1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
/*=========================================================================
Program: ITK-SNAP
Module: $RCSfile: ImageWrapper.txx,v $
Language: C++
Date: $Date: 2010/10/14 16:21:04 $
Version: $Revision: 1.11 $
Copyright (c) 2007 Paul A. Yushkevich
This file is part of ITK-SNAP
ITK-SNAP is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
-----
Copyright (c) 2003 Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
-----
Copyright (c) 2003 Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef ADAPTIVESLICINGPIPELINE_TXX
#define ADAPTIVESLICINGPIPELINE_TXX
#include "AdaptiveSlicingPipeline.h"
#include "IRISSlicer.h"
#include "NonOrthogonalSlicer.h"
#include "IRISVectorTypesToITKConversion.h"
template<class TInputImage> class AdaptiveSlicingPipeline_PixelFiller
{
public:
typedef TInputImage ImageType;
typedef typename ImageType::PixelType PixelType;
typedef typename ImageType::InternalPixelType ComponentType;
static void FillPixel(const ImageType *image, PixelType &pixel, ComponentType value)
{
pixel = value;
}
static void MakePixel(const ImageType *image, PixelType &pixel, ComponentType *arr)
{
pixel = *arr;
}
};
template<typename TPixel, unsigned int VDim>
class AdaptiveSlicingPipeline_PixelFiller< itk::VectorImage<TPixel, VDim> >
{
public:
typedef itk::VectorImage<TPixel, VDim> ImageType;
typedef typename ImageType::PixelType PixelType;
typedef typename ImageType::InternalPixelType ComponentType;
static void FillPixel(const ImageType *image, PixelType &pixel, ComponentType value)
{
pixel.SetSize(image->GetNumberOfComponentsPerPixel());
pixel.Fill(value);
}
static void MakePixel(const ImageType *image, PixelType &pixel, ComponentType *arr)
{
pixel.SetSize(image->GetNumberOfComponentsPerPixel());
for(int i = 0; i < pixel.GetSize(); i++)
pixel.SetElement(i, arr[i]);
}
};
template<typename TInputImage, typename TOutputImage, typename TPreviewImage>
AdaptiveSlicingPipeline<TInputImage, TOutputImage, TPreviewImage>
::AdaptiveSlicingPipeline()
{
// Create the two slicer types
m_OrthogonalSlicer = OrthogonalSlicerType::New();
m_ObliqueSlicer = NonOrthogonalSlicerType::New();
// Initially use the ortho
m_UseOrthogonalSlicing = true;
}
template<typename TInputImage, typename TOutputImage, typename TPreviewImage>
AdaptiveSlicingPipeline<TInputImage, TOutputImage, TPreviewImage>
::~AdaptiveSlicingPipeline()
{
// Prevent crash from grafting child filter outputs
if(this->GetOutput())
this->GetOutput()->SetPixelContainer(NULL);
}
template<typename TInputImage, typename TOutputImage, typename TPreviewImage>
void
AdaptiveSlicingPipeline<TInputImage, TOutputImage, TPreviewImage>
::MapInputsToSlicers()
{
if(m_UseOrthogonalSlicing)
{
m_OrthogonalSlicer->SetInput(this->GetInput());
m_OrthogonalSlicer->SetPreviewInput(
const_cast<PreviewImageType *>(this->GetPreviewImage()));
// Inverse transform
ImageCoordinateTransform::Pointer tinv = ImageCoordinateTransform::New();
this->GetOrthogonalTransform()->ComputeInverse(tinv);
// Tell slicer in which directions to slice
m_OrthogonalSlicer->SetSliceDirectionImageAxis(
tinv->GetCoordinateIndexZeroBased(2));
m_OrthogonalSlicer->SetLineDirectionImageAxis(
tinv->GetCoordinateIndexZeroBased(1));
m_OrthogonalSlicer->SetPixelDirectionImageAxis(
tinv->GetCoordinateIndexZeroBased(0));
m_OrthogonalSlicer->SetPixelTraverseForward(
tinv->GetCoordinateOrientation(0) > 0);
m_OrthogonalSlicer->SetLineTraverseForward(
tinv->GetCoordinateOrientation(1) > 0);
// Set the slice index
m_OrthogonalSlicer->SetSliceIndex(
m_SliceIndex[m_OrthogonalSlicer->GetSliceDirectionImageAxis()]);
}
else
{
m_ObliqueSlicer->SetInput(this->GetInput());
m_ObliqueSlicer->SetTransform(this->GetObliqueTransform());
m_ObliqueSlicer->SetReferenceImage(this->GetObliqueReferenceImage());
}
}
template<typename TInputImage, typename TOutputImage, typename TPreviewImage>
void
AdaptiveSlicingPipeline<TInputImage, TOutputImage, TPreviewImage>
::GenerateOutputInformation()
{
// Make sure the inputs are assigned to the corresponding slicers
this->MapInputsToSlicers();
// Get the outer filter's output
OutputImageType *output = this->GetOutput();
// Use appropriate sub-pipeline
if(m_UseOrthogonalSlicing)
{
m_OrthogonalSlicer->UpdateOutputInformation();
m_OrthogonalSlicer->GetOutput()->SetRequestedRegionToLargestPossibleRegion();
output->CopyInformation(m_OrthogonalSlicer->GetOutput());
}
else
{
m_ObliqueSlicer->UpdateOutputInformation();
m_ObliqueSlicer->GetOutput()->SetRequestedRegionToLargestPossibleRegion();
output->CopyInformation(m_ObliqueSlicer->GetOutput());
}
// Copy information does not update the requested region, so we must update
// it by hand here
output->SetRequestedRegionToLargestPossibleRegion();
}
template<typename TInputImage, typename TOutputImage, typename TPreviewImage>
void
AdaptiveSlicingPipeline<TInputImage, TOutputImage, TPreviewImage>
::PropagateRequestedRegion(itk::DataObject *output)
{
// Use appropriate sub-pipeline
if(m_UseOrthogonalSlicing)
{
m_OrthogonalSlicer->PropagateRequestedRegion(output);
}
else
{
m_ObliqueSlicer->PropagateRequestedRegion(output);
}
}
template<typename TInputImage, typename TOutputImage, typename TPreviewImage>
void
AdaptiveSlicingPipeline<TInputImage, TOutputImage, TPreviewImage>
::CallCopyOutputRegionToInputRegion(
InputImageRegionType &destRegion, const OutputImageRegionType &srcRegion)
{
Superclass::CallCopyOutputRegionToInputRegion(destRegion, srcRegion);
}
template<typename TInputImage, typename TOutputImage, typename TPreviewImage>
void
AdaptiveSlicingPipeline<TInputImage, TOutputImage, TPreviewImage>
::GenerateData()
{
// Get the outer filter's output
OutputImageType *output = this->GetOutput();
// Use appropriate sub-pipeline
if(m_UseOrthogonalSlicing)
{
m_OrthogonalSlicer->Update();
output->Graft(m_OrthogonalSlicer->GetOutput());
}
else
{
m_ObliqueSlicer->Update();
output->Graft(m_ObliqueSlicer->GetOutput());
}
}
template<typename TInputImage, typename TOutputImage, typename TPreviewImage>
typename AdaptiveSlicingPipeline<TInputImage, TOutputImage, TPreviewImage>::OutputPixelType
AdaptiveSlicingPipeline<TInputImage, TOutputImage, TPreviewImage>
::LookupIntensityAtSliceIndex(const itk::ImageBase<3> *ref_space)
{
OutputImageType *output = this->GetOutput();
// Update the filter
this->Update();
// The lookup location
Vector3ui cursor(m_SliceIndex);
if(m_UseOrthogonalSlicing)
{
// If we are using ortho slicing, we can just sample the slice
Vector3ui slice_3d = this->GetOrthogonalTransform()->TransformVoxelIndex(cursor);
itk::Index<2> slice_idx; slice_idx[0] = slice_3d[0]; slice_idx[1] = slice_3d[1];
return this->GetOutput()->GetPixel(slice_idx);
}
else
{
// The cursor may be outside of the slice, so we need to map the location back
// to the input image and look up the intensity of the input image.
// Use the reference space to map the cursor coordinate to physical coordinate
itk::Point<double, 3> cursor_point, native_point;
ref_space->TransformIndexToPhysicalPoint(to_itkIndex(cursor), cursor_point);
// Use the transform to map the coordinate into the native space of the input
native_point = this->GetObliqueTransform()->TransformPoint(cursor_point);
// Map the native point to an index
itk::ContinuousIndex<double, 3> native_cindex;
this->GetInput()->TransformPhysicalPointToContinuousIndex(native_point, native_cindex);
// Create a pointer to pixel data
unsigned int k = this->GetOutput()->GetNumberOfComponentsPerPixel();
OutputComponentType *out_arr = new OutputComponentType[k], *dummy = out_arr;
// Use worker class to interpolate input image - out_arr will be filled
typedef typename NonOrthogonalSlicerType::WorkerType WorkerType;
WorkerType worker(const_cast<InputImageType *>(this->GetInput()));
worker.ProcessVoxel(native_cindex.GetDataPointer(), false, &dummy);
// Create a pixel to return - we use a specialized class for vector/non-vector
OutputPixelType pix;
AdaptiveSlicingPipeline_PixelFiller<OutputImageType>
::MakePixel(this->GetOutput(),pix, out_arr);
delete out_arr;
return pix;
}
}
#endif // ADAPTIVESLICINGPIPELINE_TXX
|