1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
/**
* Define some basic linear algebra operations.
*/
#ifndef LINEARALGEBRA_H
#define LINEARALGEBRA_H
typedef std::size_t size_t;
typedef std::size_t index_t;
template<class T>
void cholesky(const std::vector<std::vector<T> >& A,
std::vector<std::vector<T> >& L)
{
size_t N = A.size();
for (index_t i = 0; i < N; ++i)
{
for (index_t j = 0; j < N; ++j)
{
if (j <= i)
{
T sum = 0;
for (index_t k = 0; k < j; ++k)
{
sum += L[i][k] * L[j][k];
}
L[i][j] = (i == j) ?
sqrt(A[i][i] - sum) :
(1.0 / L[j][j] * (A[i][j] - sum));
}
else
{
L[i][j] = 0;
}
}
}
}
template<class T>
T spddeterminant(const std::vector<std::vector<T> >& A,
bool isTriangular = false)
{
size_t N = A.size();
T prod = 1;
if (isTriangular)
{
for (index_t i = 0; i < N; ++i)
{
prod *= A[i][i] * A[i][i];
}
return prod;
}
else
{
std::vector<std::vector<T> > L;
L.resize(N);
for (index_t i = 0; i < N; ++i)
{
L[i].resize(N);
}
cholesky(A, L);
for (index_t i = 0; i < N; ++i)
{
prod *= L[i][i] * L[i][i];
}
return prod;
}
}
template<class T>
void multiply(const std::vector<std::vector<T> >& X,
const std::vector<std::vector<T> >& Y,
std::vector<std::vector<T> >& result)
{
size_t rowXN = X.size();
size_t colXN = X[0].size();
size_t rowYN = Y.size();
size_t colYN = Y[0].size();
if (colXN != rowYN)
{
throw std::runtime_error("matrix multiplication: XColNum != YRowNum\n");
}
else
{
for (index_t i = 0; i < rowXN; ++i)
{
for (index_t j = 0; j < colYN; ++j)
{
T sum = 0;
for (index_t k = 0; k < colXN; ++k)
{
sum += X[i][k] * Y[k][j];
}
result[i][j] = sum;
}
}
}
}
template<class T>
void multiplyXTX(const std::vector<std::vector<T> >& X,
std::vector<std::vector<T> >& result)
{
size_t N = X.size();
for (index_t i = 0; i < N; ++i)
{
for (index_t j = 0; j < N; ++j)
{
T sum = 0;
for (index_t k = 0; k < N; ++k)
{
sum += X[k][i] * X[k][j];
}
result[i][j] = sum;
}
}
}
template<class T>
void trianginverse(const std::vector<std::vector<T> >& L,
std::vector<std::vector<T> >& invL)
{
size_t N = L.size();
for (index_t j = 0; j < N; ++j)
{
for (index_t i = 0; i < N; ++i)
{
if (j <= i)
{
T sum = (i == j)? 1 : 0;
for (index_t k = j; k < i; ++k)
{
sum -= L[i][k] * invL[k][j];
}
invL[i][j] = sum / L[i][i];
}
else
{
invL[i][j] = 0;
}
}
}
}
template<class T>
void spdinverse(const std::vector<std::vector<T> >& A,
std::vector<std::vector<T> >& invA,
bool isTriangular = false)
{
size_t N = A.size();
static std::vector<std::vector<T> > invL;
invL.resize(N);
for (index_t i = 0; i < N; ++i)
{
invL[i].resize(N);
}
if (isTriangular)
{
trianginverse(A, invL);
}
else
{
std::vector<std::vector<T> > L;
L.resize(N);
for (index_t i = 0; i < N; ++i)
{
L[i].resize(N);
}
cholesky(A, L);
trianginverse(L, invL);
}
multiplyXTX(invL, invA);
}
template<class T>
T multiplyXTspdAinvX(const std::vector<T>& X,
const std::vector<std::vector<T> >& A,
bool isTriangular = false)
{
size_t N = A.size();
if (N != X.size())
{
throw std::runtime_error("multiplyXTspdAinvX: XNum != ARowNum\n");
}
else
{
std::vector<std::vector<T> > invL;
invL.resize(N);
for (index_t i = 0; i < N; ++i)
{
invL[i].resize(N);
}
if (isTriangular)
{
trianginverse(A, invL);
}
else
{
std::vector<std::vector<T> > L;
L.resize(N);
for (index_t i = 0; i < N; ++i)
{
L[i].resize(N);
}
cholesky(A, L);
trianginverse(L, invL);
}
std::vector<T> tmp(N, 0);
for (index_t i = 0; i < N; ++i)
{
for (index_t j = 0; j < (i+1); ++j)
{
tmp[i] += invL[i][j] * X[j];
}
}
T result = 0;
for (index_t i = 0; i < N; ++i)
{
result += tmp[i] * tmp[i];
}
return result;
}
}
#endif // LINEARALGEBRA_H
|