File: SNAPImageData.cxx

package info (click to toggle)
itksnap 3.6.0-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 22,132 kB
  • sloc: cpp: 91,089; ansic: 1,994; sh: 327; makefile: 16
file content (660 lines) | stat: -rw-r--r-- 18,598 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
/*=========================================================================

  Program:   ITK-SNAP
  Module:    $RCSfile: SNAPImageData.cxx,v $
  Language:  C++
  Date:      $Date: 2011/04/18 17:35:30 $
  Version:   $Revision: 1.11 $
  Copyright (c) 2007 Paul A. Yushkevich
  
  This file is part of ITK-SNAP 

  ITK-SNAP is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.
 
  You should have received a copy of the GNU General Public License
  along with this program.  If not, see <http://www.gnu.org/licenses/>.

  -----

  Copyright (c) 2003 Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

  This software is distributed WITHOUT ANY WARRANTY; without even
  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
  PURPOSE.  See the above copyright notices for more information. 

=========================================================================*/
// Borland compiler is very lazy so we need to instantiate the template
//  by hand 
#if defined(__BORLANDC__)
#include "SNAPBorlandDummyTypes.h"
#endif

#include "SNAPLevelSetDriver.h"
#include "itkGroupSpatialObject.h"
#include "itkEllipseSpatialObject.h"
#include "itkSpatialObjectToImageFilter.h"
#include "itkMaximumImageFilter.h"
#include "itkSubtractImageFilter.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkFastMutexLock.h"

#include "SmoothBinaryThresholdImageFilter.h"
#include "GlobalState.h"
#include "EdgePreprocessingImageFilter.h"
#include "IRISVectorTypesToITKConversion.h"
#include "IRISException.h"
#include "IRISApplication.h"
#include "ThresholdSettings.h"
#include "ColorMap.h"
#include "SNAPImageData.h"

#include "SlicePreviewFilterWrapper.h"
#include "PreprocessingFilterConfigTraits.h"


SNAPImageData
::SNAPImageData()
{
  // Set the names of the wrapeprs

  // Initialize the level set driver to NULL
  m_LevelSetDriver = NULL;

  // Set the initial label color
  m_SnakeColorLabel = 0;

  // Create the mutex lock
  m_LevelSetPipelineMutexLock = itk::FastMutexLock::New();

  m_CompressedAlternateLabelImage = NULL;
}


SNAPImageData
::~SNAPImageData() 
{
  if(m_LevelSetDriver)
    delete m_LevelSetDriver;

  if(m_CompressedAlternateLabelImage)
    delete m_CompressedAlternateLabelImage;
}

void 
SNAPImageData
::InitializeSpeed()
{
  // The Grey image wrapper should be present
  assert(m_MainImageWrapper->IsInitialized());

  // Intialize the speed based on the current grey image
  if(m_SpeedWrapper.IsNull())
    {
    m_SpeedWrapper = SpeedImageWrapper::New();
    m_SpeedWrapper->SetDefaultNickname("Speed Image");
    PushBackImageWrapper(SNAP_ROLE, m_SpeedWrapper.GetPointer());
    }

  m_SpeedWrapper->InitializeToWrapper(m_MainImageWrapper, (GreyType) 0);
  InvokeEvent(LayerChangeEvent());

  // Here or after it's computed?
  m_SpeedWrapper->SetAlpha(1.0);
}

SpeedImageWrapper* 
SNAPImageData
::GetSpeed() 
{
  // Make sure it exists
  assert(IsSpeedLoaded());
  return m_SpeedWrapper;
}

bool 
SNAPImageData
::IsSpeedLoaded() 
{
  return m_SpeedWrapper && m_SpeedWrapper->IsInitialized();
}

LevelSetImageWrapper* 
SNAPImageData
::GetSnake() 
{
  assert(IsSnakeLoaded());
  return m_SnakeWrapper;
}

bool 
SNAPImageData
::IsSnakeLoaded() 
{
  return (m_SnakeWrapper && m_SnakeWrapper->IsInitialized());
}


bool
SNAPImageData
::InitializeSegmentation(
  const SnakeParameters &parameters, 
  const std::vector<Bubble> &bubbles, unsigned int labelColor)
{
  assert(IsSpeedLoaded());

  // Inside/outside values
  const float INSIDE_VALUE = -4.0, OUTSIDE_VALUE = 4.0;
  
  // Store the label color
  m_SnakeColorLabel = labelColor;

  // Types of images used here
  typedef itk::Image<float,3> FloatImageType;

  // If a initialization wrapper does not exist, create it
  if(!m_SnakeWrapper)
    {
    m_SnakeWrapper = LevelSetImageWrapper::New();
    m_SnakeWrapper->SetDefaultNickname("Evolving Contour");
    PushBackImageWrapper(SNAP_ROLE, m_SnakeWrapper.GetPointer());
    }

  // Initialize the level set initialization wrapper, set pixels to OUTSIDE_VALUE
  m_SnakeWrapper->InitializeToWrapper(m_MainImageWrapper, OUTSIDE_VALUE);

  InvokeEvent(LayerChangeEvent());

  // Create the initial level set image by merging the segmentation data from
  // IRIS region with the bubbles
  LabelImageType::Pointer imgInput = m_LabelWrapper->GetImage();
  FloatImageType::Pointer imgLevelSet = m_SnakeWrapper->GetImage();

  // Get the target region. This really should be a region relative to the IRIS image
  // data, not an image into a needless copy of an IRIS region.
  LabelImageType::RegionType region = imgInput->GetBufferedRegion();

  // Create iterators to perform the copy
  typedef itk::ImageRegionConstIterator<LabelImageType> SourceIterator;
  typedef itk::ImageRegionIteratorWithIndex<FloatImageType> TargetIterator;
  SourceIterator itSource(imgInput,region);
  TargetIterator itTarget(imgLevelSet,region);

  // During the copy loop, compute the extents of the initialization
  Vector3l bbLower = region.GetSize();
  Vector3l bbUpper = region.GetIndex();

  unsigned long nInitVoxels = 0;

  // Convert the input label image into a binary function whose 0 level set
  // is the boundary of the current label's region
  while(!itSource.IsAtEnd())
    {
    if(itSource.Value() == m_SnakeColorLabel)
      {
      // Expand the bounding box accordingly
      Vector3l point = itTarget.GetIndex();
      bbLower = vector_min(bbLower,point);
      bbUpper = vector_max(bbUpper,point);
      
      // Increase the number of initialization voxels
      nInitVoxels++;

      // Set the target value to inside
      itTarget.Value() = INSIDE_VALUE;
      }

    // Go to the next pixel
    ++itTarget; ++itSource;
    }

  // Fill in the bubbles by computing their
  for(unsigned int iBubble=0; iBubble < bubbles.size(); iBubble++)
    {
    // Compute the extents of the bubble
    typedef itk::Point<double,3> PointType;
    PointType ptLower,ptUpper,ptCenter;

    // Compute the physical position of the bubble center
    imgLevelSet->TransformIndexToPhysicalPoint(
      to_itkIndex(bubbles[iBubble].center),ptCenter);

    // Extents of the bounding box
    FloatImageType::IndexType idxLower = to_itkIndex(bubbles[iBubble].center);
    FloatImageType::IndexType idxUpper = to_itkIndex(bubbles[iBubble].center);

    // Map all vertices in a cube of radius r around the physical center of
    // the bubble into index space, and compute a bounding box
    for(int jx=-1; jx<=1; jx+=2) for(int jy=-1; jy<=1; jy+=2) for(int jz=-1; jz<=1; jz+=2)
      {
      PointType ptTest;
      ptTest[0] = ptCenter[0] + jx * bubbles[iBubble].radius;
      ptTest[1] = ptCenter[1] + jy * bubbles[iBubble].radius;
      ptTest[2] = ptCenter[2] + jz * bubbles[iBubble].radius;

      FloatImageType::IndexType idxTest;
      imgLevelSet->TransformPhysicalPointToIndex(ptTest,idxTest);

      for(unsigned int k=0; k<3; k++)
        {
        if(idxLower[k] > idxTest[k]) 
          idxLower[k] = idxTest[k];
        if(idxUpper[k] < idxTest[k]) 
          idxUpper[k] = idxTest[k];
        }
      }

    // Create a region
    FloatImageType::SizeType szBubble;
    szBubble[0] = 1 + idxUpper[0] - idxLower[0];
    szBubble[1] = 1 + idxUpper[1] - idxLower[1];
    szBubble[2] = 1 + idxUpper[2] - idxLower[2];
    FloatImageType::RegionType regBubble(idxLower,szBubble);
    regBubble.Crop(region);

    // Stretch the overall bounding box if necessary
    bbLower = vector_min(bbLower,Vector3l(idxLower));
    bbUpper = vector_max(bbUpper,Vector3l(idxUpper));

    // Create an iterator with an index to fill out the bubble
    TargetIterator itThisBubble(imgLevelSet, regBubble);

    // Need the squared radius for this
    float r2 = bubbles[iBubble].radius * bubbles[iBubble].radius;

    // Fill in the bubble
    while(!itThisBubble.IsAtEnd())
      {
      PointType pt; 
      imgLevelSet->TransformIndexToPhysicalPoint(itThisBubble.GetIndex(),pt);
      
      if(pt.SquaredEuclideanDistanceTo(ptCenter) <= r2)
        {
        itThisBubble.Value() = INSIDE_VALUE;
        nInitVoxels++;
        }

      ++itThisBubble;
      }
    }

  // At this point, we should have an initialization image and a bounding
  // box in bbLower and bbUpper.  End the routine if there are no initialization
  // voxels
  if (nInitVoxels == 0) 
    {
    this->RemoveImageWrapper(SNAP_ROLE, m_SnakeWrapper);
    m_SnakeWrapper = NULL;
    InvokeEvent(LayerChangeEvent());
    return false;
    }

  // Make sure that the correct color label is being used
  // TODO: restore this functionality once you figure out how to display
  // level set representations properly !!!
  // m_SnakeInitializationWrapper->SetColorLabel(m_ColorLabel);

  // Initialize the snake driver
  InitalizeSnakeDriver(parameters);

  // Success
  return true;
}

void
SNAPImageData
::SetExternalAdvectionField( 
  FloatImageType *imgX, FloatImageType *imgY, FloatImageType *imgZ)
{
  m_ExternalAdvectionField = VectorImageType::New();
  m_ExternalAdvectionField->SetRegions(
    m_SpeedWrapper->GetImage()->GetBufferedRegion());
  m_ExternalAdvectionField->Allocate();
  m_ExternalAdvectionField->SetSpacing(
    m_MainImageWrapper->GetImageBase()->GetSpacing());
  m_ExternalAdvectionField->SetOrigin(
    m_MainImageWrapper->GetImageBase()->GetOrigin());

  typedef itk::ImageRegionConstIterator<FloatImageType> Iterator;
  Iterator itX(imgX,imgX->GetBufferedRegion());
  Iterator itY(imgY,imgY->GetBufferedRegion());
  Iterator itZ(imgZ,imgZ->GetBufferedRegion());

  typedef itk::ImageRegionIterator<VectorImageType> Vectorator;
  Vectorator itTarget(
    m_ExternalAdvectionField,
    m_ExternalAdvectionField->GetBufferedRegion());

  while(!itTarget.IsAtEnd())
    {
    VectorType v;
    
    v[0] = itX.Get();
    v[1] = itY.Get();
    v[2] = itZ.Get();

    itTarget.Set(v);
    
    ++itTarget; 
    ++itX; ++itY; ++itZ;
    }
}
  

void 
SNAPImageData
::InitalizeSnakeDriver(const SnakeParameters &p) 
{
  // Create a new level set driver, deleting the current one if it's there
  if (m_LevelSetDriver) { delete m_LevelSetDriver; }
    
  // This is a good place to check that the parameters are valid
  if(p.GetSnakeType()  == SnakeParameters::REGION_SNAKE)
    {
    // There is no advection 
    assert(p.GetAdvectionWeight() == 0);

    // There is no curvature speed
    assert(p.GetCurvatureSpeedExponent() == -1);

    // Propagation is modulated by probability
    assert(p.GetPropagationSpeedExponent() == 1);

    // There is no smoothing speed
    assert(p.GetLaplacianSpeedExponent() == 0);
    }

  // Copy the configuration parameters
  m_CurrentSnakeParameters = p;

  // Enter a thread-safe section
  m_LevelSetPipelineMutexLock->Lock();

  // Initialize the snake driver and pass the parameters
  m_LevelSetDriver = new SNAPLevelSetDriver3d(
    m_SnakeWrapper->GetImage(),
    m_SpeedWrapper->GetImage(),
    m_CurrentSnakeParameters,
    m_ExternalAdvectionField);

  // This makes sure that m_SnakeWrapper->IsDrawable() returns true
  m_SnakeWrapper->SetImage(m_LevelSetDriver->GetCurrentState());
  m_SnakeWrapper->GetImage()->Modified();

  // Finish thread-safe section
  m_LevelSetPipelineMutexLock->Unlock();

  // Fire events (layers changed and level set image changed)
  this->InvokeEvent(LayerChangeEvent());
  this->InvokeEvent(LevelSetImageChangeEvent());

  // Why use segmentation's alpha?
  m_SnakeWrapper->SetAlpha(
        (unsigned char)(255 * m_Parent->GetGlobalState()->GetSegmentationAlpha()));

}

void 
SNAPImageData
::RunSegmentation(unsigned int nIterations)
{
  // Should be in level set mode
  assert(m_LevelSetDriver);

  // Pass through to the level set driver

  // Enter a thread-safe section
  m_LevelSetPipelineMutexLock->Lock();

  // clock_t c1 = clock();
  m_LevelSetDriver->Run(nIterations);
  // clock_t c2 = clock();

  // Leave a thread-safe section
  m_LevelSetPipelineMutexLock->Unlock();

  /*
  std::cout << (c2 - c1) * 1.0 / (CLOCKS_PER_SEC * nIterations)
            << " sec per iteration." << std::endl; */

  // Fire the update event
  this->InvokeEvent(LevelSetImageChangeEvent());
}

bool
SNAPImageData
::IsEvolutionConverged()
{
  // Make the method reentrant
  itk::MutexLockHolder<itk::FastMutexLock> holder(*m_LevelSetPipelineMutexLock);

  return m_LevelSetDriver->IsEvolutionConverged();
}

void 
SNAPImageData
::RestartSegmentation()
{
  // Should be in level set mode
  assert(m_LevelSetDriver);

  // Enter a thread-safe section
  m_LevelSetPipelineMutexLock->Lock();

  // Pass through to the level set driver
  m_LevelSetDriver->Restart();

  // Leave a thread-safe section
  m_LevelSetPipelineMutexLock->Unlock();

  // Fire the update event
  this->InvokeEvent(LevelSetImageChangeEvent());
}

void 
SNAPImageData
::TerminateSegmentation()
{
  // Should be in level set mode
  assert(m_LevelSetDriver);

  // Enter a thread-safe section
  m_LevelSetPipelineMutexLock->Lock();

  // Delete the level set driver and all the problems that go along with it
  delete m_LevelSetDriver; m_LevelSetDriver = NULL;

  // Leave a thread-safe section
  m_LevelSetPipelineMutexLock->Unlock();

  // Fire the update event
  this->InvokeEvent(LevelSetImageChangeEvent());
}

void 
SNAPImageData
::SetSegmentationParameters(const SnakeParameters &parameters)
{
  // Should be in level set mode
  assert(m_LevelSetDriver);

  // Pass through to the level set driver
  m_LevelSetDriver->SetSnakeParameters(parameters);
}

unsigned int 
SNAPImageData::
GetElapsedSegmentationIterations() const
{
  return m_LevelSetDriver->GetElapsedIterations();
}

SNAPImageData::LevelSetImageType *
SNAPImageData
::GetLevelSetImage()
{
  assert(m_LevelSetDriver);
  return m_LevelSetDriver->GetCurrentState();
}

SNAPLevelSetDriver<3>::LevelSetFunctionType *
SNAPImageData
::GetLevelSetFunction()
{
  return m_LevelSetDriver->GetLevelSetFunction();
}

void SNAPImageData::SwapLabelImageWithCompressedAlternative()
{
  // Create a compressed version of the current segmentation
  CompressedLabelImageType *save = new CompressedLabelImageType();
  LabelImageWrapper *liw = this->GetSegmentation();
  for(LabelImageWrapper::ConstIterator iter(liw->GetImage(), liw->GetBufferedRegion());
      !iter.IsAtEnd(); ++iter)
    {
    save->Encode(iter.Value());
    }
  save->FinishEncoding();

  // Clear the undo manager
  this->m_UndoManager.Clear();

  // Decompress the currently saved alternative
  if(m_CompressedAlternateLabelImage)
    {
    LabelImageWrapper::Iterator it_write(liw->GetImage(), liw->GetBufferedRegion());
    for(size_t i = 0; i < m_CompressedAlternateLabelImage->GetNumberOfRLEs(); ++i)
      {
      LabelType value = m_CompressedAlternateLabelImage->GetRLEValue(i);
      for(size_t j = 0; j < m_CompressedAlternateLabelImage->GetRLELength(i); ++j, ++it_write)
        it_write.Set(value);
      }
    }
  else
    {
    liw->GetImage()->FillBuffer(0);
    }

  liw->GetImage()->Modified();
  m_CompressedAlternateLabelImage = save;
}

void SNAPImageData::SwitchLabelImageToExamples()
{
  this->SwapLabelImageWithCompressedAlternative();
  m_LabelImageInExampleMode = true;
}

void SNAPImageData::SwitchLabelImageToMainSegmentation()
{
  this->SwapLabelImageWithCompressedAlternative();
  m_LabelImageInExampleMode = false;
}

void
SNAPImageData
::InitializeToROI(GenericImageData *source,
                  const SNAPSegmentationROISettings &roi,
                  itk::Command *progressCommand)
{
  // Get the source main wrapper
  ImageWrapperBase *srcMain = source->GetMain();

  // Extract the ROI into a generic type
  SmartPtr<ImageWrapperBase> roiMain = srcMain->ExtractROI(roi, progressCommand);

  // Assign the new wrapper to the target
  this->SetMainImageInternal(roiMain);

  // Copy metadata
  this->CopyLayerMetadata(this->GetMain(), source->GetMain());

  // Repeat all of this for the overlays
  for(LayerIterator lit = source->GetLayers(OVERLAY_ROLE);
      !lit.IsAtEnd(); ++lit)
    {
    // Do the same for all the anatomic wrappers
    SmartPtr<ImageWrapperBase> roiOvl =
        lit.GetLayer()->ExtractROI(roi, progressCommand);

    // Add the overlay
    this->AddOverlayInternal(roiOvl);

    // Copy metadata
    this->CopyLayerMetadata(this->GetLastOverlay(), lit.GetLayer());
    }

  // Destroy the alternate image if there is none or if the ROI settings have changed
  if(m_CompressedAlternateLabelImage && m_ROISettings != roi)
    {
    delete m_CompressedAlternateLabelImage;
    m_CompressedAlternateLabelImage = NULL;
    }

  // Cache the ROI settings
  m_ROISettings = roi;
}

void SNAPImageData::CopyLayerMetadata(
    ImageWrapperBase *target, ImageWrapperBase *source)
{
  // Nickname
  target->SetDefaultNickname(source->GetNickname());

  // This is a little bit of overhead, but not enough to be a big deal:
  // we just save the display mapping to a Registry and then restore it
  // in the target wrapper.
  Registry folder;
  source->GetDisplayMapping()->Save(folder);
  target->GetDisplayMapping()->Restore(folder);

  // Threshold settings. These should be copied for each scalar component
  if(source->IsScalar())
    {
    target->SetUserData("ThresholdSettings", source->GetUserData("ThresholdSettings"));
    }
  else
    {
    // Copy threshold settings for all the scalar components
    VectorImageWrapperBase *v_source = dynamic_cast<VectorImageWrapperBase *>(source);
    VectorImageWrapperBase *v_target = dynamic_cast<VectorImageWrapperBase *>(target);

    for(ScalarRepresentationIterator it(v_source); !it.IsAtEnd(); ++it)
      {
      ImageWrapperBase *c_source = v_source->GetScalarRepresentation(it);
      ImageWrapperBase *c_target = v_target->GetScalarRepresentation(it);
      c_target->SetUserData("ThresholdSettings", c_source->GetUserData("ThresholdSettings"));
      }
    }

  // TODO: alpha, stickiness?
}


void SNAPImageData::UnloadAll()
{
  // Unload all the data
  this->UnloadOverlays();
  this->UnloadMainImage();

  // We need to unload all the SNAP layers
  while(this->m_Wrappers[SNAP_ROLE].size())
    PopBackImageWrapper(SNAP_ROLE);
  m_SpeedWrapper = NULL;
  m_SnakeWrapper = NULL;

  InvokeEvent(LayerChangeEvent());
}