1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
/*=========================================================================
Program: ITK-SNAP
Module: $RCSfile: GenericImageData.h,v $
Language: C++
Date: $Date: 2009/08/29 23:02:43 $
Version: $Revision: 1.11 $
Copyright (c) 2007 Paul A. Yushkevich
This file is part of ITK-SNAP
ITK-SNAP is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
-----
Copyright (c) 2003 Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
-----
Copyright (c) 2003 Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __GenericImageData_h_
#define __GenericImageData_h_
#include "SNAPCommon.h"
#include "RLEImageRegionIterator.h"
#include "IRISException.h"
#include "ImageWrapperTraits.h"
#include <itkObject.h>
#include "GlobalState.h"
#include "ImageCoordinateGeometry.h"
#include <string>
#include "LayerIterator.h"
#include "UndoDataManager.h"
class IRISApplication;
class GenericImageData;
class LayerIterator;
class Registry;
class GuidedNativeImageIO;
class ImageAnnotationData;
/**
* \class GenericImageData
* \brief This class encapsulates the image data used by
* the IRIS component of SnAP.
*
* This data consists of a grey image [gi] and a segmentation image [si].
* The following rules must be satisfied by this class:
* + exists(si) ==> exists(gi)
* + if exists(si) then size(si) == size(gi)
*/
class GenericImageData : public itk::Object
{
public:
irisITKObjectMacro(GenericImageData, itk::Object)
// Image type definitions
typedef itk::ImageRegion<3> RegionType;
typedef itk::ImageBase<3> ImageBaseType;
typedef SmartPtr<ImageBaseType> ImageBasePointer;
/**
* The type of anatomical images. For the time being, all anatomic images
* are made to be of type short. Eventually, it may make sense to allow
* both short and char images, to save memory in some cases. However, it
* is not that common to only have 8-bit precision, so for the time being
* we are going to stick to short
*/
typedef AnatomicImageWrapper::ImageType AnatomicImageType;
typedef LabelImageWrapper::ImageType LabelImageType;
// Support for lists of wrappers
typedef SmartPtr<ImageWrapperBase> WrapperPointer;
typedef std::vector<WrapperPointer> WrapperList;
typedef WrapperList::iterator WrapperIterator;
typedef WrapperList::const_iterator WrapperConstIterator;
// Segmentation undo support
typedef UndoDataManager<LabelType> UndoManagerType;
typedef UndoManagerType::Delta UndoManagerDelta;
// Transforms
typedef ImageWrapperBase::ITKTransformType ITKTransformType;
/**
* Set the parent driver
*/
irisGetSetMacro(Parent, IRISApplication *)
/**
Access the 'main' image, either grey or RGB. The main image is the
one that all other images must mimic. This object will be destroyed
when a new image is loaded. This means that downstream objects should
not make copies of this pointer.
*/
ImageWrapperBase* GetMain()
{
assert(m_MainImageWrapper->IsInitialized());
return m_MainImageWrapper;
}
bool IsMainLoaded() const
{
return m_MainImageWrapper && m_MainImageWrapper->IsInitialized();
}
/**
Get the number of layers in certain role(s). This is not as fast
as calling GetLayers(role).size(), but you can query for combinations
of roles, i.e., MAIN_ROLE | OVERLAY_ROLE
*/
virtual unsigned int GetNumberOfLayers(int role_filter = ALL_ROLES);
/**
Get an iterator that iterates throught the layers in certain roles
*/
LayerIterator GetLayers(int role_filter = ALL_ROLES)
{
return LayerIterator(this, role_filter);
}
/**
Get one of the layers (counting main and overlays). This is the same as
calling GetLayers(role_filter) and then iterating n-times. Throws an
exception if n exceeds the number of layers.
*/
ImageWrapperBase *GetNthLayer(int n, int role_filter = ALL_ROLES)
{
LayerIterator it(this, role_filter);
for(int i = 0; i < n && !it.IsAtEnd(); i++)
++it;
if(it.IsAtEnd())
throw IRISException("Illegal layer (%d of %d) requested",
n, GetNumberOfLayers());
return it.GetLayer();
}
/**
Find a layer given the layer's unique id. The role_filter restricts the
search to specific layers, and the search_derived flag enables searching
among the derived (component, mean) wrappers in vector wrappers.
*/
ImageWrapperBase *FindLayer(unsigned long unique_id, bool search_derived,
int role_filter = ALL_ROLES);
int GetNumberOfOverlays();
ImageWrapperBase *GetLastOverlay();
// virtual ImageWrapperBase* GetLayer(unsigned int layer) const;
/**
* Access the segmentation image (read only access allowed
* to preserve state)
*/
LabelImageWrapper* GetSegmentation()
{
assert(m_MainImageWrapper->IsInitialized() && m_LabelWrapper->IsInitialized());
return m_LabelWrapper;
}
/**
* Get the extents of the image volume
*/
Vector3ui GetVolumeExtents() const
{
assert(m_MainImageWrapper->IsInitialized());
return m_MainImageWrapper->GetSize();
}
/**
* Get the ImageRegion (largest possible region of all the images)
*/
RegionType GetImageRegion() const;
/**
* Get the spacing of the gray scale image (and all the associated images)
*/
Vector3d GetImageSpacing();
/**
* Get the origin of the gray scale image (and all the associated images)
*/
Vector3d GetImageOrigin();
/**
* Set the main image. The main image is the anatomical image that defines
* the coordinate space of all other images in a SNAP session. It is the
* image in which structures are traced. The main image can have multiple
* components or channels (e.g., red, green, blue).
*
* The input is a pointer to the GuidedNativeImageIO class,
* which stores the image data in raw native format.
*/
virtual void SetMainImage(GuidedNativeImageIO *io);
/** Unload the main image (and everything else) */
virtual void UnloadMainImage();
/**
* Reset the segmentation wrapper. This happens when the main image is loaded
* or when the user asks for a new segmentation image
*/
virtual void ResetSegmentationImage();
/** Handle overlays */
virtual void AddOverlay(GuidedNativeImageIO *io);
virtual void AddOverlay(ImageWrapperBase *new_layer);
virtual void UnloadOverlays();
virtual void UnloadOverlayLast();
virtual void UnloadOverlay(ImageWrapperBase *overlay);
/**
* Add an overlay that is obtained from the image referenced by *io by applying
* a spatial transformation.
*/
void AddCoregOverlay(GuidedNativeImageIO *io, ITKTransformType *transform);
/**
* Change the ordering of the layers within a particular role (for now just
* overlays are supported in the GUI) by moving the specified layer up or
* down one spot. The sign of the direction determines whether the layer is
* moved up or down.
*/
virtual void MoveLayer(ImageWrapperBase *layer, int direction);
/**
* This method sets the segmentation image (see note for SetGrey).
*/
virtual void SetSegmentationImage(LabelImageType *newLabelImage);
/**
* Set voxel in segmentation image
*/
void SetSegmentationVoxel(const Vector3ui &index, LabelType value);
/**
* Check validity of overlay images
*/
bool IsOverlayLoaded();
/**
* Check validity of segmentation image
*/
bool IsSegmentationLoaded();
/**
* Set the cursor (crosshairs) position, in pixel coordinates
*/
virtual void SetCrosshairs(const Vector3ui &crosshairs);
/**
* Set the display to anatomy coordinate mapping, and propagate it to
* all of the loaded layers
*/
virtual void SetDisplayGeometry(const IRISDisplayGeometry &dispGeom);
/**
* Get a pointer to the display viewport geometry object corresponding
* to viewports 0, 1 or 2. Viewport geometry is represented by an ImageBase
* object. When the display viewport changes, this should be updated so
* that the slices can be correctly generated in the ImageWrappers
*/
virtual ImageBaseType *GetDisplayViewportGeometry(int index);
/**
* Set the direction matrix of all the images
*/
virtual void SetDirectionMatrix(const vnl_matrix<double> &direction);
/** Get the image coordinate geometry */
const ImageCoordinateGeometry &GetImageGeometry() const;
/** Get the list of annotations created by the user */
irisGetMacro(Annotations, ImageAnnotationData *)
/**
* Store an intermediate delta without committing it as an undo point
* Multiple deltas can be stored and then committed with StoreUndoPoint()
*/
void StoreIntermediateUndoDelta(UndoManagerDelta *delta);
/**
* Store an undo point. The first parameter is the description of the
* update, and the second parameter is the delta to be applied. The delta
* can be NULL. All deltas previously submitted with StoreIntermediateUndoDelta
* and the delta passed in to this method will be commited to this undo point.
*/
void StoreUndoPoint(const char *text, UndoManagerDelta *delta = NULL);
/** Clear all undo points */
void ClearUndoPoints();
/** Check whether undo is possible */
bool IsUndoPossible();
/** Check whether undo is possible */
bool IsRedoPossible();
/** Undo (revert to last stored undo point) */
void Undo();
/** Redo (undo the undo) */
void Redo();
irisGetMacro(UndoManager, const UndoManagerType &);
protected:
GenericImageData();
virtual ~GenericImageData();
// The base storage for the layers in the image data. For each role, there
// is a list of wrappers serving in that role. For many roles, there will
// be only one wrapper serving in that role.
typedef std::map<LayerRole, WrapperList> WrapperStorage;
// This is where the all the wrappers are maintained. Child classes should
// aslo add their own wrappers to this list of wrappers.
WrapperStorage m_Wrappers;
// A pointer to the 'main' image, i.e., the image that is treated as the
// reference for all other images.
// Equal to m_Wrappers[MAIN].first()
ImageWrapperBase *m_MainImageWrapper;
// Wrapper around the segmentatoin image.
// Equal to m_Wrappers[SEGMENTATION].first()
SmartPtr<LabelImageWrapper> m_LabelWrapper;
// Undo data manager, stores 'deltas', i.e., differences between states of the segmentation
// image. These deltas are compressed, allowing us to store a bunch of
// undo steps with little cost in performance or memory
UndoManagerType m_UndoManager;
// Parent object
IRISApplication *m_Parent;
// The display to anatomy transformation, which is stored by this object
IRISDisplayGeometry m_DisplayGeometry;
// The complete specification of each display viewport as a 3D image in the same anatomical
// space as the 3D images. This specification is used to sample images onto the viewport.
ImageBasePointer m_DisplayViewportGeometry[3];
// Image annotations - these are distinct from segmentations
SmartPtr<ImageAnnotationData> m_Annotations;
friend class SNAPImageData;
friend class LayerIterator;
// Create a wrapper (vector or scalar) from native format stored in the IO, with the
// specified transform. Null transform indicates that the wrapper is in the space space
// as the main wrapper
SmartPtr<ImageWrapperBase> CreateAnatomicWrapper(
GuidedNativeImageIO *io,
ITKTransformType *transform = NULL);
// Update the main image
virtual void SetMainImageInternal(ImageWrapperBase *wrapper);
virtual void AddOverlayInternal(ImageWrapperBase *wrapper, bool checkSpace = true);
// Append an image wrapper to a role
void PushBackImageWrapper(LayerRole role, ImageWrapperBase *wrapper);
void PopBackImageWrapper(LayerRole role);
void RemoveImageWrapper(LayerRole role, ImageWrapperBase *wrapper);
// For roles that only have one wrapper
void SetSingleImageWrapper(LayerRole, ImageWrapperBase *wrapper);
void RemoveSingleImageWrapper(LayerRole);
// Used in the undo/redo process: RLE compresses current image
UndoManagerType::Delta *CompressLabelImage();
};
#endif
|