1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
#ifndef GMMCLASSIFYIMAGEFILTER_TXX
#define GMMCLASSIFYIMAGEFILTER_TXX
#include "GMMClassifyImageFilter.h"
#include "itkImageRegionConstIterator.h"
#include "EMGaussianMixtures.h"
#include "ImageCollectionToImageFilter.h"
template <class TInputImage, class TInputVectorImage, class TOutputImage>
GMMClassifyImageFilter<TInputImage, TInputVectorImage, TOutputImage>
::GMMClassifyImageFilter()
{
m_MixtureModel = NULL;
}
template <class TInputImage, class TInputVectorImage, class TOutputImage>
GMMClassifyImageFilter<TInputImage, TInputVectorImage, TOutputImage>
::~GMMClassifyImageFilter()
{
}
template <class TInputImage, class TInputVectorImage, class TOutputImage>
void
GMMClassifyImageFilter<TInputImage, TInputVectorImage, TOutputImage>
::SetMixtureModel(GaussianMixtureModel *model)
{
m_MixtureModel = model;
this->Modified();
}
template <class TInputImage, class TInputVectorImage, class TOutputImage>
void
GMMClassifyImageFilter<TInputImage, TInputVectorImage, TOutputImage>
::AddScalarImage(InputImageType *image)
{
this->AddInput(image);
}
template <class TInputImage, class TInputVectorImage, class TOutputImage>
void
GMMClassifyImageFilter<TInputImage, TInputVectorImage, TOutputImage>
::AddVectorImage(InputVectorImageType *image)
{
this->AddInput(image);
}
template <class TInputImage, class TInputVectorImage, class TOutputImage>
void
GMMClassifyImageFilter<TInputImage, TInputVectorImage, TOutputImage>
::GenerateInputRequestedRegion()
{
itk::ImageSource<TOutputImage>::GenerateInputRequestedRegion();
for( itk::InputDataObjectIterator it( this ); !it.IsAtEnd(); it++ )
{
// Check whether the input is an image of the appropriate dimension
InputImageType *input = dynamic_cast< InputImageType * >( it.GetInput() );
InputVectorImageType *vecInput = dynamic_cast< InputVectorImageType * >( it.GetInput() );
if (input)
{
InputImageRegionType inputRegion;
this->CallCopyOutputRegionToInputRegion( inputRegion, this->GetOutput()->GetRequestedRegion() );
input->SetRequestedRegion(inputRegion);
}
else if(vecInput)
{
InputImageRegionType inputRegion;
this->CallCopyOutputRegionToInputRegion( inputRegion, this->GetOutput()->GetRequestedRegion() );
vecInput->SetRequestedRegion(inputRegion);
}
}
}
template <class TInputImage, class TInputVectorImage, class TOutputImage>
void
GMMClassifyImageFilter<TInputImage, TInputVectorImage, TOutputImage>
::PrintSelf(std::ostream &os, itk::Indent indent) const
{
os << indent << "GMMClassifyImageFilter" << std::endl;
}
template <class TInputImage, class TInputVectorImage, class TOutputImage>
void
GMMClassifyImageFilter<TInputImage, TInputVectorImage, TOutputImage>
::ThreadedGenerateData(const OutputImageRegionType &outputRegionForThread,
itk::ThreadIdType threadId)
{
// Get the number of inputs
assert(m_MixtureModel);
int n_input = this->GetNumberOfIndexedInputs();
OutputImagePointer outputPtr = this->GetOutput(0);
// Create a collection iterator
typedef ImageCollectionConstRegionIteratorWithIndex<
TInputImage, TInputVectorImage> CollectionIter;
typedef itk::ImageRegionIterator<TOutputImage> OutputIter;
OutputIter it_out(outputPtr, outputRegionForThread);
vnl_vector<double> x(m_MixtureModel->GetNumberOfComponents());
vnl_vector<double> x_scratch(m_MixtureModel->GetNumberOfComponents());
vnl_vector<double> z_scratch(m_MixtureModel->GetNumberOfComponents());
vnl_vector<double> log_pdf(m_MixtureModel->GetNumberOfGaussians());
vnl_vector<double> log_w(m_MixtureModel->GetNumberOfGaussians());
vnl_vector<double> w(m_MixtureModel->GetNumberOfGaussians());
vnl_vector<double> p(m_MixtureModel->GetNumberOfGaussians());
// Create a multiplier vector (1 for foreground, -1 for background)
vnl_vector<double> pfactor(m_MixtureModel->GetNumberOfGaussians());
for(int i = 0; i < m_MixtureModel->GetNumberOfGaussians(); i++)
{
pfactor[i] = m_MixtureModel->IsForeground(i) ? 1.0 : -1.0;
log_w[i] = log(m_MixtureModel->GetWeight(i));
w[i] = m_MixtureModel->GetWeight(i);
}
// Configure the input collection iterator
CollectionIter cit(outputRegionForThread);
for( itk::InputDataObjectIterator it( this ); !it.IsAtEnd(); it++ )
cit.AddImage(it.GetInput());
// Get the number of components
int nComp = cit.GetTotalComponents();
// Iterate through all the voxels
while ( !it_out.IsAtEnd() )
{
for(int i = 0; i < nComp; i++)
{
x[i] = cit.Value(i);
}
// Evaluate the posterior probability robustly
for(int k = 0; k < m_MixtureModel->GetNumberOfGaussians(); k++)
{
log_pdf[k] = m_MixtureModel->EvaluateLogPDF(k, x, x_scratch);
}
// Evaluate the GMM for each of the clusters
double pdiff = 0;
for(int k = 0; k < m_MixtureModel->GetNumberOfGaussians(); k++)
{
p[k] = EMGaussianMixtures::ComputePosterior(
m_MixtureModel->GetNumberOfGaussians(),
log_pdf.data_block(), w.data_block(), log_w.data_block(), k);
pdiff += p[k] * pfactor[k];
}
// Store the value
it_out.Set((OutputPixelType)(pdiff * 0x7fff));
++it_out;
++cit;
}
}
#endif
|