1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
/*=========================================================================
Program: ITK-SNAP
Module: $RCSfile: SNAPLevelSetFunction.h,v $
Language: C++
Date: $Date: 2007/12/30 04:05:14 $
Version: $Revision: 1.2 $
Copyright (c) 2007 Paul A. Yushkevich
This file is part of ITK-SNAP
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0.txt
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-----
Copyright (c) 2003 Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __SNAPLevelSetFunction_h_
#define __SNAPLevelSetFunction_h_
#if ITK_VERSION_MAJOR >= 4
#define ITK_TYPENAME typename
#endif
//#include "itkLevelSetFunction.h"
#include "itkSegmentationLevelSetFunction.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkVectorLinearInterpolateImageFunction.h"
#include "itkVectorCastImageFilter.h"
#include "SNAPAdvectionFieldImageFilter.h"
#ifndef THREAD_SPECIFIC_DATA
#include "ThreadSpecificData.h"
#endif
/**
\class SNAPLevelSetFunction
\brief A level set function that implements the generic level set equation
decribed in [Ho et al., 2003] and used by the SnAP Application.
This class defines a level set equation that is similar to the Geodesic Active
Contours implementation (see GeodesicActiveContoursLevelSetFunction). However,
it includes an additional Laplacian smoothing (i.e., diffusion) term and it
modulates each of the terms by a speed function, which is an integer power of
the speed function passed in by the user.
Unlike the SegmentationLevelSetFunction, this class requires that the user pass
in a speed function \f$ g({\mathbb x}) \f$. This is done because in the SnAP
application the computation of the speed function is supervised by the user.
The equation implemented by this function is of the form
\f[
\phi_t
= A g^a |\nabla \phi|
+ B g^b \nabla g \cdot \nabla \phi
+ C g^c \kappa \nabla | \phi |
+ D g^d \nabla^2 \phi \ .
\f
The right-hand-side consists, in order, of the propagation term, the advection
term, the curvature term and the Laplacian smoothing term. Each of these terms
has a constant weight associated with it. Each term is scaled by a power of the
speed function \f$ g({\mathbb x}) \f$. Often the constants \f$ a, b, c, d \f$
are equal to 0, in which case there is no modulation of the terms by the speed
function. Modulation helps slow down the snake at edges in the image.
Before passing an instance of this class to a FiniteDifferenceImageFilter,
set the weights and speed exponents for each of the four terms using the
SetXXXWeight() and SetXXXSpeedExponent() methods. Then pass in a speed image
using SetSpeedImage() and then compute the internal images by
calling CalculateInternalImages().
PY 2012: The function has been modified to cache the speed values, so that
separate calls to GetXXXSpeed do not result in unnecessary interpolations.
This takes advantage of the ThreadSpecificData object, which acts like a
class member that is thread-specific. A better solution still would be to
change the behaviour of ComputeUpdate in the LevelSetFunction to query all
of the speed values at once from the child class. But that requires making
a copy of the large chunk of the ITK API, which causes maintenance issues.
*/
template <class TSpeedImageType, class TImageType>
class ITK_EXPORT SNAPLevelSetFunction
: public itk::LevelSetFunction<TImageType>
{
public:
/** Standard class typedefs. */
typedef SNAPLevelSetFunction Self;
typedef itk::LevelSetFunction<TImageType> Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self)
/** Run-time type information (and related methods) */
itkTypeMacro( SNAPLevelSetFunction, itk::LevelSetFunction )
/** Extract some parameters from the superclass. */
itkStaticConstMacro(ImageDimension, unsigned int,
Superclass::ImageDimension);
/** Extract some parameters from the superclass. */
typedef typename Superclass::ImageType ImageType;
typedef typename ImageType::Pointer ImagePointer;
typedef TSpeedImageType SpeedImageType;
typedef typename SpeedImageType::Pointer SpeedImagePointer;
typedef typename Superclass::NeighborhoodType NeighborhoodType;
typedef typename Superclass::ScalarValueType ScalarValueType;
typedef typename Superclass::RadiusType RadiusType;
typedef typename Superclass::FloatOffsetType FloatOffsetType;
typedef typename Superclass::PixelType PixelType;
typedef typename Superclass::VectorType VectorType;
typedef itk::Image<VectorType, ImageDimension> VectorImageType;
typedef typename VectorImageType::Pointer VectorImagePointer;
typedef typename Superclass::TimeStepType TimeStepType;
typedef typename Superclass::GlobalDataStruct GlobalDataStruct;
/** Interpolators used to access the speed images */
typedef itk::LinearInterpolateImageFunction<
SpeedImageType> SpeedImageInterpolatorType;
typedef itk::VectorLinearInterpolateImageFunction<
VectorImageType,float> VectorInterpolatorType;
typedef typename ImageType::IndexType IndexType;
typedef typename SpeedImageInterpolatorType::ContinuousIndexType
ContinuousIndexType;
/** Set the speed image (a.k.a. function g()) on which the
computation of the variuous internal speed images is
based. The function g() should be near zero at edges
of structures in the image and near one at flat regions */
virtual void SetSpeedImage(SpeedImageType *pointer);
/** Get the speed image g() */
virtual SpeedImageType *GetSpeedImage() const
{ return m_SpeedImage; }
/** Set the scaling for the speed image. In ITK-SNAP 3.0, speed images
are of short type, with the range between -0x7fff and 0x7fff. So we
need to scale them to the range -1 to 1. */
void SetSpeedScaleFactor(ScalarValueType value)
{ m_SpeedScaleFactor = value; }
ScalarValueType GetSpeedScaleFactor() const
{ return m_SpeedScaleFactor; }
/** Set the external advection image (optional). This is only
* needed if your advection image is not the gradient of the
* speed image. We use this for DTI segmentation */
virtual void SetAdvectionField(VectorImageType *pointer)
{
m_UseExternalAdvectionField = true;
m_AdvectionField = pointer;
}
/** Compute speed and advection images from feature image. */
virtual void CalculateInternalImages();
/**
My implementation of ComputeUpdate. This will calculate the speed
image value just once, instead of having to interpolate it for
every type of calculation
*/
virtual PixelType ComputeUpdate(const NeighborhoodType &neighborhood,
void *globalData,
const FloatOffsetType &);
// Inline function shared by the three XXXSpeed() functions
inline ScalarValueType GetSpeedWithExponent(
int exponent,
const NeighborhoodType &neighbourhood,
const FloatOffsetType &offset,
GlobalDataStruct * = 0 ) const;
/** Local multiplier for the curvature term */
virtual ScalarValueType CurvatureSpeed(
const NeighborhoodType &neighbourhood,
const FloatOffsetType &offset,
GlobalDataStruct * = 0 ) const
{
return GetSpeedWithExponent(m_CurvatureSpeedExponent,
neighbourhood, offset);
}
/** Local multiplier for the laplacian smoothing term */
virtual ScalarValueType LaplacianSmoothingSpeed(
const NeighborhoodType &neighbourhood,
const FloatOffsetType &offset,
GlobalDataStruct * = 0 ) const
{
return GetSpeedWithExponent(m_LaplacianSmoothingSpeedExponent,
neighbourhood, offset);
}
/** Local multiplier for the propagation term */
virtual ScalarValueType PropagationSpeed(
const NeighborhoodType &neighbourhood,
const FloatOffsetType &offset,
GlobalDataStruct * = 0 ) const
{
ScalarValueType v = GetSpeedWithExponent(m_PropagationSpeedExponent,
neighbourhood, offset);
return v;
}
/** Local multiplier for the advection term */
virtual VectorType AdvectionField(
const NeighborhoodType &neighbourhood,
const FloatOffsetType &offset,
GlobalDataStruct * = 0 ) const;
/** Set the exponent to which the speed image g() is taken
when converted to the curvature speed */
void SetCurvatureSpeedExponent(const int value)
{ m_CurvatureSpeedExponent = value; }
/** Get the exponent to which the speed image g() is taken
when converted to the curvature speed */
int GetCurvatureSpeedExponent() const
{ return m_CurvatureSpeedExponent; }
/** Set the exponent to which the speed image g() is taken
when computing the advection field */
void SetAdvectionSpeedExponent(const int value)
{ m_AdvectionSpeedExponent = value; }
/** Get the exponent to which the speed image g() is taken
when computing the advection field */
int GetAdvectionSpeedExponent() const
{ return m_AdvectionSpeedExponent; }
/** Set the exponent to which the speed image g() is taken
when converted to the propagation speed */
void SetPropagationSpeedExponent(const int value)
{ m_PropagationSpeedExponent = value; }
/** Get the exponent to which the speed image g() is taken
when converted to the propagation speed */
int GetPropagationSpeedExponent() const
{ return m_PropagationSpeedExponent; }
/** Set the exponent to which the speed image g() is taken
when converted to the laplacian smoothing speed */
void SetLaplacianSmoothingSpeedExponent(const int value)
{ m_LaplacianSmoothingSpeedExponent = value; }
/** Get the exponent to which the speed image g() is taken
when converted to the laplacian smoothing speed */
int GetLaplacianSmoothingSpeedExponent() const
{ return m_LaplacianSmoothingSpeedExponent; }
/** Set/Get the time step. For this filter the time-step is supplied
by the user and remains fixed for all updates. */
void SetTimeStepFactor(TimeStepType value)
{ m_TimeStepFactor = value; }
TimeStepType GetTimeStepFactor() const
{ return m_TimeStepFactor; }
/** Returns the time step supplied by the user. If the time step value
passed on to this filter is equal to zero, this method will use the
automatic time step calculation from the parent class. If the value
is non-zero, the fixed time step will be returned. */
virtual TimeStepType ComputeGlobalTimeStep(void *GlobalData) const
{
TimeStepType step = Superclass::ComputeGlobalTimeStep(GlobalData);
return m_TimeStepFactor == 0
? step
: m_TimeStepFactor * step;
}
protected:
SNAPLevelSetFunction();
~SNAPLevelSetFunction();
void PrintSelf(std::ostream &s, itk::Indent indent) const;
private:
/** The exponent to which speed image g() is taken to compute the
curvature speed */
int m_CurvatureSpeedExponent;
/** The exponent to which speed image g() is taken to compute the
advection field */
int m_AdvectionSpeedExponent;
/** The exponent to which speed image g() is taken to compute the
propagation speed */
int m_PropagationSpeedExponent;
/** The exponent to which speed image g() is taken to compute the
Laplacian smoothing speed */
int m_LaplacianSmoothingSpeedExponent;
ScalarValueType m_SpeedScaleFactor;
/** The speed image g() computed externally with user interaction */
SpeedImagePointer m_SpeedImage;
/** The advection field (possibly scaled by speed image g() */
VectorImagePointer m_AdvectionField;
/** Flag, specifyting that the advection image is loaded externally */
bool m_UseExternalAdvectionField;
/** Gradient filter used to produce the advection field */
typedef SNAPAdvectionFieldImageFilter<SpeedImageType,float> AdvectionFilterType;
typename AdvectionFilterType::Pointer m_AdvectionFilter;
/** Instances of the interpolators */
typename SpeedImageInterpolatorType::Pointer m_SpeedInterpolator;
typename VectorInterpolatorType::Pointer m_AdvectionFieldInterpolator;
/** The constant time step */
TimeStepType m_TimeStepFactor;
/** A casting functor to convert between vector types. */
itk::Functor::VectorCast<
ITK_TYPENAME VectorInterpolatorType::OutputType,
VectorType > m_VectorCast;
/** The current value of the speed function */
#ifndef THREAD_SPECIFIC_DATA
ThreadSpecificData<ScalarValueType> m_CachedSpeed;
#else
ScalarValueType m_CachedSpeed;
#endif
};
#ifndef ITK_MANUAL_INSTANTIATION
#include "SNAPLevelSetFunction.txx"
#endif
#endif
|