1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
//; RUN: %{ispc} %s --target=host --emit-asm -O0 --nostdlib -o - | FileCheck %s
// Formats (sign-exponent-matissa)
// float16: 1-5-10 / exponent range [-14, 15]
// float: 1-8-23 / exponent range [-126, 127]
// double: 1-11-52 / exponent range [-1022, 1023]
// Biased exponent (w bits):
// - integers between 1 and 2^w-2 - normal numbers;
// - 0 is reserved for +/-0 and subnormals;
// - 2^w-1 is reserved for +/-inf and NaNs;
// Infinity is represented by the largest biased exponent allowed by the format and a mantissa of zero.
// Test 3 types of literals:
// - decimal
// - scientific
// - hexadecimal
// for 3 floating point types:
// - float16
// - float
// - double
// Also, as an exception from general rule "Fortran double" format is accepted:
// - scientific format with "d" or "D" used instead of "e" is treated as double.
// Use f/F, f16/F16, d/D, e/E, p/P, and 0x/0X in different combinations to cover more cases in lexer.
// A testing methodology remark: we check assembler output, as it prints values
// in binary representation, which is easy to verify.
// While LLVM IR prints floating point values with random beautification - i.e.
// depending on the value it may print scientific or binary form. In the binary
// form it prints "double" representation for both "float" and "double".
////////////////////////////////////////////////////////////////////////////////
// float16
////////////////////////////////////////////////////////////////////////////////
// smallest positive subnormal number (0-00000-0000000001)
// CHECK-LABEL: h1_v1:
// CHECK-COUNT-3: 0x0001
uniform float16 h1_v1 = 0.000000059604645f16;
uniform float16 h1_v2 = 5.9604645e-8f16;
uniform float16 h1_v3 = 0x1p-24f16;
// largest positive subnormal number (0-00000-1111111111)
// CHECK-LABEL: h2_v1:
// CHECK-COUNT-3: 0x03ff
uniform float16 h2_v1 = 0.000060975552F16;
uniform float16 h2_v2 = 6.0975552e-5F16;
uniform float16 h2_v3 = 0x0.ffcp-14F16;
// smallest positive normal number (0-00001-0000000000)
// CHECK-LABEL: h3_v1:
// CHECK-COUNT-3: 0x0400
uniform float16 h3_v1 = 0.00006103515625f16;
uniform float16 h3_v2 = 6.103515625E-5f16;
uniform float16 h3_v3 = 0x1P-14f16;
// largest positive normal number (0-11110-1111111111)
// CHECK-LABEL: h4_v1:
// CHECK-COUNT-3: 0x7bff
uniform float16 h4_v1 = 65504.F16;
uniform float16 h4_v2 = 6.5504e4F16;
uniform float16 h4_v3 = 0X1.ffcp+15F16;
// nearest value to 1/3
// CHECK-LABEL: h5_v1:
// CHECK-COUNT-3: 0x3555
uniform float16 h5_v1 = 0.33325195f16;
uniform float16 h5_v2 = 0.33325195e+0f16;
uniform float16 h5_v3 = 0x1.554p-2f16;
// largest number less than one
// CHECK-LABEL: h6_v1:
// CHECK-COUNT-3: 0x3bff
uniform float16 h6_v1 = 0.99951172F16;
uniform float16 h6_v2 = 0.99951172E-0F16;
uniform float16 h6_v3 = 0x1.ffcP-1F16;
// one
// CHECK-LABEL: h7_v1:
// CHECK-COUNT-3: 0x3c00
uniform float16 h7_v1 = 1.0f16;
uniform float16 h7_v2 = 1.e+0f16;
uniform float16 h7_v3 = 0x1p+0f16;
// smallest number larger than one
// CHECK-LABEL: h8_v1:
// CHECK-COUNT-3: 0x3c01
uniform float16 h8_v1 = 1.00097656F16;
uniform float16 h8_v2 = 1.00097656e0F16;
uniform float16 h8_v3 = 0X1.004p0F16;
// +0
// CHECK-LABEL: h9_v1
// CHECK-COUNT-3: {{zerofill|0x0000}}
uniform float16 h9_v1 = 0.0f16;
uniform float16 h9_v2 = 0.0E+0f16;
uniform float16 h9_v3 = 0x0P0f16;
// -0
// CHECK-LABEL: h10_v1:
// CHECK-COUNT-3: 0x8000
uniform float16 h10_v1 = -0.0F16;
uniform float16 h10_v2 = -0.0e+0F16;
uniform float16 h10_v3 = -0x0p0F16;
// +Inf
// 65520 is the first to round to Inf
// 1.e+5 is some value larger than maximum representable.
// 0x1p16 is exact bit representation of Inf
// CHECK-LABEL: h11_v1:
// CHECK-COUNT-3: 0x7c00
uniform float16 h11_v1 = 65520.f16;
uniform float16 h11_v2 = 1.e+5f16;
uniform float16 h11_v3 = 0x1p16f16;
// -Inf
// CHECK-LABEL: h12_v1:
// CHECK-COUNT-3: 0xfc00
uniform float16 h12_v1 = -65520.F16;
uniform float16 h12_v2 = -1.E+5F16;
uniform float16 h12_v3 = -0X1P16F16;
////////////////////////////////////////////////////////////////////////////////
// float
////////////////////////////////////////////////////////////////////////////////
// smallest positive subnormal number (0-00000000-00000000000000000000001)
// CHECK-LABEL: f1_v1:
// CHECK-COUNT-3: 0x00000001
uniform float f1_v1 = 0.00000000000000000000000000000000000000000000140129846432481707092372958328991613128026194187651577175706828388979108268586060148663818836212158203125;
uniform float f1_v2 = 1.401298464324817e-45;
uniform float f1_v3 = 0x1p-149;
// largest positive subnormal number (0-00000000-11111111111111111111111)
// CHECK-LABEL: f2_v1:
// CHECK-COUNT-3: 0x007fffff
uniform float f2_v1 = 0.00000000000000000000000000000000000001175494210692441075487029444849287348827052428745893333857174530571588870475618904265502351336181163787841796875f;
uniform float f2_v2 = 1.1754942106924411e-38f;
uniform float f2_v3 = 0x0.fffffep-126f;
// smallest positive normal number (0-00000001-00000000000000000000000)
// CHECK-LABEL: f3_v1:
// CHECK-COUNT-3: 0x00800000
uniform float f3_v1 = 0.000000000000000000000000000000000000011754943508222875079687365372222456778186655567720875215087517062784172594547271728515625;
uniform float f3_v2 = 1.1754943508222875E-38;
uniform float f3_v3 = 0x1P-126;
// largest positive normal number (0-11111110-11111111111111111111111)
// CHECK-LABEL: f4_v1:
// CHECK-COUNT-3: 0x7f7fffff
uniform float f4_v1 = 340282346638528859811704183484516925440.F;
uniform float f4_v2 = 3.4028234663852886e+38F;
uniform float f4_v3 = 0X1.fffffep+127F;
// nearest value to 1/3
// CHECK-LABEL: f5_v1:
// CHECK-COUNT-3: 0x3eaaaaaa
uniform float f5_v1 = 0.3333333134651184;
uniform float f5_v2 = 0.3333333134651184e+0;
uniform float f5_v3 = 0x1.555554p-2;
// largest number less than one
// CHECK-LABEL: f6_v1:
// CHECK-COUNT-3: 0x3f7fffff
uniform float f6_v1 = 0.9999999403953552f;
uniform float f6_v2 = 0.9999999403953552E-0f;
uniform float f6_v3 = 0x1.fffffeP-1f;
// one
// CHECK-LABEL: f7_v1:
// CHECK-COUNT-3: 0x3f800000
uniform float f7_v1 = 1.0;
uniform float f7_v2 = 1.e+0;
uniform float f7_v3 = 0x1p+0;
// smallest number larger than one
// CHECK-LABEL: f8_v1:
// CHECK-COUNT-3: 0x3f800001
uniform float f8_v1 = 1.0000001192092896F;
uniform float f8_v2 = 1.0000001192092896e0F;
uniform float f8_v3 = 0X1.000002p0F;
// +0
// CHECK-LABEL: f9_v1
// CHECK-COUNT-3: {{zerofill|0x00000000}}
uniform float f9_v1 = 0.0;
uniform float f9_v2 = 0.0E+0;
uniform float f9_v3 = 0x0P0;
// -0
// CHECK-LABEL: f10_v1:
// CHECK-COUNT-3: 0x80000000
uniform float f10_v1 = -0.0f;
uniform float f10_v2 = -0.0e+0f;
uniform float f10_v3 = -0x0p0f;
// +Inf
// CHECK-LABEL: f11_v1:
// CHECK-COUNT-3: 0x7f800000
uniform float f11_v1 = 340282356800000000000000000000000000000.;
uniform float f11_v2 = 1.e+39;
uniform float f11_v3 = 0x1p128;
// -Inf
// CHECK-LABEL: f12_v1:
// CHECK-COUNT-3: 0xff800000
uniform float f12_v1 = -340282356800000000000000000000000000000F;
uniform float f12_v2 = -1.E+39F;
uniform float f12_v3 = -0X1P128F;
////////////////////////////////////////////////////////////////////////////////
// double
////////////////////////////////////////////////////////////////////////////////
// smallest positive subnormal number
// CHECK-LABEL: d1_v1:
// CHECK-COUNT-3: 0x0000000000000001
uniform double d1_v1 = 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004940656458412465441765687928682213723650598026143247644255856825006755072702087518652998363616359923797965646954457177309266567103559397963987747960107818781263007131903114045278458171678489821036887186360569987307230500063874091535649843873124733972731696151400317153853980741262385655911710266585566867681870395603106249319452715914924553293054565444011274801297099995419319894090804165633245247571478690147267801593552386115501348035264934720193790268107107491703332226844753335720832431936092382893458368060106011506169809753078342277318329247904982524730776375927247874656084778203734469699533647017972677717585125660551199131504891101451037862738167250955837389733598993664809941164205702637090279242767544565229087538682506419718265533447265625d;
uniform double d1_v2 = 5e-324d;
uniform double d1_v3 = 5d-324;
// FIXME: this is parsed incorretly!!!
uniform double d1_v4 = 0x1p-1074d;
// largest positive subnormal number
// CHECK-LABEL: d2_v1:
// CHECK-COUNT-4: 0x000fffffffffffff
uniform double d2_v1 = 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000022250738585072008890245868760858598876504231122409594654935248025624400092282356951787758888037591552642309780950434312085877387158357291821993020294379224223559819827501242041788969571311791082261043971979604000454897391938079198936081525613113376149842043271751033627391549782731594143828136275113838604094249464942286316695429105080201815926642134996606517803095075913058719846423906068637102005108723282784678843631944515866135041223479014792369585208321597621066375401613736583044193603714778355306682834535634005074073040135602968046375918583163124224521599262546494300836851861719422417646455137135420132217031370496583210154654068035397417906022589503023501937519773030945763173210852507299305089761582519159720757232455434770912461317493580281734466552734375D;
uniform double d2_v2 = 2.225073858507201e-308D;
uniform double d2_v3 = 2.225073858507201D-308;
uniform double d2_v4 = 0x0.fffffffffffffp-1022D;
// smallest positive normal number
// CHECK-LABEL: d3_v1:
// CHECK-COUNT-4: 0x0010000000000000
uniform double d3_v1 = 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002225073858507201383090232717332404064219215980462331830553327416887204434813918195854283159012511020564067339731035811005152434161553460108856012385377718821130777993532002330479610147442583636071921565046942503734208375250806650616658158948720491179968591639648500635908770118304874799780887753749949451580451605050915399856582470818645113537935804992115981085766051992433352114352390148795699609591288891602992641511063466313393663477586513029371762047325631781485664350872122828637642044846811407613911477062801689853244110024161447421618567166150540154285084716752901903161322778896729707373123334086988983175067838846926092773977972858659654941091369095406136467568702398678315290680984617210924625396728515625d;
uniform double d3_v2 = 2.2250738585072014e-308d;
uniform double d3_v3 = 2.2250738585072014d-308;
uniform double d3_v4 = 0x1p-1022d;
// largest positive normal number
// CHECK-LABEL: d4_v1:
// CHECK-COUNT-4: 0x7fefffffffffffff
uniform double d4_v1 = 179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858368.D;
uniform double d4_v2 = 1.7976931348623157e+308D;
uniform double d4_v3 = 1.7976931348623157D+308;
uniform double d4_v4 = 0X1.fffffffffffffp+1023D;
// nearest value to 1/3
// CHECK-LABEL: d5_v1:
// CHECK-COUNT-4: 0x3fd5555555555555
uniform double d5_v1 = 0.3333333333333333d;
uniform double d5_v2 = 0.3333333333333333e0d;
uniform double d5_v3 = 0.3333333333333333d0;
uniform double d5_v4 = 0x1.5555555555555p-2d;
// largest number less than one
// CHECK-LABEL: d6_v1:
// CHECK-COUNT-4: 0x3fefffffffffffff
uniform double d6_v1 = 0.9999999999999999D;
uniform double d6_v2 = 0.9999999999999999e-0D;
uniform double d6_v3 = 0.9999999999999999D-0;
uniform double d6_v4 = 0x1.fffffffffffffp-1D;
// one
// CHECK-LABEL: d7_v1:
// CHECK-COUNT-4: 0x3ff0000000000000
uniform double d7_v1 = 1.d;
uniform double d7_v2 = 1.e+0d;
uniform double d7_v3 = 1.d+0;
uniform double d7_v4 = 0x1p0d;
// smallest number larger than one
// CHECK-LABEL: d8_v1:
// CHECK-COUNT-4: 0x3ff0000000000001
uniform double d8_v1 = 1.0000000000000002220446049250313080847263336181640625D;
uniform double d8_v2 = 1.0000000000000002E+0D;
uniform double d8_v3 = 1.0000000000000002D+0;
uniform double d8_v4 = 0X1.0000000000001p0D;
// +0
// CHECK-LABEL: d9_v1
// CHECK-COUNT-4: {{zerofill|0x0000000000000000}}
uniform double d9_v1 = 0.0d;
uniform double d9_v2 = 0.0e+0d;
uniform double d9_v3 = 0.0d+0;
uniform double d9_v4 = 0x0p0d;
// -0
// CHECK-LABEL: d10_v1:
// CHECK-COUNT-4: 0x8000000000000000
uniform double d10_v1 = -0.0D;
uniform double d10_v2 = -0.0e+0D;
uniform double d10_v3 = -0.0D+0;
uniform double d10_v4 = -0x0p0D;
// +Inf
// CHECK-LABEL: d11_v1:
// CHECK-COUNT-4: 0x7ff0000000000000
uniform double d11_v1 = 179769313486231590000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.d;
uniform double d11_v2 = 1.e+309d;
uniform double d11_v3 = 1.d+309;
uniform double d11_v4 = 0x1p1024d;
// -Inf
// CHECK-LABEL: d12_v1:
// CHECK-COUNT-4: 0xfff0000000000000
uniform double d12_v1 = -179769313486231590000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.D;
uniform double d12_v2 = -1.e+309D;
uniform double d12_v3 = -1.D+309;
uniform double d12_v4 = -0X1p1024D;
|