1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
|
/*=========================================================================
Program: ITK-SNAP
Module: $RCSfile: IRISApplication.cxx,v $
Language: C++
Date: $Date: 2011/04/18 17:35:30 $
Version: $Revision: 1.37 $
Copyright (c) 2007 Paul A. Yushkevich
This file is part of ITK-SNAP
ITK-SNAP is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
-----
Copyright (c) 2003 Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
// Borland compiler is very lazy so we need to instantiate the template
// by hand
#if defined(__BORLANDC__)
#include "SNAPBorlandDummyTypes.h"
#endif
#include "IRISException.h"
#include "IRISApplication.h"
#include "GlobalState.h"
#include "GuidedNativeImageIO.h"
#include "IRISImageData.h"
#include "IRISVectorTypesToITKConversion.h"
#include "SNAPImageData.h"
#include "MeshManager.h"
#include "MeshExportSettings.h"
#include "SegmentationStatistics.h"
#include "RLEImageRegionIterator.h"
#include "RLERegionOfInterestImageFilter.h"
#include "itkPasteImageFilter.h"
#include "itkIdentityTransform.h"
#include "itkResampleImageFilter.h"
#include "itkNearestNeighborInterpolateImageFunction.h"
#include "itkBSplineInterpolateImageFunction.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkWindowedSincInterpolateImageFunction.h"
#include "itkImageFileWriter.h"
#include "itkFlipImageFilter.h"
#include "itkConstantBoundaryCondition.h"
#include <itksys/SystemTools.hxx>
#include "vtkAppendPolyData.h"
#include "vtkUnsignedShortArray.h"
#include "vtkPointData.h"
#include "SNAPRegistryIO.h"
#include "Rebroadcaster.h"
#include "HistoryManager.h"
#include "IRISSlicer.h"
#include "EdgePreprocessingSettings.h"
#include "ThresholdSettings.h"
#include "SlicePreviewFilterWrapper.h"
#include "PreprocessingFilterConfigTraits.h"
#include "SmoothBinaryThresholdImageFilter.h"
#include "EdgePreprocessingImageFilter.h"
#include "UnsupervisedClustering.h"
#include "GMMClassifyImageFilter.h"
#include "DefaultBehaviorSettings.h"
#include "ColorMapPresetManager.h"
#include "ImageIODelegates.h"
#include "IRISDisplayGeometry.h"
#include "RFClassificationEngine.h"
#include "RandomForestClassifyImageFilter.h"
#include "LabelUseHistory.h"
#include "ImageAnnotationData.h"
#include "SegmentationUpdateIterator.h"
#include <stdio.h>
#include <sstream>
#include <iomanip>
IRISApplication
::IRISApplication()
{
// Create a new system interface
m_SystemInterface = new SystemInterface();
m_HistoryManager = m_SystemInterface->GetHistoryManager();
// Create a color map preset manager
m_ColorMapPresetManager = ColorMapPresetManager::New();
m_ColorMapPresetManager->Initialize(m_SystemInterface);
// Initialize the color table
m_ColorLabelTable = ColorLabelTable::New();
// Initialize the label use history
m_LabelUseHistory = LabelUseHistory::New();
m_LabelUseHistory->SetColorLabelTable(m_ColorLabelTable);
// Contruct the IRIS and SNAP data objects
m_IRISImageData = IRISImageData::New();
m_IRISImageData->SetParent(this);
m_SNAPImageData = SNAPImageData::New();
m_SNAPImageData->SetParent(this);
// Set the current IRIS pointer
m_CurrentImageData = m_IRISImageData.GetPointer();
// Listen to events from wrappers and image data objects and refire them
// as our own events.
Rebroadcaster::RebroadcastAsSourceEvent(m_IRISImageData, WrapperChangeEvent(), this);
Rebroadcaster::RebroadcastAsSourceEvent(m_SNAPImageData, WrapperChangeEvent(), this);
// TODO: should this also be a generic Wrapper Image Data change event?
Rebroadcaster::RebroadcastAsSourceEvent(m_SNAPImageData, LevelSetImageChangeEvent(), this);
// Construct new global state object
m_GlobalState = GlobalState::New();
m_GlobalState->SetDriver(this);
// Initialize the preprocessing settings
// TODO: m_ThresholdSettings = ThresholdSettings::New();
m_EdgePreprocessingSettings = EdgePreprocessingSettings::New();
// Initialize the preprocessing filter preview wrappers
m_ThresholdPreviewWrapper = ThresholdPreviewWrapperType::New();
// TODO: m_ThresholdPreviewWrapper->SetParameters(m_ThresholdSettings);
m_EdgePreviewWrapper = EdgePreprocessingPreviewWrapperType::New();
m_EdgePreviewWrapper->SetParameters(m_EdgePreprocessingSettings);
m_GMMPreviewWrapper = GMMPreprocessingPreviewWrapperType::New();
m_RandomForestPreviewWrapper = RFPreprocessingPreviewWrapperType::New();
m_LastUsedRFClassifierComponents = 0;
m_PreprocessingMode = PREPROCESS_NONE;
// Initialize the mesh management object
m_MeshManager = MeshManager::New();
m_MeshManager->Initialize(this);
}
bool
IRISApplication
::IsImageOrientationOblique()
{
assert(m_CurrentImageData->IsMainLoaded());
return ImageCoordinateGeometry::IsDirectionMatrixOblique(
m_CurrentImageData->GetImageGeometry().GetImageDirectionCosineMatrix());
}
std::string
IRISApplication::
GetImageToAnatomyRAI()
{
assert(m_CurrentImageData->IsMainLoaded());
return ImageCoordinateGeometry::ConvertDirectionMatrixToClosestRAICode(
m_CurrentImageData->GetImageGeometry().GetImageDirectionCosineMatrix());
}
IRISApplication
::~IRISApplication()
{
delete m_SystemInterface;
}
void
IRISApplication
::InitializeSNAPImageData(const SNAPSegmentationROISettings &roi,
CommandType *progressCommand)
{
assert(m_IRISImageData->IsMainLoaded());
// Create the SNAP image data object
m_SNAPImageData->InitializeToROI(m_IRISImageData, roi, progressCommand);
// Override the interpolator in ROI for label interpolation, or we will get
// nonsense
SNAPSegmentationROISettings roiLabel = roi;
roiLabel.SetInterpolationMethod(NEAREST_NEIGHBOR);
// Get chunk of the label image
LabelImageType::Pointer imgNewLabel =
m_IRISImageData->GetSegmentation()->DeepCopyRegion(roiLabel,progressCommand);
// Filter the segmentation image to only allow voxels of 0 intensity and
// of the current drawing color
LabelType passThroughLabel = m_GlobalState->GetDrawingColorLabel();
typedef itk::ImageRegionIterator<LabelImageType> IteratorType;
IteratorType itLabel(imgNewLabel,imgNewLabel->GetBufferedRegion());
unsigned int nCopied = 0;
while(!itLabel.IsAtEnd())
{
if(itLabel.Get() != passThroughLabel || !roi.IsSeedWithCurrentSegmentation())
itLabel.Set((LabelType) 0);
else
nCopied++;
++itLabel;
}
// Record whether the segmentation has any values that are not zero
m_GlobalState->SetSnakeInitializedWithManualSegmentation(nCopied > 0);
// Pass the cleaned up segmentation image to SNAP
m_SNAPImageData->SetSegmentationImage(imgNewLabel);
// Pass the label description of the drawing label to the SNAP image data
m_SNAPImageData->SetColorLabel(
m_ColorLabelTable->GetColorLabel(passThroughLabel));
// Initialize the speed image of the SNAP image data
m_SNAPImageData->InitializeSpeed();
// Remember the ROI object
m_GlobalState->SetSegmentationROISettings(roi);
// Indicate that the speed image is invalid
m_GlobalState->SetSpeedValid(false);
// The set of layers has changed
InvokeEvent(LayerChangeEvent());
}
void
IRISApplication
::SetDisplayGeometry(const IRISDisplayGeometry &dispGeom)
{
// Store the new geometry
m_DisplayGeometry = dispGeom;
// If image data are loaded, propagate the geometry to them
if(m_IRISImageData->IsMainLoaded())
{
m_IRISImageData->SetDisplayGeometry(dispGeom);
}
// Create the appropriate transform and pass it to the SNAP data
if(m_SNAPImageData->IsMainLoaded())
{
m_SNAPImageData->SetDisplayGeometry(dispGeom);
}
// Invoke the corresponding event
InvokeEvent(DisplayToAnatomyCoordinateMappingChangeEvent());
}
void
IRISApplication
::UpdateSNAPSpeedImage(SpeedImageType *newSpeedImage,
SnakeType snakeMode)
{
// This has to happen in SNAP mode
assert(IsSnakeModeActive());
// Make sure the dimensions of the speed image are appropriate
assert(to_itkSize(m_SNAPImageData->GetMain()->GetSize())
== newSpeedImage->GetBufferedRegion().GetSize());
// Initialize the speed wrapper
if(!m_SNAPImageData->IsSpeedLoaded())
m_SNAPImageData->InitializeSpeed();
// Send the speed image to the image data
m_SNAPImageData->GetSpeed()->SetImage(newSpeedImage);
// Save the snake mode
m_GlobalState->SetSnakeType(snakeMode);
// Set the speed as valid
m_GlobalState->SetSpeedValid(true);
// Set the snake state
// TODO: fix this!
if(snakeMode == EDGE_SNAKE)
{
// m_SNAPImageData->GetSpeed()->SetModeToEdgeSnake();
}
else
{
// m_SNAPImageData->GetSpeed()->SetModeToInsideOutsideSnake();
}
}
void IRISApplication::UnloadOverlay(ImageWrapperBase *ovl)
{
// Save the overlay associated settings
SaveMetaDataAssociatedWithLayer(ovl, OVERLAY_ROLE);
// Unload this overlay
unsigned long ovl_id = ovl->GetUniqueId();
m_IRISImageData->UnloadOverlay(ovl);
// for overlay, we don't want to change the cursor location
// just force the IRISSlicer to update
m_IRISImageData->SetCrosshairs(m_GlobalState->GetCrosshairsPosition());
// Check if the selected layer needs to be updated (default to main)
if(m_GlobalState->GetSelectedLayerId() == ovl_id)
m_GlobalState->SetSelectedLayerId(m_IRISImageData->GetMain()->GetUniqueId());
// Fire event
InvokeEvent(LayerChangeEvent());
}
void IRISApplication::UnloadAllOverlays()
{
LayerIterator it = m_IRISImageData->GetLayers(OVERLAY_ROLE);
for(; !it.IsAtEnd(); ++it)
SaveMetaDataAssociatedWithLayer(it.GetLayer(), OVERLAY_ROLE);
m_IRISImageData->UnloadOverlays();
// for overlay, we don't want to change the cursor location
// just force the IRISSlicer to update
m_IRISImageData->SetCrosshairs(m_GlobalState->GetCrosshairsPosition());
// The selected layer should revert to main
m_GlobalState->SetSelectedLayerId(m_IRISImageData->GetMain()->GetUniqueId());
// Fire event
InvokeEvent(LayerChangeEvent());
}
void IRISApplication
::ChangeOverlayPosition(ImageWrapperBase *overlay, int dir)
{
m_IRISImageData->MoveLayer(overlay, dir);
InvokeEvent(LayerChangeEvent());
}
void
IRISApplication
::ResetIRISSegmentationImage()
{
// This has to happen in 'pure' IRIS mode
assert(!IsSnakeModeActive());
// Reset the segmentation image
this->m_IRISImageData->ResetSegmentationImage();
// Fire the appropriate event
InvokeEvent(LayerChangeEvent());
InvokeEvent(SegmentationChangeEvent());
}
void
IRISApplication
::ResetSNAPSegmentationImage()
{
assert(m_SNAPImageData);
// Reset the segmentation image
m_SNAPImageData->ResetSegmentationImage();
// Fire the appropriate event
InvokeEvent(LayerChangeEvent());
InvokeEvent(SegmentationChangeEvent());
}
void
IRISApplication
::UpdateSNAPSegmentationImage(GuidedNativeImageIO *io)
{
// This has to happen in 'pure' SNAP mode
assert(IsSnakeModeActive());
typedef itk::Image<LabelType, 3> UncompressedImageType;
// Cast the native to label type
CastNativeImage<UncompressedImageType> caster;
UncompressedImageType::Pointer imgUncompressed = caster(io);
//use specialized RoI filter to convert to RLEImage
typedef itk::RegionOfInterestImageFilter<UncompressedImageType, LabelImageType> inConverterType;
inConverterType::Pointer inConv = inConverterType::New();
inConv->SetInput(imgUncompressed);
inConv->SetRegionOfInterest(imgUncompressed->GetLargestPossibleRegion());
inConv->Update();
LabelImageType::Pointer imgLabel = inConv->GetOutput();
imgUncompressed = NULL; //deallocate intermediate image to save memory
// The header of the label image is made to match that of the grey image
imgLabel->SetOrigin(m_CurrentImageData->GetMain()->GetImageBase()->GetOrigin());
imgLabel->SetSpacing(m_CurrentImageData->GetMain()->GetImageBase()->GetSpacing());
imgLabel->SetDirection(m_CurrentImageData->GetMain()->GetImageBase()->GetDirection());
// Update the iris data
m_CurrentImageData->SetSegmentationImage(imgLabel);
// Update filenames
m_CurrentImageData->GetSegmentation()->SetFileName(io->GetFileNameOfNativeImage());
// TODO: this is inefficient with the new representation
// Set the loaded labels as valid
LabelImageType *seg = m_CurrentImageData->GetSegmentation()->GetImage();
typedef itk::ImageRegionConstIterator<LabelImageType> IteratorType;
IteratorType it(seg, seg->GetBufferedRegion());
for(; !it.IsAtEnd(); ++it)
m_ColorLabelTable->SetColorLabelValid(it.Get(), true);
// Let the GUI know that segmentation changed
InvokeEvent(SegmentationChangeEvent());
}
void
IRISApplication
::UpdateIRISSegmentationImage(GuidedNativeImageIO *io)
{
// This has to happen in 'pure' IRIS mode
assert(!IsSnakeModeActive());
typedef itk::Image<LabelType, 3> UncompressedImageType;
// Cast the native to label type
CastNativeImage<UncompressedImageType> caster;
UncompressedImageType::Pointer imgUncompressed = caster(io);
//use specialized RoI filter to convert to RLEImage
typedef itk::RegionOfInterestImageFilter<UncompressedImageType, LabelImageType> inConverterType;
inConverterType::Pointer inConv = inConverterType::New();
inConv->SetInput(imgUncompressed);
inConv->SetRegionOfInterest(imgUncompressed->GetLargestPossibleRegion());
inConv->Update();
LabelImageType::Pointer imgLabel = inConv->GetOutput();
imgUncompressed = NULL; //deallocate intermediate image to save memory
// Disconnect from the pipeline right away
imgLabel->DisconnectPipeline();
// The header of the label image is made to match that of the grey image
imgLabel->SetOrigin(m_CurrentImageData->GetMain()->GetImageBase()->GetOrigin());
imgLabel->SetSpacing(m_CurrentImageData->GetMain()->GetImageBase()->GetSpacing());
imgLabel->SetDirection(m_CurrentImageData->GetMain()->GetImageBase()->GetDirection());
// Update the iris data
m_IRISImageData->SetSegmentationImage(imgLabel);
// Update filenames
m_IRISImageData->GetSegmentation()->SetFileName(io->GetFileNameOfNativeImage());
// Update the history
m_SystemInterface->GetHistoryManager()->UpdateHistory(
"LabelImage", io->GetFileNameOfNativeImage(), true);
// Iterate over the RLEs in the label image
LabelType last_label = 0;
typedef itk::ImageRegionConstIterator<LabelImageType::BufferType> RLLineIter;
RLLineIter rlit(m_IRISImageData->GetSegmentation()->GetImage()->GetBuffer(),
m_IRISImageData->GetSegmentation()->GetImage()->GetBuffer()->GetBufferedRegion());
for(; !rlit.IsAtEnd(); ++rlit)
{
// Get the line
const LabelImageType::RLLine &line = rlit.Value();
// Iterate over the entries
for(int i = 0; i < line.size(); i++)
{
LabelType label = line[i].second;
if(label != last_label)
{
m_ColorLabelTable->SetColorLabelValid(label, true);
last_label = label;
}
}
}
// Let the GUI know that segmentation changed
InvokeEvent(SegmentationChangeEvent());
}
inline
LabelType
IRISApplication
::DrawOverLabel(LabelType iTarget)
{
// Get the current merge settings
const DrawOverFilter &filter = m_GlobalState->GetDrawOverFilter();
const LabelType &iDrawing = m_GlobalState->GetDrawingColorLabel();
// If mode is paint over all, the victim is overridden
if(filter.CoverageMode == PAINT_OVER_ALL)
return iDrawing;
if(filter.CoverageMode == PAINT_OVER_ONE && filter.DrawOverLabel == iTarget)
return iDrawing;
if(filter.CoverageMode == PAINT_OVER_VISIBLE
&& m_ColorLabelTable->GetColorLabel(iTarget).IsVisible())
return iDrawing;
return iTarget;
}
unsigned int
IRISApplication
::UpdateSegmentationWithSliceDrawing(
IRISApplication::SliceBinaryImageType *drawing,
const ImageCoordinateTransform *xfmSliceToImage,
double zSlice,
const std::string &undoTitle)
{
// Get the segmentation image
LabelImageType *seg = m_CurrentImageData->GetSegmentation()->GetImage();
// Turn the 2D region of the drawing into a 3D region in the segmentation
IRISApplication::SliceBinaryImageType::RegionType r_draw = drawing->GetBufferedRegion();
// Array of corners of the drawing region
Vector2ui corners[4];
corners[0][0] = r_draw.GetIndex()[0];
corners[0][1] = r_draw.GetIndex()[1];
corners[1][0] = r_draw.GetUpperIndex()[0];
corners[1][1] = r_draw.GetIndex()[1];
corners[2][0] = r_draw.GetIndex()[0];
corners[2][1] = r_draw.GetUpperIndex()[1];
corners[3][0] = r_draw.GetUpperIndex()[0];
corners[3][1] = r_draw.GetUpperIndex()[1];
// Compute 3D extents of the region
Vector3ui pos_min, pos_max;
for(int i = 0; i < 4; i++)
{
// Get the 3D coordinate of the corner
Vector3ui idxVol = to_unsigned_int(
xfmSliceToImage->TransformPoint(
Vector3d(corners[i][0] + 0.5, corners[i][1] + 0.5, zSlice)));
if(i == 0)
{
pos_min = idxVol;
pos_max = idxVol;
}
else
{
for(int j = 0; j < 3; j++)
{
if(pos_min[j] > idxVol[j]) pos_min[j] = idxVol[j];
if(pos_max[j] < idxVol[j]) pos_max[j] = idxVol[j];
}
}
}
// Define the volumetric region
LabelImageType::RegionType r_vol;
r_vol.SetIndex(to_itkIndex(pos_min));
r_vol.SetUpperIndex(to_itkIndex(pos_max));
r_vol.Crop(seg->GetBufferedRegion());
// Create an iterator for painting
SegmentationUpdateIterator itVol(seg, r_vol,
m_GlobalState->GetDrawingColorLabel(),
m_GlobalState->GetDrawOverFilter());
// Drawing parameters
bool invert = m_GlobalState->GetPolygonInvert();
// Inverse transform
ImageCoordinateTransform::Pointer xfmImageToSlice = ImageCoordinateTransform::New();
xfmSliceToImage->ComputeInverse(xfmImageToSlice);
// Iterate over the volume region
for(; !itVol.IsAtEnd(); ++itVol)
{
// Find the coordinate of the voxel in the slice
itk::Index<3> idx_vol = itVol.GetIndex();
Vector3d x_slice = xfmImageToSlice->TransformPoint(
Vector3d(idx_vol[0] + 0.5, idx_vol[1] + 0.5, idx_vol[2] + 0.5));
itk::Index<2> idx_slice;
idx_slice[0] = (int) x_slice[0];
idx_slice[1] = (int) x_slice[1];
// Check value
SliceBinaryImageType::PixelType px = drawing->GetPixel(idx_slice);
if((px != 0) ^ invert)
itVol.PaintAsForeground();
}
// Finalize
itVol.Finalize();
// Store update
if(itVol.GetNumberOfChangedVoxels() > 0)
{
m_CurrentImageData->StoreUndoPoint(undoTitle.c_str(), itVol.RelinquishDelta());
this->RecordCurrentLabelUse();
InvokeEvent(SegmentationChangeEvent());
}
return itVol.GetNumberOfChangedVoxels();
}
void
IRISApplication
::UpdateIRISWithSnapImageData(CommandType *progressCommand)
{
assert(IsSnakeModeActive());
// Get pointers to the source and destination images
typedef LevelSetImageWrapper::ImageType SourceImageType;
typedef LabelImageWrapper::ImageType TargetImageType;
// If the voxel size of the image does not match the voxel size of the
// main image, we need to resample the region
SourceImageType::Pointer source = m_SNAPImageData->GetSnake()->GetImage();
TargetImageType::Pointer target = m_IRISImageData->GetSegmentation()->GetImage();
// Construct are region of interest into which the result will be pasted
SNAPSegmentationROISettings roi = m_GlobalState->GetSegmentationROISettings();
// If the ROI has been resampled, resample the segmentation in reverse direction
if(roi.IsResampling())
{
// Create a resampling filter
typedef itk::ResampleImageFilter<SourceImageType,SourceImageType> ResampleFilterType;
ResampleFilterType::Pointer fltSample = ResampleFilterType::New();
// Initialize the resampling filter with an identity transform
fltSample->SetInput(source);
fltSample->SetTransform(itk::IdentityTransform<double,3>::New());
// Typedefs for interpolators
typedef itk::NearestNeighborInterpolateImageFunction<
SourceImageType,double> NNInterpolatorType;
typedef itk::LinearInterpolateImageFunction<
SourceImageType,double> LinearInterpolatorType;
typedef itk::BSplineInterpolateImageFunction<
SourceImageType,double> CubicInterpolatorType;
// More typedefs are needed for the sinc interpolator
const unsigned int VRadius = 5;
typedef itk::Function::HammingWindowFunction<VRadius> WindowFunction;
typedef itk::ConstantBoundaryCondition<SourceImageType> Condition;
typedef itk::WindowedSincInterpolateImageFunction<
SourceImageType, VRadius,
WindowFunction, Condition, double> SincInterpolatorType;
// Choose the interpolator
switch(roi.GetInterpolationMethod())
{
case NEAREST_NEIGHBOR :
fltSample->SetInterpolator(NNInterpolatorType::New());
break;
case TRILINEAR :
fltSample->SetInterpolator(LinearInterpolatorType::New());
break;
case TRICUBIC :
fltSample->SetInterpolator(CubicInterpolatorType::New());
break;
case SINC_WINDOW_05 :
fltSample->SetInterpolator(SincInterpolatorType::New());
break;
};
// Set the image sizes and spacing. We are creating an image of the
// dimensions of the ROI defined in the IRIS image space.
fltSample->SetSize(roi.GetROI().GetSize());
fltSample->SetOutputSpacing(target->GetSpacing());
fltSample->SetOutputOrigin(source->GetOrigin());
fltSample->SetOutputDirection(source->GetDirection());
// Watch the segmentation progress
if(progressCommand)
fltSample->AddObserver(itk::AnyEvent(),progressCommand);
// Set the unknown intensity to positive value
fltSample->SetDefaultPixelValue(4.0f);
// Perform resampling
fltSample->UpdateLargestPossibleRegion();
// Change the source to the output
source = fltSample->GetOutput();
}
// Creat the source iterator
typedef itk::ImageRegionConstIterator<SourceImageType> SourceIteratorType;
SourceIteratorType itSource(source,source->GetLargestPossibleRegion());
// Create the smart target iterator
SegmentationUpdateIterator itTarget(
target, roi.GetROI(),
m_GlobalState->GetDrawingColorLabel(), m_GlobalState->GetDrawOverFilter());
// Inversion state
bool invert = m_GlobalState->GetPolygonInvert();
// Go through both iterators, copy the new over the old
while(!itSource.IsAtEnd())
{
// Get the level set value
float voxSNAP = itSource.Value();
if((!invert && voxSNAP <= 0) || (invert && voxSNAP >= 0))
itTarget.PaintAsForeground();
// Iterate
++itSource;
++itTarget;
}
// Finalize the segmentation
itTarget.Finalize();
// Store the undo delta
if(itTarget.GetNumberOfChangedVoxels() > 0)
{
m_IRISImageData->StoreUndoPoint("Automatic Segmentation", itTarget.RelinquishDelta());
RecordCurrentLabelUse();
InvokeEvent(SegmentationChangeEvent());
}
}
void
IRISApplication
::SetCursorPosition(const Vector3ui cursor, bool force)
{
if(cursor != this->GetCursorPosition() || force)
{
m_GlobalState->SetCrosshairsPosition(cursor);
this->GetCurrentImageData()->SetCrosshairs(cursor);
// Fire the appropriate event
InvokeEvent(CursorUpdateEvent());
}
}
Vector3ui
IRISApplication
::GetCursorPosition() const
{
return m_GlobalState->GetCrosshairsPosition();
}
void
IRISApplication
::RecordCurrentLabelUse()
{
m_LabelUseHistory->RecordLabelUse(
m_GlobalState->GetDrawingColorLabel(),
m_GlobalState->GetDrawOverFilter());
}
void
IRISApplication
::ClearUndoPoints()
{
m_IRISImageData->ClearUndoPoints();
m_SNAPImageData->ClearUndoPoints();
}
bool
IRISApplication
::IsUndoPossible()
{
return m_CurrentImageData->IsUndoPossible();
}
void
IRISApplication
::Undo()
{
m_CurrentImageData->Undo();
/*
=======
// In order to undo, we must take the 'current' delta and apply
// it to the image
UndoManagerType::Delta *delta = m_UndoManager.GetDeltaForUndo();
UndoManagerType::Delta *cumulative = new UndoManagerType::Delta();
LabelImageType *imSeg = m_IRISImageData->GetSegmentation()->GetImage();
typedef itk::ImageRegionIterator<LabelImageType> IteratorType;
IteratorType it(imSeg, imSeg->GetLargestPossibleRegion());
// Applying the delta means adding
for(size_t i = 0; i < delta->GetNumberOfRLEs(); i++)
{
size_t n = delta->GetRLELength(i);
LabelType d = delta->GetRLEValue(i);
if(d == 0)
{
for(size_t j = 0; j < n; j++)
{
cumulative->Encode(it.Get());
++it;
}
}
else
{
for(size_t j = 0; j < n; j++)
{
LabelType v = it.Get();
v -= d;
it.Set(v);
cumulative->Encode(v);
++it;
}
}
}
cumulative->FinishEncoding();
m_UndoManager.SetCumulativeDelta(cumulative);
// Set modified flags
imSeg->Modified();
>>>>>>> dev_3.6
*/
InvokeEvent(SegmentationChangeEvent());
}
bool
IRISApplication
::IsRedoPossible()
{
return m_CurrentImageData->IsRedoPossible();
}
void
IRISApplication
::Redo()
{
m_CurrentImageData->Redo();
/*
=======
// In order to undo, we must take the 'current' delta and apply
// it to the image
UndoManagerType::Delta *delta = m_UndoManager.GetDeltaForRedo();
LabelImageType *imSeg = m_IRISImageData->GetSegmentation()->GetImage();
typedef itk::ImageRegionIterator<LabelImageType> IteratorType;
IteratorType it(imSeg, imSeg->GetLargestPossibleRegion());
UndoManagerType::Delta *cumulative = new UndoManagerType::Delta();
// Applying the delta means adding
for(size_t i = 0; i < delta->GetNumberOfRLEs(); i++)
{
size_t n = delta->GetRLELength(i);
LabelType d = delta->GetRLEValue(i);
if(d == 0)
{
for(size_t j = 0; j < n; j++)
{
cumulative->Encode(it.Get());
++it;
}
}
else
{
for(size_t j = 0; j < n; j++)
{
LabelType v = it.Get();
v += d;
it.Set(v);
cumulative->Encode(v);
++it;
}
}
}
cumulative->FinishEncoding();
m_UndoManager.SetCumulativeDelta(cumulative);
// Set modified flags
imSeg->Modified();
>>>>>>> dev_3.6
*/
InvokeEvent(SegmentationChangeEvent());
}
void
IRISApplication
::ReleaseSNAPImageData()
{
assert(m_SNAPImageData->IsMainLoaded() &&
m_CurrentImageData != m_SNAPImageData);
m_SNAPImageData->UnloadAll();
}
void
IRISApplication
::TransferCursor(GenericImageData *source, GenericImageData *target)
{
Vector3d cursorSource = to_double(this->GetCursorPosition());
Vector3d xyzSource =
source->GetMain()->TransformVoxelCIndexToNIFTICoordinates(cursorSource);
itk::Index<3> indexTarget =
to_itkIndex(target->GetMain()->TransformNIFTICoordinatesToVoxelCIndex(xyzSource));
Vector3ui newCursor =
target->GetMain()->GetBufferedRegion().IsInside(indexTarget)
? Vector3ui(indexTarget)
: target->GetMain()->GetSize() / 2u;
// Store the cursor position in the global state and the target image data
m_GlobalState->SetCrosshairsPosition(newCursor);
target->SetCrosshairs(newCursor);
// Fire the appropriate event
InvokeEvent(CursorUpdateEvent());
}
void
IRISApplication
::SetCurrentImageDataToIRIS()
{
assert(m_IRISImageData);
if(m_CurrentImageData != m_IRISImageData)
{
m_CurrentImageData = m_IRISImageData;
TransferCursor(m_SNAPImageData, m_IRISImageData);
InvokeEvent(MainImageDimensionsChangeEvent());
// Set the selected layer ID to the main image
m_GlobalState->SetSelectedLayerId(m_IRISImageData->GetMain()->GetUniqueId());
}
}
void IRISApplication
::SetCurrentImageDataToSNAP()
{
assert(m_SNAPImageData->IsMainLoaded());
if(m_CurrentImageData != m_SNAPImageData)
{
// The cursor needs to be modified to point to the same location
// as before, or to the center of the image
TransferCursor(m_IRISImageData, m_SNAPImageData);
// Set the image data
m_CurrentImageData = m_SNAPImageData;
// Fire the event
InvokeEvent(MainImageDimensionsChangeEvent());
// Upon entering this mode, we need reset the active tools
m_GlobalState->SetToolbarMode(CROSSHAIRS_MODE);
m_GlobalState->SetToolbarMode3D(TRACKBALL_MODE);
// Set the selected layer ID to the main image
m_GlobalState->SetSelectedLayerId(m_SNAPImageData->GetMain()->GetUniqueId());
}
}
int IRISApplication::GetImageDirectionForAnatomicalDirection(AnatomicalDirection iAnat)
{
std::string myrai = this->GetImageToAnatomyRAI();
string rai1 = "SRA", rai2 = "ILP";
char c1 = rai1[iAnat], c2 = rai2[iAnat];
for(int j = 0; j < 3; j++)
if(myrai[j] == c1 || myrai[j] == c2)
return j;
assert(0);
return 0;
}
int
IRISApplication
::GetDisplayWindowForAnatomicalDirection(
AnatomicalDirection iAnat) const
{
return m_DisplayGeometry.GetDisplayWindowForAnatomicalDirection(iAnat);
}
AnatomicalDirection
IRISApplication::GetAnatomicalDirectionForDisplayWindow(int iWin) const
{
return m_DisplayGeometry.GetAnatomicalDirectionForDisplayWindow(iWin);
}
void
IRISApplication
::ExportSlice(AnatomicalDirection iSliceAnat, const char *file)
{
// Get the slice index in image coordinates
size_t iSliceImg =
GetImageDirectionForAnatomicalDirection(iSliceAnat);
// TODO: should this not export using the default scalar representation,
// rather than RGB? Not sure...
// Find the slicer that slices along that direction
typedef ImageWrapperBase::DisplaySliceType SliceType;
SmartPtr<SliceType> imgGrey = NULL;
for(size_t i = 0; i < 3; i++)
{
if(iSliceImg == m_CurrentImageData->GetMain()->GetDisplaySliceImageAxis(i))
{
imgGrey = m_CurrentImageData->GetMain()->GetDisplaySlice(i);
break;
}
}
assert(imgGrey);
// Flip the image in the Y direction
typedef itk::FlipImageFilter<SliceType> FlipFilter;
FlipFilter::Pointer fltFlip = FlipFilter::New();
fltFlip->SetInput(imgGrey);
FlipFilter::FlipAxesArrayType arrFlips;
arrFlips[0] = false; arrFlips[1] = true;
fltFlip->SetFlipAxes(arrFlips);
// Create a writer for saving the image
typedef itk::ImageFileWriter<SliceType> WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetInput(fltFlip->GetOutput());
writer->SetFileName(file);
writer->Update();
}
void
IRISApplication
::ExportSegmentationStatistics(const char *file)
{
// Make sure that the segmentation image exists
assert(m_CurrentImageData->IsSegmentationLoaded());
SegmentationStatistics stats;
stats.Compute(m_CurrentImageData);
// Open the selected file for writing
std::ofstream fout(file);
// Check if the file is readable
if(!fout.good())
throw itk::ExceptionObject(__FILE__, __LINE__,
"File can not be opened for writing");
try
{
stats.ExportLegacy(fout, *m_ColorLabelTable);
}
catch(...)
{
throw itk::ExceptionObject(__FILE__, __LINE__,
"File can not be written");
}
fout.close();
}
void
IRISApplication
::ExportSegmentationMesh(const MeshExportSettings &sets, itk::Command *progress)
{
// Update the list of VTK meshes
m_MeshManager->UpdateVTKMeshes(progress);
// Get the list of available labels
MeshManager::MeshCollection meshes = m_MeshManager->GetMeshes();
MeshManager::MeshCollection::iterator it;
// If in SNAP mode, just save the first mesh
if(m_SNAPImageData->IsMainLoaded())
{
if(meshes.size() != 1)
throw IRISException("Unexpected number of meshes in SNAP mode");
// Get the VTK mesh for the label
it = meshes.begin();
vtkPolyData *mesh = it->second;
// Export the mesh
GuidedMeshIO io;
Registry rFormat = sets.GetMeshFormat();
io.SaveMesh(sets.GetMeshFileName().c_str(), rFormat, mesh);
}
// If only one mesh is to be exported, life is easy
else if(sets.GetFlagSingleLabel())
{
// Get the VTK mesh for the label
it = meshes.find(sets.GetExportLabel());
if(it == meshes.end())
throw IRISException("Missing mesh for the selected label");
vtkPolyData *mesh = it->second;
// Export the mesh
GuidedMeshIO io;
Registry rFormat = sets.GetMeshFormat();
io.SaveMesh(sets.GetMeshFileName().c_str(), rFormat, mesh);
}
else if(sets.GetFlagSingleScene())
{
// Create an append filter
vtkSmartPointer<vtkAppendPolyData> append = vtkSmartPointer<vtkAppendPolyData>::New();
for(it = meshes.begin(); it != meshes.end(); it++)
{
// Get the VTK mesh for the label
vtkPolyData *mesh = it->second;
vtkSmartPointer<vtkUnsignedShortArray> scalar =
vtkSmartPointer<vtkUnsignedShortArray>::New();
scalar->SetNumberOfComponents(1);
scalar->Allocate(mesh->GetNumberOfPoints());
for(int j = 0; j < mesh->GetNumberOfPoints(); j++)
scalar->InsertNextTuple1(it->first);
mesh->GetPointData()->SetScalars(scalar);
append->AddInputData(mesh);
}
append->Update();
// Export the mesh
GuidedMeshIO io;
Registry rFormat = sets.GetMeshFormat();
io.SaveMesh(sets.GetMeshFileName().c_str(), rFormat, append->GetOutput());
// Remove the scalars from the meshes
for(it = meshes.begin(); it != meshes.end(); it++)
it->second->GetPointData()->SetScalars(NULL);
}
else
{
// Take apart the filename
std::string full = itksys::SystemTools::CollapseFullPath(sets.GetMeshFileName().c_str());
std::string path = itksys::SystemTools::GetFilenamePath(full.c_str());
std::string file = itksys::SystemTools::GetFilenameWithoutExtension(full.c_str());
std::string extn = itksys::SystemTools::GetFilenameExtension(full.c_str());
std::string prefix = file;
// Are the last 5 characters of the filename numeric?
if(file.length() >= 5)
{
string suffix = file.substr(file.length()-5,5);
if(count_if(suffix.begin(), suffix.end(), isdigit) == 5)
prefix = file.substr(0, file.length()-5);
}
// Loop, saving each mesh into a filename
for(it = meshes.begin(); it != meshes.end(); it++)
{
// Get the VTK mesh for the label
vtkPolyData *mesh = it->second;
// Generate filename
char outfn[4096];
sprintf(outfn, "%s/%s%05d%s", path.c_str(), prefix.c_str(), it->first, extn.c_str());
// Export the mesh
GuidedMeshIO io;
Registry rFormat = sets.GetMeshFormat();
io.SaveMesh(outfn, rFormat, mesh);
}
}
}
size_t
IRISApplication
::ReplaceLabel(LabelType drawing, LabelType drawover)
{
// Get the label image
assert(m_CurrentImageData->IsSegmentationLoaded());
LabelImageWrapper::ImagePointer imgLabel =
m_CurrentImageData->GetSegmentation()->GetImage();
// Get the number of voxels
size_t nvoxels = 0;
// Update the segmentation
typedef itk::ImageRegionIterator<
LabelImageWrapper::ImageType> IteratorType;
for(IteratorType it(imgLabel, imgLabel->GetBufferedRegion());
!it.IsAtEnd(); ++it)
{
if(it.Get() == drawover)
{
it.Set(drawing);
++nvoxels;
}
}
// Register that the image has been updated
imgLabel->Modified();
return nvoxels;
}
// TODO: This information should be cached at the segmentation layer level
// by keeping track of label counts after every update operation.
size_t
IRISApplication
::GetNumberOfVoxelsWithLabel(LabelType label)
{
// Get the label image
assert(m_CurrentImageData->IsSegmentationLoaded());
LabelImageType *seg = m_CurrentImageData->GetSegmentation()->GetImage();
// Get the number of voxels
size_t nvoxels = 0;
for(LabelImageWrapper::ConstIterator it(seg, seg->GetBufferedRegion());
!it.IsAtEnd(); ++it)
{
if(it.Get() == label)
++nvoxels;
}
return nvoxels;
}
int
IRISApplication
::RelabelSegmentationWithCutPlane(const Vector3d &normal, double intercept)
{
// Get the label image
LabelImageWrapper::ImagePointer imgLabel =
m_CurrentImageData->GetSegmentation()->GetImage();
// Create the smart target iterator
SegmentationUpdateIterator it(
imgLabel, imgLabel->GetBufferedRegion(),
m_GlobalState->GetDrawingColorLabel(), m_GlobalState->GetDrawOverFilter());
// Adjust the intercept by 0.5 for voxel offset
intercept -= 0.5 * (normal[0] + normal[1] + normal[2]);
// Iterate over the image, relabeling labels on one side of the plane
while(!it.IsAtEnd())
{
// Compute the distance to the plane
itk::Index<3> index = it.GetIndex();
double distance =
index[0]*normal[0] +
index[1]*normal[1] +
index[2]*normal[2] - intercept;
// Check the side of the plane
if(distance > 0)
it.PaintAsForegroundPreserveClear();
// Next voxel
++it;
}
// Finalize
it.Finalize();
// Store the undo point if needed
if(it.GetNumberOfChangedVoxels() > 0)
{
m_CurrentImageData->StoreUndoPoint("3D scalpel", it.RelinquishDelta());
RecordCurrentLabelUse();
InvokeEvent(SegmentationChangeEvent());
}
return it.GetNumberOfChangedVoxels();
}
int
IRISApplication
::GetRayIntersectionWithSegmentation(const Vector3d &point,
const Vector3d &ray, Vector3i &hit) const
{
// Get the label wrapper
LabelImageWrapper *xLabelWrapper = m_CurrentImageData->GetSegmentation();
assert(xLabelWrapper->IsInitialized());
Vector3ui lIndex;
Vector3ui lSize = xLabelWrapper->GetSize();
double delta[3][3] = {{0.,0.,0.},{0.,0.,0.},{0.,0.,0.}}, dratio[3] = {0., 0., 0.};
int signrx, signry, signrz;
double rx = ray[0];
double ry = ray[1];
double rz = ray[2];
double rlen = rx*rx+ry*ry+rz*rz;
if(rlen == 0) return -1;
double rfac = 1.0 / sqrt(rlen);
rx *= rfac; ry *= rfac; rz *= rfac;
if (rx >=0) signrx = 1; else signrx = -1;
if (ry >=0) signry = 1; else signry = -1;
if (rz >=0) signrz = 1; else signrz = -1;
// offset everything by (.5, .5) [becuz samples are at center of voxels]
// this offset will put borders of voxels at integer values
// we will work with this offset grid and offset back to check samples
// we really only need to offset "point"
double px = point[0]+0.5;
double py = point[1]+0.5;
double pz = point[2]+0.5;
// get the starting point within data extents
int c = 0;
while ( (px < 0 || px >= lSize[0]||
py < 0 || py >= lSize[1]||
pz < 0 || pz >= lSize[2]) && c < 10000)
{
px += rx;
py += ry;
pz += rz;
c++;
}
if (c >= 9999) return -1;
// walk along ray to find intersection with any voxel with val > 0
while ( (px >= 0 && px < lSize[0]&&
py >= 0 && py < lSize[1] &&
pz >= 0 && pz < lSize[2]) )
{
// offset point by (-.5, -.5) [to account for earlier offset] and
// get the nearest sample voxel within unit cube around (px,py,pz)
// lx = my_round(px-0.5);
// ly = my_round(py-0.5);
// lz = my_round(pz-0.5);
lIndex[0] = (int)px;
lIndex[1] = (int)py;
lIndex[2] = (int)pz;
LabelType hitlabel = m_CurrentImageData->GetSegmentation()->GetVoxel(lIndex);
if (m_ColorLabelTable->IsColorLabelValid(hitlabel))
{
ColorLabel cl = m_ColorLabelTable->GetColorLabel(hitlabel);
if(cl.IsVisible())
{
hit[0] = lIndex[0];
hit[1] = lIndex[1];
hit[2] = lIndex[2];
return 1;
}
}
// BEGIN : walk along ray to border of next voxel touched by ray
// compute path to YZ-plane surface of next voxel
if (rx == 0)
{ // ray is parallel to 0 axis
delta[0][0] = 9999;
}
else
{
delta[0][0] = (int)(px+signrx) - px;
}
// compute path to XZ-plane surface of next voxel
if (ry == 0)
{ // ray is parallel to 1 axis
delta[1][0] = 9999;
}
else
{
delta[1][1] = (int)(py+signry) - py;
dratio[1] = delta[1][1]/ry;
delta[1][0] = dratio[1] * rx;
}
// compute path to XY-plane surface of next voxel
if (rz == 0)
{ // ray is parallel to 2 axis
delta[2][0] = 9999;
}
else
{
delta[2][2] = (int)(pz+signrz) - pz;
dratio[2] = delta[2][2]/rz;
delta[2][0] = dratio[2] * rx;
}
// choose the shortest path
if ( fabs(delta[0][0]) <= fabs(delta[1][0]) && fabs(delta[0][0]) <= fabs(delta[2][0]) )
{
dratio[0] = delta[0][0]/rx;
delta[0][1] = dratio[0] * ry;
delta[0][2] = dratio[0] * rz;
px += delta[0][0];
py += delta[0][1];
pz += delta[0][2];
}
else if ( fabs(delta[1][0]) <= fabs(delta[0][0]) && fabs(delta[1][0]) <= fabs(delta[2][0]) )
{
delta[1][2] = dratio[1] * rz;
px += delta[1][0];
py += delta[1][1];
pz += delta[1][2];
}
else
{ //if (fabs(delta[2][0] <= fabs(delta[0][0] && fabs(delta[2][0] <= fabs(delta[0][0])
delta[2][1] = dratio[2] * ry;
px += delta[2][0];
py += delta[2][1];
pz += delta[2][2];
}
// END : walk along ray to border of next voxel touched by ray
} // while ( (px
return 0;
}
#include "itkMatrixOffsetTransformBase.h"
SmartPtr<IRISApplication::ITKTransformType>
IRISApplication
::ReadTransform(Registry *reg, bool &is_identity)
{
typedef itk::IdentityTransform<double, 3> IdTransform;
SmartPtr<IdTransform> id_transform = IdTransform::New();
SmartPtr<ITKTransformType> transform = id_transform.GetPointer();
is_identity = true;
// No registry? Return identity transform
if(!reg)
return transform;
// Is the transform identity
Registry &folder = reg->Folder("ImageTransform");
is_identity = folder["IsIdentity"][true];
if(is_identity)
{
return transform;
}
// Not an identity transform - so read the parameters
typedef itk::MatrixOffsetTransformBase<double, 3, 3> MOTBTransformType;
typedef MOTBTransformType::MatrixType MatrixType;
typedef MOTBTransformType::OffsetType OffsetType;
// Read the matrix, defaulting to identity
MatrixType matrix; matrix.SetIdentity();
OffsetType offset; offset.Fill(0.0);
for(int i = 0; i < 3; i++)
{
offset[i] = folder[folder.Key("Offset.Element[%d]",i)][offset[i]];
for(int j = 0; j < 3; j++)
matrix(i, j) = folder[folder.Key("Matrix.Element[%d][%d]",i,j)][matrix(i,j)];
}
// Check the matrix and offset for being identity
if(matrix.GetVnlMatrix().is_identity() && offset.GetVnlVector().is_zero())
{
is_identity = true;
return transform;
}
// Use the matrix/offset transform
SmartPtr<MOTBTransformType> motb = MOTBTransformType::New();
motb->SetMatrix(matrix);
motb->SetOffset(offset);
transform = motb.GetPointer();
return transform;
}
void
IRISApplication
::WriteTransform(Registry *reg, const ITKTransformType *transform)
{
// Get the target folder
Registry &folder = reg->Folder("ImageTransform");
// Cast the transform to the matrix/offset type
typedef itk::MatrixOffsetTransformBase<double, 3, 3> MOTBTransformType;
const MOTBTransformType *motb = dynamic_cast<const MOTBTransformType *>(transform);
// Check for identity
if(!motb || (motb->GetMatrix().GetVnlMatrix().is_identity() &&
motb->GetOffset().GetVnlVector().is_zero()))
{
folder["IsIdentity"] << true;
folder.RemoveKeys("Matrix");
folder.RemoveKeys("Offset");
}
else
{
folder["IsIdentity"] << false;
for(int i = 0; i < 3; i++)
{
folder[folder.Key("Offset.Element[%d]",i)] << motb->GetOffset()[i];
for(int j = 0; j < 3; j++)
folder[folder.Key("Matrix.Element[%d][%d]",i,j)] << motb->GetMatrix()(i,j);
}
}
}
void
IRISApplication
::AddIRISOverlayImage(GuidedNativeImageIO *io, Registry *metadata)
{
assert(!IsSnakeModeActive());
assert(m_IRISImageData->IsMainLoaded());
assert(io->IsNativeImageLoaded());
// Test if the image is in the same size as the main image
ImageWrapperBase *main = this->m_IRISImageData->GetMain();
bool same_size = (main->GetSize() == io->GetDimensionsOfNativeImage());
// Now test the 3D geometry of the image to see if it occupies the same space
bool same_space = true;
// Read the transform from the registry. This method will return an identity transform
// even if no registry was provided
bool id_transform = true;
SmartPtr<ITKTransformType> transform = this->ReadTransform(metadata, id_transform);
// We use a tolerance for header comparisons here
double tol = 1e-5;
for(int i = 0; i < 3; i++)
{
if(fabs(io->GetNativeImage()->GetOrigin()[i] - main->GetImageBase()->GetOrigin()[i]) > tol)
same_space = false;
if(fabs(io->GetNativeImage()->GetSpacing()[i] - main->GetImageBase()->GetSpacing()[i]) > tol)
same_space = false;
for(int j = 0; j < 3; j++)
{
if(fabs(io->GetNativeImage()->GetDirection()[i][j] - main->GetImageBase()->GetDirection()[i][j]) > tol)
same_space = false;
}
}
// TODO: in situations where the size is the same and space is different, we may want
// to ask the user how to handle it, or at least display a warning? For now, we just use
// the header information, which may be different from how old ITK-SNAP handled this
// Old code - prevented registration of same-size images
// if(same_size && same_space && id_transform)
// m_IRISImageData->AddOverlay(io);
// else
m_IRISImageData->AddCoregOverlay(io, transform);
ImageWrapperBase *layer = m_IRISImageData->GetLastOverlay();
// Set the filename of the overlay
// TODO: this is cumbersome, could we just initialize the wrapper from the
// GuidedNativeImageIO without passing all this junk around?
layer->SetFileName(io->GetFileNameOfNativeImage());
// Add the overlay to the history
m_HistoryManager->UpdateHistory("AnatomicImage", io->GetFileNameOfNativeImage(), true);
// for overlay, we don't want to change the cursor location
// just force the IRISSlicer to update
m_IRISImageData->SetCrosshairs(m_GlobalState->GetCrosshairsPosition());
// Apply the default color map for overlays
std::string deflt_preset =
m_GlobalState->GetDefaultBehaviorSettings()->GetOverlayColorMapPreset();
m_ColorMapPresetManager->SetToPreset(layer->GetDisplayMapping()->GetColorMap(),
deflt_preset);
// Initialize the layer-specific segmentation parameters
CreateSegmentationSettings(layer, OVERLAY_ROLE);
// Read and apply the project-level settings associated with the main image
LoadMetaDataAssociatedWithLayer(layer, OVERLAY_ROLE, metadata);
// If the default is to auto-contrast, perform the contrast adjustment
// operation on the image
if(m_GlobalState->GetDefaultBehaviorSettings()->GetAutoContrast())
AutoContrastLayerOnLoad(layer);
// Set the selected layer ID to be the new selected overlay - but only if it is
// not sticky!
if(!layer->IsSticky())
m_GlobalState->SetSelectedLayerId(layer->GetUniqueId());
// Fire event
InvokeEvent(LayerChangeEvent());
}
void
IRISApplication
::AddDerivedOverlayImage(
const ImageWrapperBase *sourceLayer,
ImageWrapperBase *overlay,
bool inherit_colormap)
{
assert(this->IsMainImageLoaded());
// Add the image as the current grayscale overlay
m_CurrentImageData->AddOverlay(overlay);
// for overlay, we don't want to change the cursor location
// just force the IRISSlicer to update
m_CurrentImageData->SetCrosshairs(m_GlobalState->GetCrosshairsPosition());
// Apply the default color map for overlays
if(inherit_colormap)
{
const ColorMap *cmSource = sourceLayer->GetDisplayMapping()->GetColorMap();
ColorMap *cmOverlay = overlay->GetDisplayMapping()->GetColorMap();
if(cmSource && cmOverlay)
cmOverlay->CopyInformation(cmSource);
}
else
{
std::string deflt_preset =
m_GlobalState->GetDefaultBehaviorSettings()->GetOverlayColorMapPreset();
m_ColorMapPresetManager->SetToPreset(overlay->GetDisplayMapping()->GetColorMap(),
deflt_preset);
}
// Initialize the layer-specific segmentation parameters
CreateSegmentationSettings(overlay, OVERLAY_ROLE);
// If the default is to auto-contrast, perform the contrast adjustment
// operation on the image
if(m_GlobalState->GetDefaultBehaviorSettings()->GetAutoContrast())
AutoContrastLayerOnLoad(overlay);
// Set the selected layer ID to be the new overlay
if(!overlay->IsSticky())
m_GlobalState->SetSelectedLayerId(overlay->GetUniqueId());
// Fire event
InvokeEvent(LayerChangeEvent());
}
void
IRISApplication
::AutoContrastLayerOnLoad(ImageWrapperBase *layer)
{
// Get a pointer to the policy for this layer
AbstractContinuousImageDisplayMappingPolicy *policy =
dynamic_cast<AbstractContinuousImageDisplayMappingPolicy *>(
m_IRISImageData->GetMain()->GetDisplayMapping());
// The policy must be of the right type to proceed
if(policy)
{
// Check if the image contrast is already set by the user
if(policy->IsContrastInDefaultState())
policy->AutoFitContrast();
}
}
void
IRISApplication
::CreateSegmentationSettings(ImageWrapperBase *wrapper, LayerRole role)
{
// Create threshold settings for every scalar component of this wrapper
if(wrapper->IsScalar())
{
// Create threshold settings for this wrapper
SmartPtr<ThresholdSettings> ts = ThresholdSettings::New();
wrapper->SetUserData("ThresholdSettings", ts);
}
else
{
// Call the method recursively for the components
VectorImageWrapperBase *vec = dynamic_cast<VectorImageWrapperBase *>(wrapper);
for(ScalarRepresentationIterator it(vec); !it.IsAtEnd(); ++it)
CreateSegmentationSettings(vec->GetScalarRepresentation(it), role);
}
}
void
IRISApplication
::UpdateIRISMainImage(GuidedNativeImageIO *io, Registry *metadata)
{
// This has to happen in 'pure' IRIS mode
assert(!IsSnakeModeActive());
// Load the image into the current image data object
m_IRISImageData->SetMainImage(io);
// Get a pointer to the resulting wrapper
ImageWrapperBase *layer = m_IRISImageData->GetMain();
// Set the filename and nickname of the image wrapper
layer->SetFileName(io->GetFileNameOfNativeImage());
// Update the preprocessing settings to defaults.
m_EdgePreprocessingSettings->InitializeToDefaults();
// Initialize the layer-specific segmentation parameters
CreateSegmentationSettings(layer, MAIN_ROLE);
// Update the system's history list
m_HistoryManager->UpdateHistory("MainImage", io->GetFileNameOfNativeImage(), false);
m_HistoryManager->UpdateHistory("AnatomicImage", io->GetFileNameOfNativeImage(), false);
// Reset the segmentation ROI
m_GlobalState->SetSegmentationROI(io->GetNativeImage()->GetBufferedRegion());
// Read and apply the project-level settings associated with the main image
LoadMetaDataAssociatedWithLayer(layer, MAIN_ROLE, metadata);
// The main image may not be sticky, but in old versions of SNAP that was
// allowed, so we force override
if(layer->IsSticky())
layer->SetSticky(false);
// Fire the dimensions change event
InvokeEvent(MainImageDimensionsChangeEvent());
// Update the crosshairs position to the center of the image
this->SetCursorPosition(layer->GetSize() / 2u);
// This line forces the cursor to be propagated to the image even if the
// crosshairs positions did not change from their previous values
this->GetIRISImageData()->SetCrosshairs(layer->GetSize() / 2u);
// If the default is to auto-contrast, perform the contrast adjustment
// operation on the image
if(m_GlobalState->GetDefaultBehaviorSettings()->GetAutoContrast())
AutoContrastLayerOnLoad(layer);
// Save the thumbnail for the current image. This ensures that a thumbnail
// is created even if the application crashes or is killed.
layer->WriteThumbnail(
m_SystemInterface->GetThumbnailAssociatedWithFile(
io->GetFileNameOfNativeImage().c_str()).c_str(), 128);
// We also want to reset the label history at this point, as these are
// very different labels
m_LabelUseHistory->Reset();
// Make the main image 'selected'
m_GlobalState->SetSelectedLayerId(layer->GetUniqueId());
}
void IRISApplication::LoadMetaDataAssociatedWithLayer(
ImageWrapperBase *layer, int role, Registry *override)
{
Registry assoc, *folder;
if(override)
folder = override;
else if(m_SystemInterface->FindRegistryAssociatedWithFile(layer->GetFileName(), assoc))
{
LayerRole role_cast = (LayerRole) role;
// Determine the group under which the association is stored. This is to
// deal with the situation when the same image is loaded as a main and as
// a segmentation, for example
std::string roletype;
if(role_cast == MAIN_ROLE || role_cast == OVERLAY_ROLE)
roletype = "AnatomicImage";
else
roletype = SNAPRegistryIO::GetEnumMapLayerRole()[role_cast].c_str();
folder = &assoc.Folder(Registry::Key("Role[%s]", roletype.c_str()));
}
else
return;
// Read the image-level metadata (display map, etc) for the image
layer->ReadMetaData(folder->Folder("LayerMetaData"));
// Read and apply the project-level settings associated with the main image
if(role == MAIN_ROLE)
{
SNAPRegistryIO rio;
rio.ReadImageAssociatedSettings(folder->Folder("ProjectMetaData"), this, true, true, true, true);
}
}
void IRISApplication
::SaveMetaDataAssociatedWithLayer(ImageWrapperBase *layer, int role, Registry *override)
{
Registry assoc, *folder;
// Load the current associations for the main image
if(override)
{
folder = override;
}
else
{
m_SystemInterface->FindRegistryAssociatedWithFile(layer->GetFileName(), assoc);
LayerRole role_cast = (LayerRole) role;
// Determine the group under which the association is stored. This is to
// deal with the situation when the same image is loaded as a main and as
// a segmentation, for example
std::string roletype;
if(role_cast == MAIN_ROLE || role_cast == OVERLAY_ROLE)
roletype = "AnatomicImage";
else
roletype = SNAPRegistryIO::GetEnumMapLayerRole()[role_cast].c_str();
folder = &assoc.Folder(Registry::Key("Role[%s]", roletype.c_str()));
}
// Write the metadata for the specific layer
layer->WriteMetaData(folder->Folder("LayerMetaData"));
// Write the layer IO hints - overriding the association file data
if(!layer->GetIOHints().IsEmpty())
{
folder->Folder("IOHints").Clear();
folder->Folder("IOHints").Update(layer->GetIOHints());
}
// For the main image layer, write the project-level settings
if(role == MAIN_ROLE)
{
// Write the project-level associations
SNAPRegistryIO io;
io.WriteImageAssociatedSettings(this, folder->Folder("ProjectMetaData"));
}
// Save the settings
if(!override)
m_SystemInterface->AssociateRegistryWithFile(layer->GetFileName(), assoc);
}
void
IRISApplication
::UnloadMainImage()
{
// Save the settings for this image
if(m_CurrentImageData->IsMainLoaded())
{
ImageWrapperBase *image = m_CurrentImageData->GetMain();
const char *fnMain = image->GetFileName();
// Reset the toolbar mode to default
m_GlobalState->SetToolbarMode(CROSSHAIRS_MODE);
// Write the image-level and project-level associations
SaveMetaDataAssociatedWithLayer(image, MAIN_ROLE);
// Create a thumbnail from the one of the image slices
std::string fnThumb = m_SystemInterface->GetThumbnailAssociatedWithFile(fnMain);
m_CurrentImageData->GetMain()->WriteThumbnail(fnThumb.c_str(), 128);
// Do likewise for the project if one exists
if(m_GlobalState->GetProjectFilename().length())
{
// TODO: it would look nicer if we actually saved the state of the SNAP
// windows rather than just the image in its current colormap. But this
// would require doing this elsewhere
std::string fnThumb = m_SystemInterface->GetThumbnailAssociatedWithFile(
m_GlobalState->GetProjectFilename().c_str());
m_CurrentImageData->GetMain()->WriteThumbnail(fnThumb.c_str(), 128);
}
}
// Reset the automatic segmentation ROI
m_GlobalState->SetSegmentationROI(GlobalState::RegionType());
// Unload the main image
m_CurrentImageData->UnloadMainImage();
// After unloading the main image, we reset the workspace filename
m_GlobalState->SetProjectFilename("");
// Reset the project registry
m_LastSavedProjectState = Registry();
// Reset the local history
m_HistoryManager->ClearLocalHistory();
// Let everyone know that the main image is gone!
InvokeEvent(MainImageDimensionsChangeEvent());
}
ImageWrapperBase *
IRISApplication
::LoadImageViaDelegate(const char *fname,
AbstractLoadImageDelegate *del,
IRISWarningList &wl,
Registry *ioHints)
{
Registry regAssoc;
// When hints are not provided, we load them using the association system
if(!ioHints)
{
// Load the settings associated with this file
m_SystemInterface->FindRegistryAssociatedWithFile(fname, regAssoc);
// Get the folder dealing with grey image properties
ioHints = ®Assoc.Folder("Files.Grey");
}
// Create a native image IO object
SmartPtr<GuidedNativeImageIO> io = GuidedNativeImageIO::New();
// Load the header of the image
io->ReadNativeImageHeader(fname, *ioHints);
// Validate the header
del->ValidateHeader(io, wl);
// Unload the current image data
del->UnloadCurrentImage();
// Read the image body
io->ReadNativeImageData();
// Validate the image data
del->ValidateImage(io, wl);
// Put the image in the right place
ImageWrapperBase *layer = del->UpdateApplicationWithImage(io);
// Store the IO hints inside of the image - in case it ever gets added
// to a project
layer->SetIOHints(*ioHints);
return layer;
}
IRISApplication::DicomSeriesTree
IRISApplication::ListAvailableSiblingDicomSeries()
{
// Create an empty listing
DicomSeriesTree available_dicoms;
// Create a structure to keep track of already loaded DICOM series so they
// are not included
std::map< std::string, std::set<std::string> > loaded_dicoms;
// Iterate through the loaded image layers
LayerIterator it = this->GetIRISImageData()->GetLayers(MAIN_ROLE | OVERLAY_ROLE);
for(; !it.IsAtEnd(); ++it)
{
// Get the IO hints registry
Registry io_hints = it.GetLayer()->GetIOHints();
// Is this image a DICOM?
if(io_hints.HasFolder("DICOM"))
{
// Get the directory of the DICOM files
std::string layer_fn = it.GetLayer()->GetFileName();
if(!itksys::SystemTools::FileIsDirectory(layer_fn))
layer_fn = itksys::SystemTools::GetParentDirectory(layer_fn);
// Get the series ID of the DICOM files
std::string layer_series_id = io_hints["DICOM.SeriesId"][""];
loaded_dicoms[layer_fn].insert(layer_series_id);
// Has this directory already been included? Then we can skip the rest
if(available_dicoms.find(layer_fn) == available_dicoms.end())
{
// Get the number of DICOM siblings
int n_entries = io_hints["DICOM.DirectoryInfo.ArraySize"][0];
for(int i = 0; i < n_entries; i++)
{
// Read the entry for this ID
DicomSeriesDescriptor desc;
Registry &r = io_hints.Folder(io_hints.Key("DICOM.DirectoryInfo.Entry[%d]", i));
desc.series_id = r["SeriesId"][""];
if(desc.series_id.length())
{
desc.series_desc = r["SeriesDescription"][""];
desc.dimensions = r["Dimensions"][""];
desc.layer_uid = it.GetLayer()->GetUniqueId();
available_dicoms[layer_fn].push_back(desc);
}
}
}
}
}
// Loop again and remove series that are already loaded
DicomSeriesTree::iterator it_map = available_dicoms.begin();
while(it_map != available_dicoms.end())
{
DicomSeriesListing::iterator it_list = it_map->second.begin();
while(it_list != it_map->second.end())
{
if(loaded_dicoms[it_map->first].count(it_list->series_id))
it_map->second.erase(it_list++);
else
it_list++;
}
if(it_map->second.size() == 0)
available_dicoms.erase(it_map++);
else
it_map++;
}
// Return the map
return available_dicoms;
}
#include "MetaDataAccess.h"
void IRISApplication
::AssignNicknameFromDicomMetadata(ImageWrapperBase *layer)
{
const std::string tag = "0008|103e";
MetaDataAccess mda(layer->GetImageBase());
if(mda.HasKey(tag))
layer->SetCustomNickname(mda.GetValueAsString(tag));
}
void IRISApplication
::LoadAnotherDicomSeriesViaDelegate(unsigned long reference_layer_id,
const char *series_id,
AbstractLoadImageDelegate *del,
IRISWarningList &wl)
{
// We will use the main image's IO hints to create the IO hints for the
// image that is being loaded.
ImageWrapperBase *ref =
this->GetIRISImageData()->FindLayer(reference_layer_id, false);
if(ref)
{
// Create a copy of these hints for the new image we are loading
Registry io_hints = ref->GetIOHints();
// Replace the SeriesID with the one we are intending to load
io_hints["DICOM.SeriesId"] << series_id;
// Use the current filename of the main image
ImageWrapperBase *layer =
this->LoadImageViaDelegate(ref->GetFileName(), del, wl, &io_hints);
// Assign the series ID of the loaded image as the nickname
if(layer->GetCustomNickname().length() == 0)
this->AssignNicknameFromDicomMetadata(layer);
}
}
void IRISApplication
::LoadImage(const char *fname, LayerRole role, IRISWarningList &wl,
Registry *meta_data_reg, Registry *io_hints_reg)
{
// Pointer to the delegate
SmartPtr<AbstractLoadImageDelegate> delegate;
switch(role)
{
case MAIN_ROLE:
delegate = LoadMainImageDelegate::New().GetPointer();
break;
case OVERLAY_ROLE:
delegate = LoadOverlayImageDelegate::New().GetPointer();
break;
case LABEL_ROLE:
delegate = LoadSegmentationImageDelegate::New().GetPointer();
break;
default:
throw IRISException("LoadImage does not support role %d", role);
}
delegate->Initialize(this);
if(meta_data_reg)
delegate->SetMetaDataRegistry(meta_data_reg);
// Load via delegate, providing the IO hints
this->LoadImageViaDelegate(fname, delegate, wl, io_hints_reg);
}
SmartPtr<AbstractSaveImageDelegate>
IRISApplication::CreateSaveDelegateForLayer(ImageWrapperBase *layer, LayerRole role)
{
// TODO: need some unified way of handling histories and categories
// Which history does the image belong under? This goes beyond the role
// of the image, as in snake mode, there are sub-roles that the wrappers
// have. The safest thing is to have the history information be stored
// as a kind of user data in each wrapper. However, for now, we will just
// infer it from the role and type
std::string history, category;
if(role == MAIN_ROLE)
{
history = "AnatomicImage";
category = "Image";
}
else if(role == LABEL_ROLE)
{
history = "LabelImage";
category = "Segmentation Image";
if(this->IsSnakeModeActive() && this->GetPreprocessingMode() == PREPROCESS_RF)
{
history = "ClassifierSamples";
category = "Classifier Samples Image";
}
}
else if(role == OVERLAY_ROLE)
{
history = "AnatomicImage";
category = "Image";
}
else if(role == SNAP_ROLE)
{
if(dynamic_cast<SpeedImageWrapper *>(layer))
{
history = "SpeedImage";
category = "Speed Image";
}
else if(dynamic_cast<LevelSetImageWrapper *>(layer))
{
history = "LevelSetImage";
category = "Level Set Image";
}
}
// Create delegate
SmartPtr<DefaultSaveImageDelegate> delegate = DefaultSaveImageDelegate::New();
delegate->Initialize(this, layer, history);
delegate->SetCategory(category);
// Return the delegate
return delegate.GetPointer();
}
void IRISApplication::SaveProjectToRegistry(Registry &preg, const std::string proj_file_full)
{
// Clear the registry contents
preg.Clear();
// Get the directory in which the project will be saved
std::string project_dir = itksys::SystemTools::GetParentDirectory(proj_file_full.c_str());
// Put version information - later versions may not be compatible
preg["Version"] << SNAPCurrentVersionReleaseDate;
// Save the directory to the project file. This allows us to deal with the project
// being moved elsewhere in the filesystem
preg["SaveLocation"] << project_dir;
// Save each of the layers with 'saveable' roles
int i = 0;
for(LayerIterator it = GetCurrentImageData()->GetLayers(
MAIN_ROLE | LABEL_ROLE | OVERLAY_ROLE); !it.IsAtEnd(); ++it)
{
ImageWrapperBase *layer = it.GetLayer();
// Get the filename of the layer
const char *filename = layer->GetFileName();
// If the layer does not have a filename, skip it
if(!filename || strlen(filename) == 0)
continue;
// Get the full name of the image file
std::string layer_file_full = itksys::SystemTools::CollapseFullPath(filename);
// Create a folder for this layer
Registry &folder = preg.Folder(Registry::Key("Layers.Layer[%03d]", i++));
// Put the filename and relative filename into the folder
folder["AbsolutePath"] << layer_file_full;
// Put the role associated with the file into the folder
folder["Role"].PutEnum(SNAPRegistryIO::GetEnumMapLayerRole(), it.GetRole());
// Save the metadata associated with the layer
SaveMetaDataAssociatedWithLayer(layer, it.GetRole(), &folder);
// Save the layer transform - relevant only for overlays
if(it.GetRole() == OVERLAY_ROLE)
{
this->WriteTransform(&folder, layer->GetITKTransform());
}
}
// Save the annotations in the workspace
Registry &ann_folder = preg.Folder("Annotations");
this->m_IRISImageData->GetAnnotations()->SaveAnnotations(ann_folder);
// Recursively search and delete empty folders
preg.CleanZeroSizeArrays();
preg.CleanEmptyFolders();
}
void IRISApplication::SaveProject(const std::string &proj_file)
{
// Header for ITK-SNAP projects
static const char *header =
"ITK-SNAP (itksnap.org) Project File\n"
"\n"
"This file can be moved/copied along with the images that it references\n"
"as long as the relative location of the images to the project file is \n"
"the same. Do not modify the SaveLocation entry, or this will not work.\n";
// Get the full name of the project file
std::string proj_file_full = itksys::SystemTools::CollapseFullPath(proj_file.c_str());
// Create a registry that will be used to save the project
Registry preg;
// Do the actual writing to the registry
SaveProjectToRegistry(preg, proj_file_full);
// Finally, save the registry
preg.WriteToXMLFile(proj_file_full.c_str(), header);
// Save the project filename
m_GlobalState->SetProjectFilename(proj_file_full.c_str());
// Update the history
m_SystemInterface->GetHistoryManager()->
UpdateHistory("Project", proj_file_full, false);
// Store the project registry
m_LastSavedProjectState = preg;
}
void IRISApplication::OpenProject(
const std::string &proj_file, IRISWarningList &warn)
{
// Load the registry file
Registry preg;
preg.ReadFromXMLFile(proj_file.c_str());
// Get the full name of the project file
std::string proj_file_full = itksys::SystemTools::CollapseFullPath(proj_file.c_str());
// Get the directory in which the project will be saved
std::string project_dir = itksys::SystemTools::GetParentDirectory(proj_file_full.c_str());
// Read the location where the file was saved initially
std::string project_save_dir = preg["SaveLocation"][""];
// If the locations are different, we will attempt to find relative paths first
bool moved = (project_save_dir != project_dir);
// Read all the layers
std::string key;
bool main_loaded = false;
for(int i = 0;
preg.HasFolder(key = Registry::Key("Layers.Layer[%03d]", i));
i++)
{
// Get the key for the next image
Registry &folder = preg.Folder(key);
// Read the role
LayerRole role = folder["Role"].GetEnum(
SNAPRegistryIO::GetEnumMapLayerRole(), NO_ROLE);
// Validate the role
if(role == MAIN_ROLE && i != 0)
throw IRISException("Layer %d in a project may not be of type 'Main Image'", i);
if(role != MAIN_ROLE && i == 0)
throw IRISException("Layer 0 in a project must be of type 'Main Image'");
if(role != MAIN_ROLE && role != LABEL_ROLE
&& role != OVERLAY_ROLE)
throw IRISException("Layer %d has an unrecognized type", i);
// Get the filenames for the layer
std::string layer_file_full = folder["AbsolutePath"][""];
// If the project has moved, try finding a relative location
if(moved)
{
std::string relative_path = itksys::SystemTools::RelativePath(
project_save_dir.c_str(), layer_file_full.c_str());
std::string moved_file_full = itksys::SystemTools::CollapseFullPath(
relative_path.c_str(), project_dir.c_str());
if(itksys::SystemTools::FileExists(moved_file_full.c_str(), true))
layer_file_full = moved_file_full;
}
// Load the IO hints for the image from the project - but only if this
// folder is actually present (otherwise some projects from before 2016
// will not load hints)
Registry *io_hints = NULL;
if(folder.HasFolder("IOHints"))
io_hints = &folder.Folder("IOHints");
// Load the image and its metadata
LoadImage(layer_file_full.c_str(), role, warn, &folder, io_hints);
// Check if the main has been loaded
if(role == MAIN_ROLE)
{
main_loaded = true;
}
}
// If main has not been loaded, throw an exception
if(!main_loaded)
throw IRISException("Empty or invalid project (main image not found in the project file).");
// Save the project filename
m_GlobalState->SetProjectFilename(proj_file_full.c_str());
// Update the history
m_SystemInterface->GetHistoryManager()->
UpdateHistory("Project", proj_file_full, false);
// Load the annotations
if(preg.HasFolder("Annotations"))
{
Registry &ann_folder = preg.Folder("Annotations");
m_IRISImageData->GetAnnotations()->LoadAnnotations(ann_folder);
}
// Simulate saving the project into a registy that will be cached. This
// allows us to check later whether the project state has changed.
SaveProjectToRegistry(m_LastSavedProjectState, proj_file_full);
}
bool IRISApplication::IsProjectUnsaved()
{
// Place the current state of the project into the registry
Registry reg_current;
SaveProjectToRegistry(reg_current, m_GlobalState->GetProjectFilename());
// Compare with the last saved state
return (reg_current != m_LastSavedProjectState);
}
bool IRISApplication::IsProjectFile(const char *filename)
{
// This is pretty weak. What we really need is XML validation to check
// that this is a real registry, and then some minimal check to see that
// this is a project file
try
{
Registry preg;
preg.ReadFromXMLFile(filename);
return (preg.HasEntry("SaveLocation") && preg.HasEntry("Version"));
}
catch(...)
{
return false;
}
}
void IRISApplication::SaveAnnotations(const char *filename)
{
Registry reg;
m_CurrentImageData->GetAnnotations()->SaveAnnotations(reg);
reg.WriteToXMLFile(filename);
m_SystemInterface->GetHistoryManager()->UpdateHistory("Annotations", filename, true);
}
void IRISApplication::LoadAnnotations(const char *filename)
{
Registry reg;
reg.ReadFromXMLFile(filename);
m_CurrentImageData->GetAnnotations()->LoadAnnotations(reg);
m_SystemInterface->GetHistoryManager()->UpdateHistory("Annotations", filename, true);
}
void IRISApplication::Quit()
{
if(IsSnakeModeActive())
{
// Before quitting the application, we need to exit snake mode
SetCurrentImageDataToIRIS();
ReleaseSNAPImageData();
}
// Delete all the overlays
LayerIterator itovl = m_CurrentImageData->GetLayers(OVERLAY_ROLE);
while(!itovl.IsAtEnd())
{
UnloadOverlay(itovl.GetLayer());
itovl = m_CurrentImageData->GetLayers(OVERLAY_ROLE);
}
// Unload the main image
UnloadMainImage();
}
bool IRISApplication::IsMainImageLoaded() const
{
return this->GetCurrentImageData()->IsMainLoaded();
}
/*
void
IRISApplication
::LoadRGBImageFile(const char *filename, const bool isMain)
{
// Load the settings associated with this file
Registry regFull;
m_SystemInterface->FindRegistryAssociatedWithFile(filename, regFull);
// Get the folder dealing with grey image properties
Registry ®RGB = regFull.Folder("Files.RGB");
// Create the image reader
GuidedImageIO<RGBType> io;
// Load the image (exception may occur here)
RGBImageType::Pointer imgRGB = io.ReadImage(filename, regRGB, false);
if (isMain)
{
// Set the image as the current main image
UpdateIRISRGBImage(imgRGB);
}
else
{
// Set the image as the overlay
UpdateIRISRGBOverlay(imgRGB);
}
// Save the filename for the UI
m_GlobalState->SetRGBFileName(filename);
}
*/
void
IRISApplication
::ReorientImage(vnl_matrix_fixed<double, 3, 3> inDirection)
{
// This should only be possible in IRIS mode
assert(m_CurrentImageData == m_IRISImageData);
// The main image should be loaded at this point
assert(m_CurrentImageData->IsMainLoaded());
// Perform reorientation in the current image data
m_CurrentImageData->SetDirectionMatrix(inDirection);
/*
// Compute a new coordinate transform object
ImageCoordinateGeometry icg(
inDirection, m_DisplayToAnatomyRAI,
m_CurrentImageData->GetMain()->GetSize());
// Send this coordinate transform to the image data
m_CurrentImageData->SetImageGeometry(icg);
*/
// Fire the pose change event
InvokeEvent(MainImagePoseChangeEvent());
}
void IRISApplication::LoadLabelDescriptions(const char *file)
{
// Read the labels from file
this->m_ColorLabelTable->LoadFromFile(file);
// Reset the current drawing and overlay labels
m_GlobalState->SetDrawingColorLabel(m_ColorLabelTable->GetFirstValidLabel());
m_GlobalState->SetDrawOverFilter(DrawOverFilter());
// Update the history
m_SystemInterface->GetHistoryManager()->
UpdateHistory("LabelDescriptions", file, true);
// We also want to reset the label history at this point, as these are
// very different labels
m_LabelUseHistory->Reset();
}
void IRISApplication::SaveLabelDescriptions(const char *file)
{
this->m_ColorLabelTable->SaveToFile(file);
m_SystemInterface->GetHistoryManager()->
UpdateHistory("LabelDescriptions", file, true);
}
bool IRISApplication::IsSnakeModeActive() const
{
return (m_CurrentImageData == m_SNAPImageData);
}
bool IRISApplication::IsSnakeModeLevelSetActive() const
{
return IsSnakeModeActive() && m_SNAPImageData->IsSnakeLoaded();
}
/*
void IRISApplication::ComputeSNAPSpeedImage(CommandType *progressCB)
{
assert(IsSnakeModeActive());
if(m_GlobalState->GetSnakeType() == EDGE_SNAKE)
{
m_SNAPImageData->DoEdgePreprocessing(progressCB);
}
else if(m_GlobalState->GetSnakeType() == IN_OUT_SNAKE)
{
m_SNAPImageData->DoInOutPreprocessing(progressCB);
}
// Mark the speed image as valid
m_GlobalState->SetSpeedValid(true);
InvokeEvent(SpeedImageChangedEvent());
}
*/
void IRISApplication::SetSnakeMode(SnakeType mode)
{
// We must be in snake mode
assert(IsSnakeModeActive());
// We can't be changing the snake type while there is an active preprocessing
// mode. This should never happen in the code, so we use an assert
assert(m_PreprocessingMode == PREPROCESS_NONE);
// If the mode has changed, some modifications are needed
if(mode != m_GlobalState->GetSnakeType())
{
// Set the actual snake mode
m_GlobalState->SetSnakeType(mode);
// Set the speed to invalud
m_GlobalState->SetSpeedValid(false);
// Set the snake parameters. TODO: see how we did this in the old
// snap and preserve the information!!!
m_GlobalState->SetSnakeParameters(
mode == IN_OUT_SNAKE ?
SnakeParameters::GetDefaultInOutParameters() :
SnakeParameters::GetDefaultEdgeParameters());
// Clear the speed layer
m_SNAPImageData->InitializeSpeed();
}
}
SnakeType IRISApplication::GetSnakeMode() const
{
return m_GlobalState->GetSnakeType();
}
void IRISApplication::LeaveGMMPreprocessingMode()
{
m_GMMPreviewWrapper->DetachInputsAndOutputs();
// Before deleting the clustering engine, we store the mixture model
// The smart pointer mechanism makes sure the mixture model lives on
// even if the clustering engine is deleted
m_LastUsedMixtureModel = m_ClusteringEngine->GetMixtureModel();
// Update the m_time on the mixture model, so in the future we can test
// if it is current
m_LastUsedMixtureModel->Modified();
// Deallocate whatever was created for GMM processing
m_ClusteringEngine = NULL;
}
void IRISApplication::EnterGMMPreprocessingMode()
{
// Create a new clustering engine with some samples
m_ClusteringEngine = UnsupervisedClustering::New();
m_ClusteringEngine->SetDataSource(m_SNAPImageData);
m_ClusteringEngine->InitializeClusters();
// Check if the last used mixture model matches the number of componetns
bool can_use_saved_mixture =
(m_LastUsedMixtureModel &&
m_LastUsedMixtureModel->GetNumberOfComponents() ==
m_ClusteringEngine->GetMixtureModel()->GetNumberOfComponents());
if(can_use_saved_mixture)
{
// Check if the m-time on any of the images in IRISImageData has been
// updated, indicating that this is new/different data
for(LayerIterator lit = m_IRISImageData->GetLayers(MAIN_ROLE | OVERLAY_ROLE);
!lit.IsAtEnd(); ++lit)
{
if(lit.GetLayer()->GetImageBase()->GetMTime() > m_LastUsedMixtureModel->GetMTime())
{
can_use_saved_mixture = false;
break;
}
}
// If the timestamp check has been passed, we can use the original mixture.
// TODO: clean up this code, currently it does a lot of unnecessary calls to Kmeans++
if(can_use_saved_mixture)
{
m_ClusteringEngine->SetNumberOfClusters(m_LastUsedMixtureModel->GetNumberOfGaussians());
m_ClusteringEngine->InitializeClusters();
m_ClusteringEngine->SetMixtureModel(m_LastUsedMixtureModel);
}
}
m_GMMPreviewWrapper->AttachInputs(m_SNAPImageData);
m_GMMPreviewWrapper->AttachOutputWrapper(m_SNAPImageData->GetSpeed());
m_GMMPreviewWrapper->SetParameters(m_ClusteringEngine->GetMixtureModel());
}
void IRISApplication::EnterRandomForestPreprocessingMode()
{
// Create a random forest classification engine
m_ClassificationEngine = RFEngine::New();
m_ClassificationEngine->SetDataSource(m_SNAPImageData);
// Check if we can reuse the classifier from the last run
bool can_use_saved_classifier =
(m_LastUsedRFClassifier &&
m_LastUsedRFClassifierComponents ==
m_ClassificationEngine->GetNumberOfComponents() &&
m_LastUsedRFClassifier->IsValidClassifier());
if(can_use_saved_classifier)
{
// Check if the m-time on any of the images in IRISImageData has been
// updated, indicating that this is new/different data
for(LayerIterator lit = m_IRISImageData->GetLayers(MAIN_ROLE | OVERLAY_ROLE);
!lit.IsAtEnd(); ++lit)
{
if(lit.GetLayer()->GetImageBase()->GetMTime() > m_LastUsedRFClassifier->GetMTime())
{
can_use_saved_classifier = false;
break;
}
}
if(can_use_saved_classifier)
{
m_ClassificationEngine->SetClassifier(m_LastUsedRFClassifier);
}
}
// Connect to the preview wrapper
m_RandomForestPreviewWrapper->AttachInputs(m_SNAPImageData);
m_RandomForestPreviewWrapper->AttachOutputWrapper(m_SNAPImageData->GetSpeed());
m_RandomForestPreviewWrapper->SetParameters(m_ClassificationEngine->GetClassifier());
// Switch segmentation to examples
m_SNAPImageData->SwitchLabelImageToExamples();
InvokeEvent(SegmentationChangeEvent());
}
#include "RandomForestClassifier.h"
void IRISApplication::LeaveRandomForestPreprocessingMode()
{
m_RandomForestPreviewWrapper->DetachInputsAndOutputs();
// Before deleting the classification engine, we store the classifier
// The smart pointer mechanism makes sure the classifier lives on
// even if the engine is deleted
m_LastUsedRFClassifier = m_ClassificationEngine->GetClassifier();
m_LastUsedRFClassifierComponents = m_ClassificationEngine->GetNumberOfComponents();
// Update the m_time on the classifier, so in the future we can test
// if it is current
m_LastUsedRFClassifier->Modified();
// TODO: delete this code
// m_RandomForestPreviewWrapper->SetParameters(NULL);
// Clear the classification engine
m_ClassificationEngine = NULL;
// Switch segmentation to examples
m_SNAPImageData->SwitchLabelImageToMainSegmentation();
InvokeEvent(SegmentationChangeEvent());
}
void IRISApplication::EnterPreprocessingMode(PreprocessingMode mode)
{
// Do not reenter the same mode
if(mode == m_PreprocessingMode)
return;
// Detach the current mode
switch(m_PreprocessingMode)
{
case PREPROCESS_THRESHOLD:
m_ThresholdPreviewWrapper->DetachInputsAndOutputs();
break;
case PREPROCESS_EDGE:
m_EdgePreviewWrapper->DetachInputsAndOutputs();
break;
case PREPROCESS_GMM:
this->LeaveGMMPreprocessingMode();
break;
case PREPROCESS_RF:
this->LeaveRandomForestPreprocessingMode();
break;
default:
break;
}
// As we enter the new mode, we also determine what the target snake mode should be
// (snake mode is either edge == Casseles or input = Zhu+Yuille)
SnakeType target_snake_type = m_GlobalState->GetSnakeType();
// Enter the new mode
switch(mode)
{
case PREPROCESS_THRESHOLD:
m_ThresholdPreviewWrapper->AttachInputs(m_SNAPImageData);
m_ThresholdPreviewWrapper->AttachOutputWrapper(m_SNAPImageData->GetSpeed());
target_snake_type = IN_OUT_SNAKE;
break;
case PREPROCESS_EDGE:
m_EdgePreviewWrapper->AttachInputs(m_SNAPImageData);
m_EdgePreviewWrapper->AttachOutputWrapper(m_SNAPImageData->GetSpeed());
target_snake_type = EDGE_SNAKE;
break;
case PREPROCESS_GMM:
this->EnterGMMPreprocessingMode();
target_snake_type = IN_OUT_SNAKE;
break;
case PREPROCESS_RF:
this->EnterRandomForestPreprocessingMode();
target_snake_type = IN_OUT_SNAKE;
break;
default:
break;
}
m_PreprocessingMode = mode;
// Reset the current snake parameters if necessary
if(m_GlobalState->GetSnakeType() != target_snake_type)
{
m_GlobalState->SetSnakeType(target_snake_type);
m_GlobalState->SetSnakeParameters(
target_snake_type == EDGE_SNAKE
? SnakeParameters::GetDefaultEdgeParameters()
: SnakeParameters::GetDefaultInOutParameters());
}
// Record the mode if it's not a bogus mode
if(mode != PREPROCESS_NONE)
m_GlobalState->SetLastUsedPreprocessingMode(mode);
}
PreprocessingMode IRISApplication::GetPreprocessingMode() const
{
return m_PreprocessingMode;
}
AbstractSlicePreviewFilterWrapper *
IRISApplication
::GetPreprocessingFilterPreviewer(PreprocessingMode mode)
{
switch(mode)
{
case PREPROCESS_THRESHOLD:
return m_ThresholdPreviewWrapper;
case PREPROCESS_EDGE:
return m_EdgePreviewWrapper;
case PREPROCESS_GMM:
return m_GMMPreviewWrapper;
case PREPROCESS_RF:
return m_RandomForestPreviewWrapper;
default:
return NULL;
}
}
void
IRISApplication
::ApplyCurrentPreprocessingModeToSpeedVolume(itk::Command *progress)
{
AbstractSlicePreviewFilterWrapper *wrapper =
this->GetPreprocessingFilterPreviewer(m_PreprocessingMode);
if(wrapper)
{
wrapper->ComputeOutputVolume(progress);
m_GlobalState->SetSpeedValid(true);
}
}
IRISApplication::BubbleArray&
IRISApplication::GetBubbleArray()
{
return m_BubbleArray;
}
bool IRISApplication::InitializeActiveContourPipeline()
{
// Initialize the segmentation with current bubbles and parameters
if(m_SNAPImageData->InitializeSegmentation(
m_GlobalState->GetSnakeParameters(),
m_BubbleArray, m_GlobalState->GetDrawingColorLabel()))
{
// Fire an event indicating the layers have changed
InvokeEvent(LayerChangeEvent());
return true;
}
return false;
}
|