1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
/*=========================================================================
Program: ITK-SNAP
Module: $RCSfile: SNAPImageData.cxx,v $
Language: C++
Date: $Date: 2011/04/18 17:35:30 $
Version: $Revision: 1.11 $
Copyright (c) 2007 Paul A. Yushkevich
This file is part of ITK-SNAP
ITK-SNAP is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
-----
Copyright (c) 2003 Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#include "PreprocessingFilterConfigTraits.h"
#include "SlicePreviewFilterWrapper.h"
#include "SlicePreviewFilterWrapper.txx"
#include "GMMClassifyImageFilter.h"
#include "GMMClassifyImageFilter.txx"
#include "RandomForestClassifyImageFilter.h"
#include "RandomForestClassifyImageFilter.txx"
#include "IRISApplication.h"
#include "UnsupervisedClustering.h"
#include "RFClassificationEngine.h"
#include "Rebroadcaster.h"
void
SmoothBinaryThresholdFilterConfigTraits
::AttachInputs(SNAPImageData *sid, FilterType *filter, int channel)
{
// The work of attaching inputs to the filter is done in SetActiveScalarLayer,
// so this method does nothing.
}
ScalarImageWrapperBase *
SmoothBinaryThresholdFilterConfigTraits
::GetDefaultScalarLayer(SNAPImageData *sid)
{
return sid->GetMain()->GetDefaultScalarRepresentation();
}
void
SmoothBinaryThresholdFilterConfigTraits
::DetachInputs(FilterType *filter)
{
filter->SetInput(NULL);
filter->SetInputImageMinimum(0);
filter->SetInputImageMaximum(0);
}
void
SmoothBinaryThresholdFilterConfigTraits
::SetParameters(ParameterType *p, FilterType *filter, int channel)
{
// Parameters are associated with the layer, so there is nothing to do here
}
void SmoothBinaryThresholdFilterConfigTraits::SetActiveScalarLayer(
ScalarImageWrapperBase *layer, SmoothBinaryThresholdFilterConfigTraits::FilterType *filter, int channel)
{
ScalarImageWrapperBase::CommonFormatImageType *image =
layer->GetCommonFormatImage(
static_cast<ScalarImageWrapperBase::ExportChannel>(channel));
filter->SetInput(image);
filter->SetInputImageMinimum(layer->GetImageMinAsDouble());
filter->SetInputImageMaximum(layer->GetImageMaxAsDouble());
// Check if we have threshold parameters already associated with this layer
SmartPtr<ThresholdSettings> ts =
dynamic_cast<ThresholdSettings *>(layer->GetUserData("ThresholdSettings"));
if(!ts->GetInitialized())
{
// Associate threshold settings with this layer
ts->InitializeToDefaultForImage(layer);
}
// Propagate modified events from the threshold settings object as events
// from ImageWrapper. These events are further broadcast by GenericImageData
// and IRISApplication, making it easy for GUI classes to respond to them
Rebroadcaster::Rebroadcast(ts, itk::ModifiedEvent(),
layer, WrapperProcessingSettingsChangeEvent());
// Pass the parameters to the filter
filter->SetParameters(ts);
}
void
EdgePreprocessingFilterConfigTraits
::AttachInputs(SNAPImageData *sid, FilterType *filter, int channel)
{
ScalarImageWrapperBase *scalar = sid->GetMain()->GetDefaultScalarRepresentation();
ScalarImageWrapperBase::CommonFormatImageType *image =
scalar->GetCommonFormatImage(
static_cast<ScalarImageWrapperBase::ExportChannel>(channel));
filter->SetInput(image);
filter->SetInputImageMaximumGradientMagnitude(
scalar->GetImageGradientMagnitudeUpperLimit());
}
void
EdgePreprocessingFilterConfigTraits
::DetachInputs(FilterType *filter)
{
filter->SetInput(NULL);
}
void
EdgePreprocessingFilterConfigTraits
::SetParameters(ParameterType *p, FilterType *filter, int channel)
{
filter->SetParameters(p);
}
void
GMMPreprocessingFilterConfigTraits
::AttachInputs(SNAPImageData *sid, FilterType *filter, int channel)
{
// Iterate through all of the relevant layers
for(LayerIterator it = sid->GetLayers(MAIN_ROLE | OVERLAY_ROLE);
!it.IsAtEnd(); ++it)
{
if(it.GetLayerAsScalar())
{
AnatomicScalarImageWrapper *w = dynamic_cast<AnatomicScalarImageWrapper *>(it.GetLayer());
filter->AddScalarImage(w->GetImage());
}
else if (it.GetLayerAsVector())
{
AnatomicImageWrapper *w = dynamic_cast<AnatomicImageWrapper *>(it.GetLayer());
filter->AddVectorImage(w->GetImage());
}
}
// Set the GMM input
UnsupervisedClustering *uc = sid->GetParent()->GetClusteringEngine();
assert(uc);
filter->SetMixtureModel(uc->GetMixtureModel());
}
void
GMMPreprocessingFilterConfigTraits
::DetachInputs(FilterType *filter)
{
while(filter->GetNumberOfValidRequiredInputs())
filter->PopBackInput();
filter->SetMixtureModel(NULL);
}
void
GMMPreprocessingFilterConfigTraits
::SetParameters(ParameterType *p, FilterType *filter, int channel)
{
filter->SetMixtureModel(p);
}
void
RFPreprocessingFilterConfigTraits
::AttachInputs(SNAPImageData *sid, FilterType *filter, int channel)
{
// Iterate through all of the relevant layers
for(LayerIterator it = sid->GetLayers(MAIN_ROLE | OVERLAY_ROLE);
!it.IsAtEnd(); ++it)
{
if(it.GetLayerAsScalar())
{
AnatomicScalarImageWrapper *w = dynamic_cast<AnatomicScalarImageWrapper *>(it.GetLayer());
filter->AddScalarImage(w->GetImage());
}
else if (it.GetLayerAsVector())
{
AnatomicImageWrapper *w = dynamic_cast<AnatomicImageWrapper *>(it.GetLayer());
filter->AddVectorImage(w->GetImage());
}
}
// Set the classifier input
RFClassificationEngine *rfe = sid->GetParent()->GetClassificationEngine();
assert(rfe);
filter->SetClassifier(rfe->GetClassifier());
}
void
RFPreprocessingFilterConfigTraits
::DetachInputs(FilterType *filter)
{
while(filter->GetNumberOfValidRequiredInputs())
filter->PopBackInput();
filter->SetClassifier(NULL);
}
void
RFPreprocessingFilterConfigTraits
::SetParameters(ParameterType *p, FilterType *filter, int channel)
{
filter->SetClassifier(p);
}
bool
RFPreprocessingFilterConfigTraits
::IsPreviewable(FilterType *filter[])
{
return (filter[0]->GetClassifier() != NULL && filter[0]->GetClassifier()->IsValidClassifier());
}
// Instantiate preview wrappers
template class SlicePreviewFilterWrapper<SmoothBinaryThresholdFilterConfigTraits>;
template class SlicePreviewFilterWrapper<EdgePreprocessingFilterConfigTraits>;
template class SlicePreviewFilterWrapper<GMMPreprocessingFilterConfigTraits>;
template class SlicePreviewFilterWrapper<RFPreprocessingFilterConfigTraits>;
|