1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
|
#ifndef IMAGEWRAPPERBASE_H
#define IMAGEWRAPPERBASE_H
#include "SNAPCommon.h"
#include "ImageCoordinateTransform.h"
#include "itkImageRegion.h"
#include "itkObject.h"
#include "SNAPEvents.h"
namespace itk {
template <unsigned int VDim> class ImageBase;
template <class TPixel, unsigned int VDim> class Image;
template <class TPixel, unsigned int VDim> class VectorImage;
template <class TPixel> class RGBAPixel;
template <class TOutputImage> class ImageSource;
template <class TScalar, unsigned int V1, unsigned int V2> class Transform;
namespace Statistics {
class DenseFrequencyContainer;
template <class TReal, unsigned int VDim, class TContainer> class Histogram;
}
}
class ScalarImageWrapperBase;
class VectorImageWrapperBase;
class IntensityCurveInterface;
class ScalarImageHistogram;
class ColorMap;
class ImageCoordinateGeometry;
class AbstractNativeIntensityMapping;
class AbstractDisplayMappingPolicy;
class SNAPSegmentationROISettings;
class GuidedNativeImageIO;
class Registry;
class vtkImageImport;
struct IRISDisplayGeometry;
/**
* Supported ways of extracting a scalar value from vector-valued data.
* These modes allow the image to be cast to a scalar image and used in
* single-modality pipelines
*/
enum ScalarRepresentation
{
SCALAR_REP_COMPONENT = 0,
SCALAR_REP_MAGNITUDE,
SCALAR_REP_MAX,
SCALAR_REP_AVERAGE,
NUMBER_OF_SCALAR_REPS
};
/**
\class ImageWrapperBase
\brief Abstract parent class for all image wrappers
This class is at the head of the ImageWrapper hierarchy. In fact, there are
two parallel hierarchies: the untyped hierarchy (xxxWrapperBase) and the
hierarchy templated over a type (xxxWrapper).
The idea is that most SNAP code will work with the untyped hierarches. Thus,
the code will not know what the underlying format of the image is. The typed
hierarchy is invisible to most of the SNAP classes, and accessed on special
occasions, where the raw data of the image is needed.
*/
class ImageWrapperBase : public itk::Object
{
public:
// Definition for the display slice type
typedef itk::RGBAPixel<unsigned char> DisplayPixelType;
typedef itk::Image<DisplayPixelType,2> DisplaySliceType;
typedef SmartPtr<DisplaySliceType> DisplaySlicePointer;
// Image base
typedef itk::ImageBase<3> ImageBaseType;
// Transform matrices
typedef vnl_matrix_fixed<double, 4, 4> TransformType;
// ITK's coordinate transform (rigid, affine, etc)
typedef itk::Transform<double, 3, 3> ITKTransformType;
/**
* The image wrapper fires a WrapperMetadataChangeEvent when properties
* such as nickname are modified. It fires a WrapperDisplayMappingChangeEvent
* when the factors affecting the mapping from internal data to the slice
* display (e.g., color map) are modified.
*/
FIRES(WrapperMetadataChangeEvent)
FIRES(WrapperDisplayMappingChangeEvent)
virtual ~ImageWrapperBase() { }
/**
Get a unique id for this wrapper. All wrappers ever created have
different ids.
*/
virtual unsigned long GetUniqueId() const = 0;
/**
* Every wrapper, whether it is a scalar wrapper or a vector wrapper, has a
* scalar representation. For scalar wrappers, this function just returns a
* pointer to itself. For vector wrappers, the behavior of this function
* depends on which scalar representation has been selected as the default
* scalar representation (e.g., one of the components, magnitude, max, mean).
*/
virtual ScalarImageWrapperBase *GetDefaultScalarRepresentation() = 0;
/**
* Get the parent wrapper for this wrapper. For 'normal' wrappers, this method
* returns NULL, indicating that the wrapper is a top-level wrapper. For derived
* wrappers (i.e., components and scalar representations of vector wrappers),
* this method returns the vector wrapper from which the wrapper is derived
*/
virtual ImageWrapperBase *GetParentWrapper() const = 0;
/** Set the parent wrapper */
virtual void SetParentWrapper(ImageWrapperBase *parent) = 0;
/** Get the coordinate transform for each display slice */
virtual const ImageCoordinateTransform *GetImageToDisplayTransform(
unsigned int) const = 0;
/**
* Set the coordinate transformation between the display coordinates and
* the anatomical coordinates. This affects the behavior of the slicers
*/
virtual void SetDisplayGeometry(const IRISDisplayGeometry &dispGeom) = 0;
/** Get the display to anatomy coordinate mapping */
virtual const IRISDisplayGeometry &GetDisplayGeometry() const = 0;
/** Set the direction matrix of the image */
virtual void SetDirectionMatrix(const vnl_matrix<double> &direction) = 0;
/**
* Set the image coordinate transform (origin, spacing, direction) to
* match those of a reference wrapper
*/
virtual void CopyImageCoordinateTransform(const ImageWrapperBase *source) = 0;
/**
* Get the image geometry from the wrapper. The image geometry captures
* the transforms between each of the display slices and the 3D image.
*/
virtual const ImageCoordinateGeometry &GetImageGeometry() const = 0;
/** Get the current slice index */
irisVirtualGetMacro(SliceIndex, Vector3ui)
/**
* Set the current slice index in all three dimensions. The index should
* be specified in the image coordinates, the slices will be generated
* in accordance with the transforms that are specified
*/
virtual void SetSliceIndex(const Vector3ui &) = 0;
/**
* Set the viewport rectangle onto which the three display slices
* will be rendered
*/
virtual void SetDisplayViewportGeometry(
unsigned int index,
const ImageBaseType *viewport_image) = 0;
/** Return some image info independently of pixel type */
irisVirtualGetMacro(ImageBase, ImageBaseType *)
/**
* Is the image initialized?
*/
irisVirtualIsMacro(Initialized)
/**
* If the image wrapper is an output of a preview pipeline, is the pipeline ready?
*/
irisVirtualIsMacro(PipelineReady)
irisVirtualSetMacro(PipelineReady, bool)
/** Is this image of scalar type? */
virtual bool IsScalar() const = 0;
/**
* Get the size of the image
*/
virtual Vector3ui GetSize() const = 0;
/** Get layer transparency */
irisVirtualSetMacro(Alpha, double)
/** Set layer transparency */
irisVirtualGetMacro(Alpha, double)
/**
* Get layer stickiness. A sticky layer always is shown 'on top' of other
* layers, e.g., the segmentation layer, or the level set image. A layer that
* is not sticky is shown in its own tile when the display is in tiled mode
*/
irisVirtualSetMacro(Sticky, bool)
/** Set layer stickiness */
irisVirtualIsMacro(Sticky)
/**
* Whether the layer is drawable. Some layers may be initialized, but not
* yet computed, in which case they should not yet be drawn.
*/
irisVirtualIsMacro(Drawable)
/**
* Whether the layer is initialized to use orthogonal slicing or non-orthogonal
* slicing. There are two slicing pipelines, one for the images whose slicing
* directions are parallel to the display planes, and one for the opposite case.
*/
irisVirtualIsMacro(SlicingOrthogonal)
/**
* Get the buffered region of the image
*/
virtual itk::ImageRegion<3> GetBufferedRegion() const = 0;
/**
* Extract a region of interest from the image wrapper, as a new wrapper of
* the same type
*/
virtual SmartPtr<ImageWrapperBase> ExtractROI(
const SNAPSegmentationROISettings &roi, itk::Command *progressCommand) const = 0;
/** Transform a voxel index into a spatial position */
virtual Vector3d TransformVoxelIndexToPosition(const Vector3i &iVoxel) const = 0;
/** Transform a voxel index into a spatial position */
virtual Vector3d TransformVoxelCIndexToPosition(const Vector3d &iVoxel) const = 0;
/** Transform spatial position to voxel continuous index (LPS) */
virtual Vector3d TransformPositionToVoxelCIndex(const Vector3d &vLPS) const = 0;
/** Transform spatial position to voxel index (LPS) */
virtual Vector3i TransformPositionToVoxelIndex(const Vector3d &vLPS) const = 0;
/** Transform a voxel index into NIFTI coordinates (RAS) */
virtual Vector3d TransformVoxelCIndexToNIFTICoordinates(const Vector3d &iVoxel) const = 0;
/** Transform NIFTI coordinates to a continuous voxel index */
virtual Vector3d TransformNIFTICoordinatesToVoxelCIndex(const Vector3d &vNifti) const = 0;
/** Get the NIFTI s-form matrix for this image */
irisVirtualGetMacro(NiftiSform, TransformType)
/** Get the inverse NIFTI s-form matrix for this image */
irisVirtualGetMacro(NiftiInvSform, TransformType)
/** Get a display slice correpsponding to the current index */
virtual DisplaySlicePointer GetDisplaySlice(unsigned int dim) = 0;
/** For each slicer, find out which image dimension does is slice along */
virtual unsigned int GetDisplaySliceImageAxis(unsigned int slice) = 0;
/** Get the number of voxels */
virtual size_t GetNumberOfVoxels() const = 0;
/** Get the number of components per voxel */
virtual size_t GetNumberOfComponents() const = 0;
/** Get voxel at index as an array of double components */
virtual void GetVoxelAsDouble(const Vector3ui &x, double *out) const = 0;
/** Get voxel at index as an array of double components */
virtual void GetVoxelAsDouble(const itk::Index<3> &idx, double *out) const = 0;
/** Get voxel intensity in native space. These methods are not recommended
for iterating over the entire image, since there is a virutal method
being resolved at each iteration. */
virtual void GetVoxelMappedToNative(const Vector3ui &vec, double *out) const = 0;
virtual void GetVoxelMappedToNative(const itk::Index<3> &idx, double *out) const = 0;
/** Return componentwise minimum cast to double, without mapping to native range */
virtual double GetImageMinAsDouble() = 0;
/** Return componentwise maximum cast to double, without mapping to native range */
virtual double GetImageMaxAsDouble() = 0;
/** Return componentwise minimum cast to double, after mapping to native range */
virtual double GetImageMinNative() = 0;
/** Return componentwise maximum cast to double, after mapping to native range */
virtual double GetImageMaxNative() = 0;
/**
Compute the image histogram. The histogram is cached inside of the
object, so repeated calls to this function with the same nBins parameter
will not require additional computation.
Calling with default parameter (0) will use the same number of bins that
is currently in the histogram (i.e., return/recompute current histogram).
If there is no current histogram, a default histogram with 128 entries
will be generated.
For multi-component data, the histogram is pooled over all components.
*/
virtual const ScalarImageHistogram *GetHistogram(size_t nBins) = 0;
/** Compute statistics over a run of voxels in the image starting at the index
* startIdx. Appends the statistics to a running sum and sum of squared. The
* statistics are returned in internal (not native mapped) format */
virtual void GetRunLengthIntensityStatistics(
const itk::ImageRegion<3> ®ion,
const itk::Index<3> &startIdx, long runlength,
double *out_sum, double *out_sumsq) const = 0;
/**
* This method returns a vector of values for the voxel under the cursor.
* This is the natural value or set of values that should be displayed to
* the user. The value depends on the current display mode. For scalar
* images, it's just the value of the voxel, but for multi-component images,
* it's the value of the selected component (if there is one) or the value
* of the multiple components when the mode is RGB. In the second parameter,
* the method returns the RGB appearance of the voxel under the cursor
*/
virtual void GetVoxelUnderCursorDisplayedValueAndAppearance(
vnl_vector<double> &out_value, DisplayPixelType &out_appearance) = 0;
/** Clear the data associated with storing an image */
virtual void Reset() = 0;
/**
* Get the mapping between the internal data type and the 'native' range,
* i.e., the range of values shown to the user. This may be a linear mapping
* or an identity mapping.
*/
virtual const AbstractNativeIntensityMapping *GetNativeIntensityMapping() const = 0;
/**
* Get the display mapping policy. This policy differs from wrapper to wrapper
* and may involve using color labels or color maps.
*/
virtual AbstractDisplayMappingPolicy *GetDisplayMapping() = 0;
/**
* Get the display mapping policy. This policy differs from wrapper to wrapper
* and may involve using color labels or color maps.
*/
virtual const AbstractDisplayMappingPolicy *GetDisplayMapping() const = 0;
// Access the filename
irisVirtualGetStringMacro(FileName)
irisVirtualSetStringMacro(FileName)
// Access the nickname - which may be a custom nickname or derived from the
// filename if there is no custom nickname
irisVirtualGetMacro(Nickname, const std::string &)
// Set the custom nickname - precedence over the filename
irisVirtualGetMacro(CustomNickname, const std::string &)
irisVirtualSetMacro(CustomNickname, const std::string &)
// Fallback nickname - shown if no filename and no custom nickname set.
irisVirtualGetMacro(DefaultNickname, const std::string &)
irisVirtualSetMacro(DefaultNickname, const std::string &)
/**
Export one of the slices as a thumbnail (e.g., PNG file)
*/
virtual void WriteThumbnail(const char *filename, unsigned int maxdim) = 0;
/**
* Access the "IO hints" registry associated with this wrapper. The IO hints
* are used to help read the image when the filename alone is not sufficient.
* For example, it may contain the DICOM series ID of the image, or for a raw
* image the dimensions.
*/
virtual const Registry &GetIOHints() const = 0;
/**
* Set the IO hints
*/
virtual void SetIOHints(const Registry &io_hints) = 0;
/**
* Write the image to disk with the help of the GuidedNativeImageIO object
*/
virtual void WriteToFile(const char *filename, Registry &hints) = 0;
/**
* Check if the image has unsaved changes
*/
virtual bool HasUnsavedChanges() const = 0;
/**
* Save metadata to a Registry file. The metadata are data that are not
* contained in the image header are need to be restored when the image
* is reloaded. Currently, this mainly includes the display mapping, but
* also the transparency, etc.
*/
virtual void WriteMetaData(Registry ®) = 0;
/**
* Restore metadata from a registry
*/
virtual void ReadMetaData(Registry ®) = 0;
/**
* This static function constructs a NIFTI matrix from the ITK direction
* cosines matrix and Spacing and Origin vectors
*/
static TransformType ConstructNiftiSform(
vnl_matrix<double> m_dir,
vnl_vector<double> v_origin,
vnl_vector<double> v_spacing);
static TransformType ConstructVTKtoNiftiTransform(
vnl_matrix<double> m_dir,
vnl_vector<double> v_origin,
vnl_vector<double> v_spacing);
typedef itk::Image<short, 3> ShortImageType;
/**
* The image wrapper has a generic mechanism for associating data with it.
* For example, we can associate some parameter values for a specific
* image processing algorithm with each layer. Do do that, we simply
* assign a pointer to the data to a specific string role. Internally,
* a smart pointer is used to point to the associated data.
*
* Users of this method might also want to rebroadcast events from the
* associated object as events of type WrapperUserChangeEvent(). These
* events will then propagate all the way up to the IRISApplication.
*/
virtual void SetUserData(const std::string &role, itk::Object *data) = 0;
/**
* Get the user data associated with this wrapper for a specific role. If
* no association exists, NULL is returned.
*/
virtual itk::Object* GetUserData(const std::string &role) const = 0;
//
/**
* Set an ITK transform between this image and a reference image.
*/
virtual void SetITKTransform(ImageBaseType *referenceSpace, ITKTransformType *transform) = 0;
/**
* Get the ITK transform between this image and the reference space
*/
virtual const ITKTransformType *GetITKTransform() const = 0;
/**
* Get the reference space space in which this image is defined
*/
virtual ImageBaseType* GetReferenceSpace() const = 0;
protected:
};
class ScalarImageWrapperBase : public virtual ImageWrapperBase
{
public:
// A common image format to which the contents of the scalar image wrapper
// may be cast for downstream processing
typedef itk::Image<GreyType, 3> CommonFormatImageType;
typedef itk::Image<float, 3> FloatImageType;
typedef itk::ImageSource<FloatImageType> FloatImageSource;
typedef itk::Image<double, 3> DoubleImageType;
typedef itk::ImageSource<DoubleImageType> DoubleImageSource;
typedef itk::VectorImage<float, 3> FloatVectorImageType;
typedef itk::ImageSource<FloatVectorImageType> FloatVectorImageSource;
typedef itk::VectorImage<double, 3> DoubleVectorImageType;
typedef itk::ImageSource<DoubleVectorImageType> DoubleVectorImageSource;
/**
* An enum of export channel types. Export channels are used to present the
* internal image as an itk::Image of a fixed type. For efficient memory
* management, there are separate channels for downstream filters that
* operate on the whole image and filters that generate single-slice previews
* in the orthogonal slicing directions
*/
enum ExportChannel {
WHOLE_IMAGE=0, PREVIEW_X, PREVIEW_Y, PREVIEW_Z, CHANNEL_COUNT
};
/**
* Get the scaling factor used to convert between intensities stored
* in this image and the 'true' image intensities
*/
virtual double GetImageScaleFactor() = 0;
/** Get voxel at index as a single double value */
virtual double GetVoxelAsDouble(const Vector3ui &x) const = 0;
/** Get voxel at index as a single double value */
virtual double GetVoxelAsDouble(const itk::Index<3> &idx) const = 0;
/** Get voxel intensity in native space. These methods are not recommended
for iterating over the entire image, since there is a virutal method
being resolved at each iteration. */
virtual double GetVoxelMappedToNative(const Vector3ui &vec) const = 0;
virtual double GetVoxelMappedToNative(const itk::Index<3> &idx) const = 0;
/**
Get the maximum possible value of the gradient magnitude. This will
compute the gradient magnitude of the image (without Gaussian smoothing)
and return the maximum. The value will be cached so repeated calls to
this are not expensive.
*/
virtual double GetImageGradientMagnitudeUpperLimit() = 0;
/**
Get the maximum possible value of the gradient magnitude in native units
*/
virtual double GetImageGradientMagnitudeUpperLimitNative() = 0;
/**
* Extract a GreyType representation from the image wrapper. Note that
* internally, the scalar image wrapper can be of many itk types, e.g.,
* it could be a component of a vector image computed dynamically. In
* order to use the scalar image in downstream filters, we must have a
* way to map it to some common datatype. If not, we would have to template
* the downstream filter on the type of the image in the wrapper, which would
* lead to an exponential explosion of types.
*
* There are actually four representations for each image wrapper, one of
* which is intended for pipelines that act on entire image volumes and the
* other three intended for use in preview-capable pipelines, which generate
* output for just one slice. Since ITK only allocates the requested image
* region, these four representations should not really use much extra memory.
*
* However, it is very important that downstream filters use the itk streaming
* image filter to break up operations into pieces. Without that, there would
* be unnecessary large memory allocation.
*/
virtual CommonFormatImageType* GetCommonFormatImage(
ExportChannel channel = WHOLE_IMAGE) = 0;
/**
Cast the internally stored image to a floating point image. The returned
image is connected to the internally stored image by a mini-pipeline that
may include a cast filter or a scale/shift filter, depending on the internal
format of the image and the internal-to-native intensity mapping. This mini
pipeline is not memory managed by the wrapper, and as soon as the returned
image smartpointer goes out of scope, the mini-pipeline is deallocated.
The method is intended for use with external pipelines that don't know what
the internal data representation is for the image. There is a cost with using
this method in terms of memory, so the recommended use is in conjunction with
streaming filters, so that the cast mini-pipeline does not allocate the whole
floating point image all at once.
The mini-pipeline should not be kept around in memory after it's used. This would
result in unnecessary duplication of memory.
*/
virtual SmartPtr<FloatImageSource> CreateCastToFloatPipeline() const = 0;
/** Same as CreateCastToFloatPipeline, but for double precision */
virtual SmartPtr<DoubleImageSource> CreateCastToDoublePipeline() const = 0;
/** Same as CreateCastToFloatPipeline, but for vector images of single dimension */
virtual SmartPtr<FloatVectorImageSource> CreateCastToFloatVectorPipeline() const = 0;
/** Same as CreateCastToFloatPipeline, but for vector images of single dimension */
virtual SmartPtr<DoubleVectorImageSource> CreateCastToDoubleVectorPipeline() const = 0;
/**
* Get the intensity curve used to map raw intensities to color map inputs.
* The intensity curve is only used by some wrappers (anatomic, speed) and
* so this method may return NULL for some layers.
*/
virtual IntensityCurveInterface *GetIntensityCurve() const = 0;
/**
* Get the color map used to present image intensities as RGBA.
*/
virtual ColorMap *GetColorMap() const = 0;
/** Get a version of this image that is usable in VTK pipelines */
virtual vtkImageImport *GetVTKImporter() = 0;
};
/**
* A class that can be used to iterate over scalar representations.
* Within some of the scalar representations (for now just SCALAR_REP_COMPONENT)
* there are multiple indexed scalar components. The iterator iterates over the
* components before proceeding to the next component.
*/
class ScalarRepresentationIterator
{
public:
ScalarRepresentationIterator(const VectorImageWrapperBase *wrapper);
ScalarRepresentationIterator& operator ++();
bool IsAtEnd() const;
irisGetMacro(Index, int)
ScalarRepresentation GetCurrent() const
{ return static_cast<ScalarRepresentation>(m_Current); }
protected:
int m_Current;
int m_Index;
// Depth of each scalar representation
std::vector<int> m_Depth;
friend class VectorImageWrapperBase;
};
/**
* A base class for wrappers around vector-valued images
*/
class VectorImageWrapperBase : public virtual ImageWrapperBase
{
public:
/**
* Get a pointer to the given scalar representation of this vector image.
*/
virtual ScalarImageWrapperBase *GetScalarRepresentation(
ScalarRepresentation type, int index = 0) = 0;
/**
* Access a scalar representation using an iterator
*/
virtual ScalarImageWrapperBase *GetScalarRepresentation(
const ScalarRepresentationIterator &it) = 0;
/**
* If scalar_rep is a scalar representation of the vector image wrapper, find
* the type of the representation and the index. Otherwise return false;
*/
virtual bool FindScalarRepresentation(
ImageWrapperBase *scalar_rep, ScalarRepresentation &type, int &index) const = 0;
};
#endif // IMAGEWRAPPERBASE_H
|