File: create_benchmark_comparison_table.py

package info (click to toggle)
ispc 1.28.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 97,620 kB
  • sloc: cpp: 77,067; python: 8,303; yacc: 3,337; lex: 1,126; ansic: 631; sh: 475; makefile: 17
file content (352 lines) | stat: -rwxr-xr-x 14,656 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#!/usr/bin/env python3
#
#  Copyright (c) 2025, Intel Corporation
#
#  SPDX-License-Identifier: BSD-3-Clause

import json
import os
import sys
import argparse
import csv
from collections import defaultdict, OrderedDict
import glob
import re

def parse_benchmark_file(filename):
    """Parse a benchmark JSON file and extract median timing results."""
    with open(filename, 'r') as f:
        data = json.load(f)

    benchmarks = {}
    for benchmark in data.get('benchmarks', []):
        name = benchmark.get('name', '')
        if name.endswith('_median'):
            # Extract the base name without _median suffix
            base_name = name[:-7]  # Remove '_median'
            cpu_time = benchmark.get('cpu_time', 0)
            benchmarks[base_name] = cpu_time

    return benchmarks

def extract_target_and_benchmark_from_filename(filename):
    """Extract target name and benchmark name from filename."""
    basename = os.path.basename(filename)
    # Pattern: target-base-benchmark.json or target-peak-benchmark.json
    match = re.match(r'(.+?)-(base|peak)-(.+)\.json$', basename)
    if match:
        target = match.group(1)
        variant = match.group(2)  # 'base' or 'peak'
        benchmark = match.group(3)
        return target, variant, benchmark
    return None, None, None

def find_json_files(directory='.'):
    """Find all benchmark JSON files in the directory."""
    pattern = os.path.join(directory, '*-{base,peak}-*.json')
    files = []
    for suffix in ['base', 'peak']:
        pattern = os.path.join(directory, f'*-{suffix}-*.json')
        files.extend(glob.glob(pattern))
    return files

def calculate_improvement(base_time, peak_time):
    """Calculate performance improvement percentage.

    Returns negative value if peak is faster (improvement),
    positive value if peak is slower (regression).
    """
    if base_time == 0:
        return 0
    return ((peak_time - base_time) / base_time) * 100

def format_percentage(value, threshold=None, use_colors=True, precision=1):
    """Format percentage value for display with optional color highlighting."""
    if value == 0:
        formatted = f"0.{'0' * precision}%"
    else:
        formatted = f"{value:+.{precision}f}%"

    # Add color highlighting if threshold is specified and colors are enabled
    if threshold is not None and use_colors and abs(value) > threshold:
        if value < 0:  # Improvement (faster)
            return f"\033[32m{formatted}\033[0m"  # Green
        else:  # Regression (slower)
            return f"\033[31m{formatted}\033[0m"  # Red

    return formatted

def print_table(comparison_data, targets, tests, output_format='table', threshold=None, precision=1):
    """Print comparison table in specified format."""

    if output_format == 'csv':
        print_csv_table(comparison_data, targets, tests, threshold, precision)
    elif output_format == 'markdown':
        print_markdown_table(comparison_data, targets, tests, threshold, precision)
    else:
        print_ascii_table(comparison_data, targets, tests, threshold, precision)

def print_ascii_table(comparison_data, targets, tests, threshold=None, precision=1):
    """Print ASCII table to stdout."""
    # Calculate column widths
    test_col_width = max(len(test) for test in tests) if tests else 20
    target_col_width = 12

    # Header
    header = f"{'Test':<{test_col_width}}"
    for target in targets:
        header += f" | {target:>{target_col_width}}"
    print(header)

    # Separator
    separator = "-" * test_col_width
    for target in targets:
        separator += " | " + "-" * target_col_width
    print(separator)

    # Data rows
    for test in tests:
        row = f"{test:<{test_col_width}}"
        for target in targets:
            value = comparison_data.get(target, {}).get(test, 0)
            # Get the formatted value with colors
            formatted_value = format_percentage(value, threshold, use_colors=True, precision=precision)
            # Get the plain value for width calculation
            plain_value = format_percentage(value, threshold=None, use_colors=False, precision=precision)

            # Calculate padding needed for proper alignment
            padding = target_col_width - len(plain_value)
            if padding > 0:
                row += f" | {' ' * padding}{formatted_value}"
            else:
                row += f" | {formatted_value}"
        print(row)

def print_csv_table(comparison_data, targets, tests, threshold=None, precision=1):
    """Print CSV table to stdout."""
    writer = csv.writer(sys.stdout)

    # Header
    header = ['Test'] + targets
    writer.writerow(header)

    # Data rows
    for test in tests:
        row = [test]
        for target in targets:
            value = comparison_data.get(target, {}).get(test, 0)
            # CSV format doesn't support colors, so just output raw values
            row.append(f"{value:.{precision}f}")
        writer.writerow(row)

def print_markdown_table(comparison_data, targets, tests, threshold=None, precision=1):
    """Print Markdown table to stdout."""
    # Header
    header = "| Test |"
    for target in targets:
        header += f" {target} |"
    print(header)

    # Separator
    separator = "|------|"
    for target in targets:
        separator += "------|"
    print(separator)

    # Data rows
    for test in tests:
        row = f"| {test} |"
        for target in targets:
            value = comparison_data.get(target, {}).get(test, 0)
            # Markdown doesn't support ANSI colors, so disable coloring
            formatted_value = format_percentage(value, threshold, use_colors=False, precision=precision)
            row += f" {formatted_value} |"
        print(row)

def save_to_file(comparison_data, targets, tests, filename, output_format, threshold=None, precision=1):
    """Save table to file."""
    original_stdout = sys.stdout
    try:
        with open(filename, 'w') as f:
            sys.stdout = f
            # Disable colors when saving to file
            print_table(comparison_data, targets, tests, output_format, threshold=None, precision=precision)
    finally:
        sys.stdout = original_stdout

def sort_targets_by_width(targets):
    """Sort targets by width (x4, x8, x16, x32, x64), keeping other targets alphabetically sorted."""
    width_order = {'x4': 1, 'x8': 2, 'x16': 3, 'x32': 4, 'x64': 5}

    def sort_key(target):
        # Extract width from target name (e.g., avx512skx-x16 -> x16)
        match = re.search(r'x(\d+)$', target)
        if match:
            width_num = int(match.group(1))
            width_str = f"x{width_num}"
            if width_str in width_order:
                # Sort by width order, then by target prefix for stability
                target_prefix = target.rsplit('-x', 1)[0]
                return (0, width_order[width_str], target_prefix)
        return (1, target)  # 1 for non-width targets, sort alphabetically

    return sorted(targets, key=sort_key)

def sort_tests_by_pattern(tests, sort_pattern):
    """Sort tests based on custom regexp pattern order."""
    if not sort_pattern:
        return sorted(tests)

    # Split the sort pattern into individual regexp patterns
    patterns = [p.strip() for p in sort_pattern.split('|')]

    # Compile regexp patterns
    compiled_patterns = []
    for pattern in patterns:
        try:
            compiled_patterns.append(re.compile(pattern))
        except re.error as e:
            print(f"Warning: Invalid regexp pattern '{pattern}': {e}", file=sys.stderr)
            continue

    def sort_key(test):
        # Find the first pattern that matches the test name
        for i, pattern in enumerate(compiled_patterns):
            if pattern.search(test):
                return (i, test)  # Primary sort by pattern order, secondary by test name
        # If no pattern matches, put it at the end
        return (len(compiled_patterns), test)

    return sorted(tests, key=sort_key)

def main():
    parser = argparse.ArgumentParser(
        description='Create benchmark comparison table from JSON files',
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Examples:
  create_benchmark_comparison_table.py                              # Create table from all JSON files
  create_benchmark_comparison_table.py --format csv                 # Output as CSV
  create_benchmark_comparison_table.py --format markdown            # Output as Markdown
  create_benchmark_comparison_table.py --output results.csv --format csv  # Save to CSV file
  create_benchmark_comparison_table.py --benchmark 13_rotate        # Only process 13_rotate benchmark
  create_benchmark_comparison_table.py --tests ".*1048576.*"        # Only show tests matching regexp (e.g., size 1048576)
  create_benchmark_comparison_table.py --tests ".*256.*" --format markdown # Show tests with 256 in name in markdown format
  create_benchmark_comparison_table.py --targets ".*skx.*"          # Only show targets matching regexp (e.g., skx targets)
  create_benchmark_comparison_table.py --threshold 5.0              # Highlight results with absolute value > 5.0 percent
  create_benchmark_comparison_table.py --precision 3                # Show 3 decimal places instead of default 1
  create_benchmark_comparison_table.py --sort "int8|int16|int32|int64|float|double" # Custom sort order using regexp patterns
        """
    )

    parser.add_argument('--format', choices=['table', 'csv', 'markdown'],
                       default='table', help='Output format (default: table)')
    parser.add_argument('--output', help='Output filename (default: stdout)')
    parser.add_argument('--benchmark', help='Filter by specific benchmark name')
    parser.add_argument('--tests', help='Filter tests by regexp pattern matching test names (e.g., ".*1048576.*")')
    parser.add_argument('--targets', help='Filter targets by regexp pattern (e.g., ".*skx.*")')
    parser.add_argument('--threshold', type=float, help='Highlight results with absolute value above this threshold (e.g., 5.0 for 5%%)')
    parser.add_argument('--sort', help='Custom sort order for test names using pipe-separated regexp patterns (e.g., "int8|int16|int32|int64|float|double")')
    parser.add_argument('--precision', type=int, default=1, help='Number of decimal places for percentage values (default: 1)')
    parser.add_argument('--directory', default='.', help='Directory to search for JSON files')

    args = parser.parse_args()

    # Find JSON files
    json_files = find_json_files(args.directory)
    if not json_files:
        print("Error: No benchmark JSON files found matching pattern '*-{base,peak}-*.json'", file=sys.stderr)
        sys.exit(1)

    # Group files by target and benchmark
    file_groups = defaultdict(lambda: defaultdict(dict))

    # Compile target regexp if provided
    target_pattern = None
    if args.targets:
        try:
            target_pattern = re.compile(args.targets)
        except re.error as e:
            print(f"Error: Invalid regexp pattern '{args.targets}': {e}", file=sys.stderr)
            sys.exit(1)

    for filename in json_files:
        target, variant, benchmark = extract_target_and_benchmark_from_filename(filename)
        if target and variant and benchmark:
            # Filter by benchmark if specified
            if args.benchmark and benchmark != args.benchmark:
                continue
            # Filter by target pattern if specified
            if target_pattern and not target_pattern.search(target):
                continue
            file_groups[target][benchmark][variant] = filename

    if not file_groups:
        print("Error: No valid target pairs found", file=sys.stderr)
        sys.exit(1)

    # Process each target-benchmark combination
    comparison_data = defaultdict(dict)  # comparison_data[target][test] = improvement_percentage
    all_tests = set()
    all_targets = set()

    for target, benchmarks in file_groups.items():
        for benchmark, variants in benchmarks.items():
            if 'base' not in variants or 'peak' not in variants:
                print(f"Warning: Missing base or peak variant for {target}-{benchmark}", file=sys.stderr)
                continue

            try:
                base_data = parse_benchmark_file(variants['base'])
                peak_data = parse_benchmark_file(variants['peak'])

                # Compare each test
                all_tests_in_benchmark = set(base_data.keys()) | set(peak_data.keys())
                for test in all_tests_in_benchmark:
                    # Filter by test name pattern if specified
                    if args.tests:
                        try:
                            test_pattern = re.compile(args.tests)
                            if not test_pattern.search(test):
                                continue
                        except re.error as e:
                            print(f"Error: Invalid regexp pattern '{args.tests}': {e}", file=sys.stderr)
                            sys.exit(1)

                    base_time = base_data.get(test, 0)
                    peak_time = peak_data.get(test, 0)

                    if base_time > 0 and peak_time > 0:
                        improvement = calculate_improvement(base_time, peak_time)
                        comparison_data[target][test] = improvement
                        all_tests.add(test)
                        all_targets.add(target)

            except Exception as e:
                print(f"Error processing {target}-{benchmark}: {e}", file=sys.stderr)
                continue

    if not all_tests:
        print("Error: No valid benchmark data found", file=sys.stderr)
        sys.exit(1)

    # Sort targets by width and tests for consistent output
    targets = sort_targets_by_width(all_targets)
    tests = sort_tests_by_pattern(all_tests, args.sort)

    # Print summary
    print(f"# Benchmark Comparison Results", file=sys.stderr)
    print(f"# Found {len(targets)} targets and {len(tests)} tests", file=sys.stderr)
    print(f"# Negative values indicate peak is faster than base (improvement)", file=sys.stderr)
    print(f"# Positive values indicate peak is slower than base (regression)", file=sys.stderr)
    print("", file=sys.stderr)

    # Output results
    if args.output:
        save_to_file(comparison_data, targets, tests, args.output, args.format, args.threshold, args.precision)
        print(f"Results saved to {args.output}", file=sys.stderr)
    else:
        print_table(comparison_data, targets, tests, args.format, args.threshold, args.precision)

if __name__ == '__main__':
    main()