1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
#include "RFClassificationEngine.h"
#include "RandomForestClassifier.h"
#include "SNAPImageData.h"
#include "ImageWrapper.h"
#include "ImageCollectionToImageFilter.h"
#include "itkImageRegionIterator.h"
// Includes from the random forest library
typedef GreyType data_t;
typedef LabelType label_t;
#include "Library/classification.h"
#include "Library/data.h"
RFClassificationEngine::RFClassificationEngine()
{
m_DataSource = NULL;
m_Sample = NULL;
m_Classifier = RandomForestClassifier::New();
m_ForestSize = 50;
m_TreeDepth = 30;
m_PatchRadius.Fill(0);
m_UseCoordinateFeatures = false;
}
RFClassificationEngine::~RFClassificationEngine()
{
if(m_Sample)
delete m_Sample;
}
void RFClassificationEngine::SetDataSource(SNAPImageData *imageData)
{
if(m_DataSource != imageData)
{
// Copy the data source
m_DataSource = imageData;
// Reset the classifier
m_Classifier->Reset();
}
}
void RFClassificationEngine::ResetClassifier()
{
m_Classifier->Reset();
}
void RFClassificationEngine:: TrainClassifier()
{
assert(m_DataSource && m_DataSource->IsMainLoaded());
typedef ImageCollectionConstRegionIteratorWithIndex<
AnatomicScalarImageWrapper::ImageType,
AnatomicImageWrapper::ImageType> CollectionIter;
// TODO: in the future, we should only recompute the sample when we know
// that the data has changed. However, currently, we are just going to
// compute a new sample every time
// Delete the sample
if(m_Sample)
delete m_Sample;
// Get the segmentation image - which determines the samples
LabelImageWrapper *wrpSeg = m_DataSource->GetSegmentation();
LabelImageWrapper::ImagePointer imgSeg = wrpSeg->GetImage();
typedef itk::ImageRegionConstIteratorWithIndex<LabelImageWrapper::ImageType> LabelIter;
// Shrink the buffered region by radius because we can't handle BCs
itk::ImageRegion<3> reg = imgSeg->GetBufferedRegion();
reg.ShrinkByRadius(m_PatchRadius);
// We need to iterate throught the label image once to determine the
// number of samples to allocate.
unsigned long nSamples = 0;
for(LabelIter lit(imgSeg, reg); !lit.IsAtEnd(); ++lit)
if(lit.Value())
nSamples++;
// Create an iterator for going over all the anatomical image data
CollectionIter cit(reg);
cit.SetRadius(m_PatchRadius);
// Add all the anatomical images to this iterator
for(LayerIterator it = m_DataSource->GetLayers(MAIN_ROLE | OVERLAY_ROLE);
!it.IsAtEnd(); ++it)
{
cit.AddImage(it.GetLayer()->GetImageBase());
}
// Get the number of components
int nComp = cit.GetTotalComponents();
int nPatch = cit.GetNeighborhoodSize();
int nColumns = nComp * nPatch;
// Are we using coordinate informtion
if(m_UseCoordinateFeatures)
nColumns += 3;
// Create a new sample
m_Sample = new SampleType(nSamples, nColumns);
// Now fill out the samples
int iSample = 0;
for(LabelIter lit(imgSeg, reg); !lit.IsAtEnd(); ++lit, ++cit)
{
LabelType label = lit.Value();
if(label)
{
// Fill in the data
std::vector<GreyType> &column = m_Sample->data[iSample];
int k = 0;
for(int i = 0; i < nComp; i++)
for(int j = 0; j < nPatch; j++)
column[k++] = cit.NeighborValue(i,j);
// Add the coordinate features if used
if(m_UseCoordinateFeatures)
for(int d = 0; d < 3; d++)
column[k++] = lit.GetIndex()[d];
// Fill in the label
m_Sample->label[iSample] = label;
++iSample;
}
}
// Check that the sample has at least two distinct labels
bool isValidSample = false;
for(int iSample = 1; iSample < m_Sample->Size(); iSample++)
if(m_Sample->label[iSample] != m_Sample->label[iSample-1])
{ isValidSample = true; break; }
// Now there is a valid sample. The text task is to train the classifier
if(!isValidSample)
throw IRISException("A classifier cannot be trained because the training "
"data contain fewer than two classes. Please label "
"examples of two or more tissue classes in the image.");
// Set up the classifier parameters
TrainingParameters params;
// TODO:
params.treeDepth = m_TreeDepth;
params.treeNum = m_ForestSize;
params.candidateNodeClassifierNum = 10;
params.candidateClassifierThresholdNum = 10;
params.subSamplePercent = 0;
params.splitIG = 0.1;
params.leafEntropy = 0.05;
params.verbose = true;
// Cap the number of training voxels at some reasonable number
if(m_Sample->Size() > 10000)
params.subSamplePercent = 100 * 10000.0 / m_Sample->Size();
else
params.subSamplePercent = 0;
// Create the classification engine
typedef RandomForestClassifier::RFAxisClassifierType RFAxisClassifierType;
typedef Classification<GreyType, LabelType, RFAxisClassifierType> ClassificationType;
ClassificationType classification;
// Before resetting the classifier, we want to retain whatever the
// weighting of the classes was
std::map<LabelType, double> old_label_weights;
if(m_Classifier->IsValidClassifier())
{
// Get the class weights
const RandomForestClassifier::WeightArray &class_weights = m_Classifier->GetClassWeights();
// Convert them to label weights (since class to label mapping may change)
for(RandomForestClassifier::MappingType::const_iterator it =
m_Classifier->m_ClassToLabelMapping.begin();
it != m_Classifier->m_ClassToLabelMapping.end(); ++it)
{
old_label_weights[it->second] = class_weights[it->first];
}
}
// Prepare the classifier
m_Classifier->Reset();
// Perform classifier training
classification.Learning(
params, *m_Sample,
*m_Classifier->m_Forest,
m_Classifier->m_ValidLabel,
m_Classifier->m_ClassToLabelMapping);
// Reset the class weights to the number of classes and assign default
int n_classes = m_Classifier->m_ClassToLabelMapping.size(), n_fore = 0, n_back = 0;
m_Classifier->m_ClassWeights.resize(n_classes, -1.0);
// Apply the old weight assignments if possible. Keep track of the number of fore and back classes
for(RandomForestClassifier::MappingType::iterator it =
m_Classifier->m_ClassToLabelMapping.begin();
it != m_Classifier->m_ClassToLabelMapping.end(); ++it)
{
if(old_label_weights.find(it->second) != old_label_weights.end())
{
m_Classifier->m_ClassWeights[it->first] = old_label_weights[it->second];
}
if(m_Classifier->m_ClassWeights[it->first] < 0.0)
n_back++;
else if(m_Classifier->m_ClassWeights[it->first] > 0.0)
n_fore++;
}
// Make sure that we have at least one foreground class and at least one background class
if(n_classes >= 2)
{
if(n_fore == 0)
m_Classifier->m_ClassWeights.front() = 1.0;
if(n_back == 0)
m_Classifier->m_ClassWeights.back() = -1.0;
}
// Store the patch radius in the classifier - this remains fixed until
// training is repeated
m_Classifier->m_PatchRadius = m_PatchRadius;
m_Classifier->m_UseCoordinateFeatures = m_UseCoordinateFeatures;
}
void RFClassificationEngine::SetClassifier(RandomForestClassifier *rf)
{
// Set the classifier
m_Classifier = rf;
// Update the forest size
m_ForestSize = m_Classifier->GetForest()->GetForestSize();
}
int RFClassificationEngine::GetNumberOfComponents() const
{
assert(m_DataSource);
int ncomp = 0;
for(LayerIterator it = m_DataSource->GetLayers(MAIN_ROLE | OVERLAY_ROLE);
!it.IsAtEnd(); ++it)
ncomp += it.GetLayer()->GetNumberOfComponents();
return ncomp;
}
|