File: float_literals_value.ispc

package info (click to toggle)
ispc 1.28.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 97,620 kB
  • sloc: cpp: 77,067; python: 8,303; yacc: 3,337; lex: 1,126; ansic: 631; sh: 475; makefile: 17
file content (284 lines) | stat: -rw-r--r-- 14,160 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
//; RUN: %{ispc} %s --target=host --emit-asm -O0 --nostdlib -o - | FileCheck %s

// Formats (sign-exponent-matissa)
// float16: 1-5-10  / exponent range [-14, 15]
// float:   1-8-23  / exponent range [-126, 127]
// double:  1-11-52 / exponent range [-1022, 1023]

// Biased exponent (w bits):
// - integers between 1 and 2^w-2 - normal numbers;
// - 0 is reserved for +/-0 and subnormals;
// - 2^w-1 is reserved for +/-inf and NaNs;

// Infinity is represented by the largest biased exponent allowed by the format and a mantissa of zero.

// Test 3 types of literals:
// - decimal
// - scientific
// - hexadecimal
// for 3 floating point types:
// - float16
// - float
// - double

// Also, as an exception from general rule "Fortran double" format is accepted:
// - scientific format with "d" or "D" used instead of "e" is treated as double.

// Use f/F, f16/F16, d/D, e/E, p/P, and 0x/0X  in different combinations to cover more cases in lexer.

// A testing methodology remark: we check assembler output, as it prints values
// in binary representation, which is easy to verify.
// While LLVM IR prints floating point values with random beautification - i.e.
// depending on the value it may print scientific or binary form. In the binary
// form it prints "double" representation for both "float" and "double".


////////////////////////////////////////////////////////////////////////////////
// float16
////////////////////////////////////////////////////////////////////////////////

// smallest positive subnormal number (0-00000-0000000001)
// CHECK-LABEL: h1_v1:
// CHECK-COUNT-3: 0x0001
uniform float16 h1_v1 = 0.000000059604645f16;
uniform float16 h1_v2 = 5.9604645e-8f16;
uniform float16 h1_v3 = 0x1p-24f16;
// largest positive subnormal number  (0-00000-1111111111)
// CHECK-LABEL: h2_v1:
// CHECK-COUNT-3: 0x03ff
uniform float16 h2_v1 = 0.000060975552F16;
uniform float16 h2_v2 = 6.0975552e-5F16;
uniform float16 h2_v3 = 0x0.ffcp-14F16;
// smallest positive normal number    (0-00001-0000000000)
// CHECK-LABEL: h3_v1:
// CHECK-COUNT-3: 0x0400
uniform float16 h3_v1 = 0.00006103515625f16;
uniform float16 h3_v2 = 6.103515625E-5f16;
uniform float16 h3_v3 = 0x1P-14f16;
// largest positive normal number     (0-11110-1111111111)
// CHECK-LABEL: h4_v1:
// CHECK-COUNT-3: 0x7bff
uniform float16 h4_v1 = 65504.F16;
uniform float16 h4_v2 = 6.5504e4F16;
uniform float16 h4_v3 = 0X1.ffcp+15F16;
// nearest value to 1/3
// CHECK-LABEL: h5_v1:
// CHECK-COUNT-3: 0x3555
uniform float16 h5_v1 = 0.33325195f16;
uniform float16 h5_v2 = 0.33325195e+0f16;
uniform float16 h5_v3 = 0x1.554p-2f16;
// largest number less than one
// CHECK-LABEL: h6_v1:
// CHECK-COUNT-3: 0x3bff
uniform float16 h6_v1 = 0.99951172F16;
uniform float16 h6_v2 = 0.99951172E-0F16;
uniform float16 h6_v3 = 0x1.ffcP-1F16;
// one
// CHECK-LABEL: h7_v1:
// CHECK-COUNT-3: 0x3c00
uniform float16 h7_v1 = 1.0f16;
uniform float16 h7_v2 = 1.e+0f16;
uniform float16 h7_v3 = 0x1p+0f16;
// smallest number larger than one
// CHECK-LABEL: h8_v1:
// CHECK-COUNT-3: 0x3c01
uniform float16 h8_v1 = 1.00097656F16;
uniform float16 h8_v2 = 1.00097656e0F16;
uniform float16 h8_v3 = 0X1.004p0F16;
// +0
// CHECK-LABEL: h9_v1
// CHECK-COUNT-3: {{zerofill|0x0000}}
uniform float16 h9_v1 = 0.0f16;
uniform float16 h9_v2 = 0.0E+0f16;
uniform float16 h9_v3 = 0x0P0f16;
// -0
// CHECK-LABEL: h10_v1:
// CHECK-COUNT-3: 0x8000
uniform float16 h10_v1 = -0.0F16;
uniform float16 h10_v2 = -0.0e+0F16;
uniform float16 h10_v3 = -0x0p0F16;
// +Inf
// 65520 is the first to round to Inf
// 1.e+5 is some value larger than maximum representable.
// 0x1p16 is exact bit representation of Inf
// CHECK-LABEL: h11_v1:
// CHECK-COUNT-3: 0x7c00
uniform float16 h11_v1 = 65520.f16;
uniform float16 h11_v2 = 1.e+5f16;
uniform float16 h11_v3 = 0x1p16f16;
// -Inf
// CHECK-LABEL: h12_v1:
// CHECK-COUNT-3: 0xfc00
uniform float16 h12_v1 = -65520.F16;
uniform float16 h12_v2 = -1.E+5F16;
uniform float16 h12_v3 = -0X1P16F16;


////////////////////////////////////////////////////////////////////////////////
// float
////////////////////////////////////////////////////////////////////////////////

// smallest positive subnormal number (0-00000000-00000000000000000000001)
// CHECK-LABEL: f1_v1:
// CHECK-COUNT-3: 0x00000001
uniform float f1_v1 = 0.00000000000000000000000000000000000000000000140129846432481707092372958328991613128026194187651577175706828388979108268586060148663818836212158203125;
uniform float f1_v2 = 1.401298464324817e-45;
uniform float f1_v3 = 0x1p-149;
// largest positive subnormal number  (0-00000000-11111111111111111111111)
// CHECK-LABEL: f2_v1:
// CHECK-COUNT-3: 0x007fffff
uniform float f2_v1 = 0.00000000000000000000000000000000000001175494210692441075487029444849287348827052428745893333857174530571588870475618904265502351336181163787841796875f;
uniform float f2_v2 = 1.1754942106924411e-38f;
uniform float f2_v3 = 0x0.fffffep-126f;
// smallest positive normal number    (0-00000001-00000000000000000000000)
// CHECK-LABEL: f3_v1:
// CHECK-COUNT-3: 0x00800000
uniform float f3_v1 = 0.000000000000000000000000000000000000011754943508222875079687365372222456778186655567720875215087517062784172594547271728515625;
uniform float f3_v2 = 1.1754943508222875E-38;
uniform float f3_v3 = 0x1P-126;
// largest positive normal number     (0-11111110-11111111111111111111111)
// CHECK-LABEL: f4_v1:
// CHECK-COUNT-3: 0x7f7fffff
uniform float f4_v1 = 340282346638528859811704183484516925440.F;
uniform float f4_v2 = 3.4028234663852886e+38F;
uniform float f4_v3 = 0X1.fffffep+127F;
// nearest value to 1/3
// CHECK-LABEL: f5_v1:
// CHECK-COUNT-3: 0x3eaaaaaa
uniform float f5_v1 = 0.3333333134651184;
uniform float f5_v2 = 0.3333333134651184e+0;
uniform float f5_v3 = 0x1.555554p-2;
// largest number less than one
// CHECK-LABEL: f6_v1:
// CHECK-COUNT-3: 0x3f7fffff
uniform float f6_v1 = 0.9999999403953552f;
uniform float f6_v2 = 0.9999999403953552E-0f;
uniform float f6_v3 = 0x1.fffffeP-1f;
// one
// CHECK-LABEL: f7_v1:
// CHECK-COUNT-3: 0x3f800000
uniform float f7_v1 = 1.0;
uniform float f7_v2 = 1.e+0;
uniform float f7_v3 = 0x1p+0;
// smallest number larger than one
// CHECK-LABEL: f8_v1:
// CHECK-COUNT-3: 0x3f800001
uniform float f8_v1 = 1.0000001192092896F;
uniform float f8_v2 = 1.0000001192092896e0F;
uniform float f8_v3 = 0X1.000002p0F;
// +0
// CHECK-LABEL: f9_v1
// CHECK-COUNT-3: {{zerofill|0x00000000}}
uniform float f9_v1 = 0.0;
uniform float f9_v2 = 0.0E+0;
uniform float f9_v3 = 0x0P0;
// -0
// CHECK-LABEL: f10_v1:
// CHECK-COUNT-3: 0x80000000
uniform float f10_v1 = -0.0f;
uniform float f10_v2 = -0.0e+0f;
uniform float f10_v3 = -0x0p0f;
// +Inf
// CHECK-LABEL: f11_v1:
// CHECK-COUNT-3: 0x7f800000
uniform float f11_v1 = 340282356800000000000000000000000000000.;
uniform float f11_v2 = 1.e+39;
uniform float f11_v3 = 0x1p128;
// -Inf
// CHECK-LABEL: f12_v1:
// CHECK-COUNT-3: 0xff800000
uniform float f12_v1 = -340282356800000000000000000000000000000F;
uniform float f12_v2 = -1.E+39F;
uniform float f12_v3 = -0X1P128F;


////////////////////////////////////////////////////////////////////////////////
// double
////////////////////////////////////////////////////////////////////////////////

// smallest positive subnormal number
// CHECK-LABEL: d1_v1:
// CHECK-COUNT-3: 0x0000000000000001
uniform double d1_v1 = 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004940656458412465441765687928682213723650598026143247644255856825006755072702087518652998363616359923797965646954457177309266567103559397963987747960107818781263007131903114045278458171678489821036887186360569987307230500063874091535649843873124733972731696151400317153853980741262385655911710266585566867681870395603106249319452715914924553293054565444011274801297099995419319894090804165633245247571478690147267801593552386115501348035264934720193790268107107491703332226844753335720832431936092382893458368060106011506169809753078342277318329247904982524730776375927247874656084778203734469699533647017972677717585125660551199131504891101451037862738167250955837389733598993664809941164205702637090279242767544565229087538682506419718265533447265625d;
uniform double d1_v2 = 5e-324d;
uniform double d1_v3 = 5d-324;
// FIXME: this is parsed incorretly!!!
uniform double d1_v4 = 0x1p-1074d;
// largest positive subnormal number
// CHECK-LABEL: d2_v1:
// CHECK-COUNT-4: 0x000fffffffffffff
uniform double d2_v1 = 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000022250738585072008890245868760858598876504231122409594654935248025624400092282356951787758888037591552642309780950434312085877387158357291821993020294379224223559819827501242041788969571311791082261043971979604000454897391938079198936081525613113376149842043271751033627391549782731594143828136275113838604094249464942286316695429105080201815926642134996606517803095075913058719846423906068637102005108723282784678843631944515866135041223479014792369585208321597621066375401613736583044193603714778355306682834535634005074073040135602968046375918583163124224521599262546494300836851861719422417646455137135420132217031370496583210154654068035397417906022589503023501937519773030945763173210852507299305089761582519159720757232455434770912461317493580281734466552734375D;
uniform double d2_v2 = 2.225073858507201e-308D;
uniform double d2_v3 = 2.225073858507201D-308;
uniform double d2_v4 = 0x0.fffffffffffffp-1022D;
// smallest positive normal number
// CHECK-LABEL: d3_v1:
// CHECK-COUNT-4: 0x0010000000000000
uniform double d3_v1 = 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002225073858507201383090232717332404064219215980462331830553327416887204434813918195854283159012511020564067339731035811005152434161553460108856012385377718821130777993532002330479610147442583636071921565046942503734208375250806650616658158948720491179968591639648500635908770118304874799780887753749949451580451605050915399856582470818645113537935804992115981085766051992433352114352390148795699609591288891602992641511063466313393663477586513029371762047325631781485664350872122828637642044846811407613911477062801689853244110024161447421618567166150540154285084716752901903161322778896729707373123334086988983175067838846926092773977972858659654941091369095406136467568702398678315290680984617210924625396728515625d;
uniform double d3_v2 = 2.2250738585072014e-308d;
uniform double d3_v3 = 2.2250738585072014d-308;
uniform double d3_v4 = 0x1p-1022d;
// largest positive normal number
// CHECK-LABEL: d4_v1:
// CHECK-COUNT-4: 0x7fefffffffffffff
uniform double d4_v1 = 179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858368.D;
uniform double d4_v2 = 1.7976931348623157e+308D;
uniform double d4_v3 = 1.7976931348623157D+308;
uniform double d4_v4 = 0X1.fffffffffffffp+1023D;
// nearest value to 1/3
// CHECK-LABEL: d5_v1:
// CHECK-COUNT-4: 0x3fd5555555555555
uniform double d5_v1 = 0.3333333333333333d;
uniform double d5_v2 = 0.3333333333333333e0d;
uniform double d5_v3 = 0.3333333333333333d0;
uniform double d5_v4 = 0x1.5555555555555p-2d;

// largest number less than one
// CHECK-LABEL: d6_v1:
// CHECK-COUNT-4: 0x3fefffffffffffff
uniform double d6_v1 = 0.9999999999999999D;
uniform double d6_v2 = 0.9999999999999999e-0D;
uniform double d6_v3 = 0.9999999999999999D-0;
uniform double d6_v4 = 0x1.fffffffffffffp-1D;
// one
// CHECK-LABEL: d7_v1:
// CHECK-COUNT-4: 0x3ff0000000000000
uniform double d7_v1 = 1.d;
uniform double d7_v2 = 1.e+0d;
uniform double d7_v3 = 1.d+0;
uniform double d7_v4 = 0x1p0d;
// smallest number larger than one
// CHECK-LABEL: d8_v1:
// CHECK-COUNT-4: 0x3ff0000000000001
uniform double d8_v1 = 1.0000000000000002220446049250313080847263336181640625D;
uniform double d8_v2 = 1.0000000000000002E+0D;
uniform double d8_v3 = 1.0000000000000002D+0;
uniform double d8_v4 = 0X1.0000000000001p0D;
// +0
// CHECK-LABEL: d9_v1
// CHECK-COUNT-4: {{zerofill|0x0000000000000000}}
uniform double d9_v1 = 0.0d;
uniform double d9_v2 = 0.0e+0d;
uniform double d9_v3 = 0.0d+0;
uniform double d9_v4 = 0x0p0d;
// -0
// CHECK-LABEL: d10_v1:
// CHECK-COUNT-4: 0x8000000000000000
uniform double d10_v1 = -0.0D;
uniform double d10_v2 = -0.0e+0D;
uniform double d10_v3 = -0.0D+0;
uniform double d10_v4 = -0x0p0D;
// +Inf
// CHECK-LABEL: d11_v1:
// CHECK-COUNT-4: 0x7ff0000000000000
uniform double d11_v1 = 179769313486231590000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.d;
uniform double d11_v2 = 1.e+309d;
uniform double d11_v3 = 1.d+309;
uniform double d11_v4 = 0x1p1024d;
// -Inf
// CHECK-LABEL: d12_v1:
// CHECK-COUNT-4: 0xfff0000000000000
uniform double d12_v1 = -179769313486231590000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.D;
uniform double d12_v2 = -1.e+309D;
uniform double d12_v3 = -1.D+309;
uniform double d12_v4 = -0X1p1024D;