0 and p1, in a volume
with extent (pMin,pMax) with transmittance coefficient sigma_t,
defined by nVoxels[3] voxels in each dimension in the given density
array. */
static float
transmittance(uniform float3 p0, float3 p1, uniform float3 pMin,
uniform float3 pMax, uniform float sigma_t,
uniform float density[], uniform int nVoxels[3]) {
float rayT0, rayT1;
Ray ray;
ray.origin = p1;
ray.dir = p0 - p1;
// Find the parametric t range along the ray that is inside the volume.
if (!IntersectP(ray, pMin, pMax, rayT0, rayT1))
return 1.;
rayT0 = max(rayT0, 0.f);
// Accumulate beam transmittance in tau
float tau = 0;
float rayLength = sqrt(ray.dir.x * ray.dir.x + ray.dir.y * ray.dir.y +
ray.dir.z * ray.dir.z);
uniform float stepDist = 0.2;
float stepT = stepDist / rayLength;
float t = rayT0;
float3 pos = ray.origin + ray.dir * rayT0;
float3 dirStep = ray.dir * stepT;
while (t < rayT1) {
tau += stepDist * sigma_t * Density(pos, pMin, pMax, density, nVoxels);
pos = pos + dirStep;
t += stepT;
}
return exp(-tau);
}
static inline float
distanceSquared(float3 a, float3 b) {
float3 d = a-b;
return d.x*d.x + d.y*d.y + d.z*d.z;
}
static float
raymarch(uniform float density[], uniform int nVoxels[3], Ray ray) {
float rayT0, rayT1;
uniform float3 pMin = {.3, -.2, .3}, pMax = {1.8, 2.3, 1.8};
uniform float3 lightPos = { -1, 4, 1.5 };
cif (!IntersectP(ray, pMin, pMax, rayT0, rayT1))
return 0.;
rayT0 = max(rayT0, 0.f);
// Parameters that define the volume scattering characteristics and
// sampling rate for raymarching
uniform float Le = .25; // Emission coefficient
uniform float sigma_a = 10; // Absorption coefficient
uniform float sigma_s = 10; // Scattering coefficient
uniform float stepDist = 0.025; // Ray step amount
uniform float lightIntensity = 40; // Light source intensity
float tau = 0.f; // accumulated beam transmittance
float L = 0; // radiance along the ray
float rayLength = sqrt(ray.dir.x * ray.dir.x + ray.dir.y * ray.dir.y +
ray.dir.z * ray.dir.z);
float stepT = stepDist / rayLength;
float t = rayT0;
float3 pos = ray.origin + ray.dir * rayT0;
float3 dirStep = ray.dir * stepT;
cwhile (t < rayT1) {
float d = Density(pos, pMin, pMax, density, nVoxels);
// terminate once attenuation is high
float atten = exp(-tau);
if (atten < .005)
break;
// direct lighting
float Li = lightIntensity / distanceSquared(lightPos, pos) *
transmittance(lightPos, pos, pMin, pMax, sigma_a + sigma_s,
density, nVoxels);
L += stepDist * atten * d * sigma_s * (Li + Le);
// update beam transmittance
tau += stepDist * (sigma_a + sigma_s) * d;
pos = pos + dirStep;
t += stepT;
}
// Gamma correction
return pow(L, 1.f / 2.2f);
}
/* Utility routine used by both the task-based and the single-core entrypoints.
Renders a tile of the image, covering [x0,x0) * [y0, y1), storing the
result into the image[] array.
*/
static void
volume_tile(uniform int x0, uniform int y0, uniform int x1,
uniform int y1, uniform float density[], uniform int nVoxels[3],
const uniform float raster2camera[4][4],
const uniform float camera2world[4][4],
uniform int width, uniform int height, uniform float image[]) {
// Work on 4x4=16 pixel big tiles of the image. This function thus
// implicitly assumes that both (x1-x0) and (y1-y0) are evenly divisble
// by 4.
for (uniform int y = y0; y < y1; y += 4) {
for (uniform int x = x0; x < x1; x += 4) {
foreach (o = 0 ... 16) {
// These two arrays encode the mapping from [0,15] to
// offsets within the 4x4 pixel block so that we render
// each pixel inside the block
const uniform int xoffsets[16] = { 0, 1, 0, 1, 2, 3, 2, 3,
0, 1, 0, 1, 2, 3, 2, 3 };
const uniform int yoffsets[16] = { 0, 0, 1, 1, 0, 0, 1, 1,
2, 2, 3, 3, 2, 2, 3, 3 };
// Figure out the pixel to render for this program instance
int xo = x + xoffsets[o], yo = y + yoffsets[o];
// Use viewing parameters to compute the corresponding ray
// for the pixel
Ray ray;
generateRay(raster2camera, camera2world, xo, yo, ray);
// And raymarch through the volume to compute the pixel's
// value
int offset = yo * width + xo;
#pragma ignore warning(perf)
image[offset] = raymarch(density, nVoxels, ray);
}
}
}
}
task void
volume_task(uniform float density[], uniform int nVoxels[3],
const uniform float raster2camera[4][4],
const uniform float camera2world[4][4],
uniform int width, uniform int height, uniform float image[]) {
uniform int dx = 8, dy = 8; // must match value in volume_ispc_tasks
uniform int xbuckets = (width + (dx-1)) / dx;
uniform int ybuckets = (height + (dy-1)) / dy;
uniform int x0 = (taskIndex % xbuckets) * dx;
uniform int y0 = (taskIndex / xbuckets) * dy;
uniform int x1 = x0 + dx, y1 = y0 + dy;
x1 = min(x1, width);
y1 = min(y1, height);
volume_tile(x0, y0, x1, y1, density, nVoxels, raster2camera,
camera2world, width, height, image);
}
export void
volume_ispc(uniform float density[], uniform int nVoxels[3],
const uniform float raster2camera[4][4],
const uniform float camera2world[4][4],
uniform int width, uniform int height, uniform float image[]) {
volume_tile(0, 0, width, height, density, nVoxels, raster2camera,
camera2world, width, height, image);
}
export void
volume_ispc_tasks(uniform float density[], uniform int nVoxels[3],
const uniform float raster2camera[4][4],
const uniform float camera2world[4][4],
uniform int width, uniform int height, uniform float image[]) {
// Launch tasks to work on (dx,dy)-sized tiles of the image
uniform int dx = 8, dy = 8;
uniform int nTasks = ((width+(dx-1))/dx) * ((height+(dy-1))/dy);
launch[nTasks] volume_task(density, nVoxels, raster2camera, camera2world,
width, height, image);
}
|