File: NonOrthogonalSlicer.txx

package info (click to toggle)
itksnap 3.6.0-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 22,132 kB
  • sloc: cpp: 91,089; ansic: 1,994; sh: 327; makefile: 16
file content (431 lines) | stat: -rw-r--r-- 14,745 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
/*=========================================================================

  Program:   ITK-SNAP
  Module:    $RCSfile: ImageWrapper.txx,v $
  Language:  C++
  Date:      $Date: 2010/10/14 16:21:04 $
  Version:   $Revision: 1.11 $
  Copyright (c) 2007 Paul A. Yushkevich

  This file is part of ITK-SNAP

  ITK-SNAP is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.
  You should have received a copy of the GNU General Public License
  along with this program.  If not, see <http://www.gnu.org/licenses/>.

  -----

  Copyright (c) 2003 Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

  This software is distributed WITHOUT ANY WARRANTY; without even
  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
  PURPOSE.  See the above copyright notices for more information.

  -----

  Copyright (c) 2003 Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

  This software is distributed WITHOUT ANY WARRANTY; without even
  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
  PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef NONORTHOGONALSLICER_TXX
#define NONORTHOGONALSLICER_TXX

#include "NonOrthogonalSlicer.h"
#include "FastLinearInterpolator.h"
#include "ImageRegionConstIteratorWithIndexOverride.h"

template <class TInputImage, class TOutputImage>
NonOrthogonalSlicer<TInputImage, TOutputImage>
::NonOrthogonalSlicer()
    : m_UseNearestNeighbor(false)
{
}

template <class TInputImage, class TOutputImage>
NonOrthogonalSlicer<TInputImage, TOutputImage>
::~NonOrthogonalSlicer()
{
}

template <class TInputImage, class TOutputImage>
void
NonOrthogonalSlicer<TInputImage, TOutputImage>
::GenerateOutputInformation()
{  
  // The output information can be left to defaults because it's in screen
  // space anyway and just does not matter for any geometry
  OutputImagePointer output = this->GetOutput();
  typename OutputImageType::SpacingType out_spacing;
  typename OutputImageType::DirectionType out_direction;
  typename OutputImageType::PointType out_origin;

  out_origin.Fill(0.0);
  out_spacing.Fill(1.0);
  out_direction.SetIdentity();

  // Set up the output region
  OutputImageRegionType out_region;
  for(int d = 0; d < ImageDimension; d++)
    {
    out_region.SetIndex(d, this->GetReferenceImage()->GetLargestPossibleRegion().GetIndex(d));
    out_region.SetSize(d, this->GetReferenceImage()->GetLargestPossibleRegion().GetSize(d));
    }

  output->SetSpacing(out_spacing);
  output->SetOrigin(out_origin);
  output->SetDirection(out_direction);
  output->SetLargestPossibleRegion(out_region);
  output->SetNumberOfComponentsPerPixel(this->GetInput()->GetNumberOfComponentsPerPixel());
}

template <class TInputImage, class TOutputImage>
void
NonOrthogonalSlicer<TInputImage, TOutputImage>
::GenerateInputRequestedRegion()
{
  // get pointers to the input and output
  InputImageType *inputPtr  =
    const_cast< InputImageType * >( this->GetInput() );

  // Request the entire input image
  if(inputPtr)
    inputPtr->SetRequestedRegionToLargestPossibleRegion();
}


template <class TInputImage, class TOutputImage>
void
NonOrthogonalSlicer<TInputImage, TOutputImage>
::ThreadedGenerateData(const OutputImageRegionType &outputRegionForThread,
                       itk::ThreadIdType threadId)
{
  // The input 3D image volume
  InputImageType *input = const_cast<InputImageType *>(this->GetInput());

  // The reference image
  const ReferenceImageBaseType *reference = this->GetReferenceImage();

  // The transform
  const TransformType *transform = this->GetTransform();

  // Length of the line along which we are going to be sampling
  int line_len = outputRegionForThread.GetSize(0);

  // Create an iterator over the output image
  typedef itk::ImageLinearIteratorWithIndex<OutputImageType> IterBase;
  typedef IteratorExtender<IterBase> IterType;

  // Determine the appropriate float/double type for the interpolator.
  typedef typename itk::NumericTraits<OutputComponentType>::MeasurementVectorType::ValueType FloatType;

  // Get the extents of the image cube that can be sampled
  itk::ContinuousIndex<double, InputImageDimension> cixCubeStart, cixCubeEnd;
  for(int d = 0; d < InputImageDimension; d++)
    {
    cixCubeStart[d] = input->GetBufferedRegion().GetIndex()[d] - 0.5;
    cixCubeEnd[d] =
        input->GetBufferedRegion().GetIndex()[d] +
        input->GetBufferedRegion().GetSize()[d] - 0.5;
    }

  // Create a fast interpolator for the input image - via the traits, allowing for
  // partial specialization for imageadapters and other such things
  WorkerType worker(input);

  // Whether to use nn
  bool use_nn = this->GetUseNearestNeighbor();

  // Loop over the lines in the input image
  for(IterType it(this->GetOutput(), outputRegionForThread); !it.IsAtEnd(); it.NextLine())
    {
    // Get a pointer to the output pixels for this line
    OutputComponentType *outPixelPtr = it.GetPixelPointer(this->GetOutput());

    // Get the index of the first pixel - this is in 2D
    typename OutputImageType::IndexType outIndex = it.GetIndex();

    // Get the 3D index of the first pixel of the line
    typename ReferenceImageBaseType::IndexType idxStart;
    idxStart.Fill(0.0);
    for(int d = 0; d < ImageDimension; d++)
      idxStart[d] = outIndex[d];

    // Get the 3D index of the second pixel of the line
    typename ReferenceImageBaseType::IndexType idxNext = idxStart;
    idxNext[0] += 1;

    // Convert to a physical point relative to refernece image
    typename ReferenceImageBaseType::PointType pRefStart, pRefNext;
    reference->TransformIndexToPhysicalPoint(idxStart, pRefStart);
    reference->TransformIndexToPhysicalPoint(idxNext, pRefNext);

    // Apply the affine transform to this point - so it's relative to the input image
    typename ReferenceImageBaseType::PointType pInpStart, pInpNext;
    pInpStart = transform->TransformPoint(pRefStart);
    pInpNext = transform->TransformPoint(pRefNext);

    // Compute the sample point in input image space and the step
    itk::ContinuousIndex<double, InputImageDimension> cixSample, cixNext, cixStep;
    input->TransformPhysicalPointToContinuousIndex(pInpStart, cixSample);
    input->TransformPhysicalPointToContinuousIndex(pInpNext, cixNext);

    for(int d = 0; d < InputImageDimension; d++)
      cixStep[d] = cixNext[d] - cixSample[d];

    // Determine the starting and ending indices for the line
    int kStart = 0, kEnd = line_len - 1;
    bool skipLine = false;
    for(int d = 0; d < InputImageDimension; d++)
      {
      double x0 = cixCubeStart[d], x1 = cixCubeEnd[d], dx = cixStep[d], x = cixSample[d];

      // TODO: this may behave badly for small voxel sizes
      if(fabs(dx) < 1.0e-5)
        {
        if(x < x0 || x > x1)
          {
          skipLine = true;
          break;
          }
        }
      else
        {
        double z0 = (x0 - x) / dx, z1 = (x1 - x) / dx;
        if(z1 > z0)
          {
          kStart = std::max(kStart, (int) floor(z0));
          kEnd = std::min(kEnd, (int) ceil(z1));
          }
        else
          {
          kStart = std::max(kStart, (int) floor(z1));
          kEnd = std::min(kEnd, (int) ceil(z0));
          }
        }
      }

    if(kStart >= line_len || kEnd <= 0)
      skipLine = true;

    // Deal with skipped lines
    if(skipLine)
      {
      worker.SkipVoxels(line_len, &outPixelPtr);
      }
    else
      {
      // Skip the starting voxels
      if(kStart > 0)
        {
        // Skip the voxels
        worker.SkipVoxels(kStart, &outPixelPtr);

        // Update the sample location
        for(int d = 0; d < InputImageDimension; d++)
          cixSample[d] += kStart * cixStep[d];
        }

      // Process the voxels that cross the image cube
      for(int i = kStart; i <= kEnd; i++)
        {
        worker.ProcessVoxel(cixSample.GetDataPointer(), use_nn, &outPixelPtr);

        // Update the sample location
        for(int d = 0; d < InputImageDimension; d++)
          cixSample[d] += cixStep[d];
        }

      // Process the rest
      if(kEnd < line_len - 1)
        {
        worker.SkipVoxels((line_len - 1) - kEnd, &outPixelPtr);
        }
      }
    }
}

template <class TInputImage, class TOutputImage>
NonOrthogonalSlicerPixelAccessTraitsWorker<TInputImage, TOutputImage>
::NonOrthogonalSlicerPixelAccessTraitsWorker(TInputImage *image)
  : m_Interpolator(image)
{
  m_NumComponents = m_Interpolator.GetPointerIncrement();
  m_Buffer = new double[m_NumComponents];
}

template <class TInputImage, class TOutputImage>
NonOrthogonalSlicerPixelAccessTraitsWorker<TInputImage, TOutputImage>
::~NonOrthogonalSlicerPixelAccessTraitsWorker()
{
  delete m_Buffer;
}

template <class TInputImage, class TOutputImage>
void
NonOrthogonalSlicerPixelAccessTraitsWorker<TInputImage, TOutputImage>
::ProcessVoxel(double *cix, bool use_nn, OutputComponentType **out_ptr)
{
  // Perform the interpolation
  typename Interpolator::InOut status =
      use_nn
      ? m_Interpolator.InterpolateNearestNeighbor(cix,  m_Buffer)
      : m_Interpolator.Interpolate(cix, m_Buffer);

  if(status == Interpolator::INSIDE)
    {
    for(int k = 0; k < m_NumComponents; k++)
      *(*out_ptr)++ = static_cast<OutputComponentType>(m_Buffer[k]);
    }
  else
    {
    // TODO: this is problematic!!!!
    for(int k = 0; k < m_NumComponents; k++)
      *(*out_ptr)++ = 0; //itk::NumericTraits<OutputComponentType>::Zero;
    }
}

template <class TInputImage, class TOutputImage>
void
NonOrthogonalSlicerPixelAccessTraitsWorker<TInputImage, TOutputImage>
::SkipVoxels(int n, OutputComponentType **out_ptr)
{
  int n_total = n * m_NumComponents;
  for(int k = 0; k < n_total; k++)
    *(*out_ptr)++ = 0; //itk::NumericTraits<OutputComponentType>::Zero;
}



/*
 * Traits for the component extracting image adaptor. Note that in the call to the
 * constructor for the interpolator, we are passing the buffer pointer offset by
 * the component index, and only requesting a single component to be sampled
 */
template <typename TPixelType, unsigned int Dimension, typename TOutputImage>
NonOrthogonalSlicerPixelAccessTraitsWorker<itk::VectorImageToImageAdaptor<TPixelType, Dimension>, TOutputImage>
::NonOrthogonalSlicerPixelAccessTraitsWorker(AdaptorType *adaptor)
  : m_Interpolator(adaptor,
                   adaptor->GetBufferPointer() + adaptor->GetPixelAccessor().GetExtractComponentIdx(),
                   adaptor->GetPixelAccessor().GetVectorLength(), 1)
{
  m_NumComponents = m_Interpolator.GetPointerIncrement();
  m_ExtractComponent = adaptor->GetPixelAccessor().GetExtractComponentIdx();
}

template <typename TPixelType, unsigned int Dimension, typename TOutputImage>
NonOrthogonalSlicerPixelAccessTraitsWorker<itk::VectorImageToImageAdaptor<TPixelType, Dimension>, TOutputImage>
::~NonOrthogonalSlicerPixelAccessTraitsWorker()
{
}

template <typename TPixelType, unsigned int Dimension, typename TOutputImage>
void
NonOrthogonalSlicerPixelAccessTraitsWorker<itk::VectorImageToImageAdaptor<TPixelType, Dimension>, TOutputImage>
::ProcessVoxel(double *cix, bool use_nn, OutputComponentType **out_ptr)
{
  // Perform the interpolation
  typename Interpolator::InOut status =
      use_nn
      ? m_Interpolator.InterpolateNearestNeighbor(cix, &m_BufferValue)
      : m_Interpolator.Interpolate(cix, &m_BufferValue);

  if(status == Interpolator::INSIDE)
    {
    *(*out_ptr)++ = static_cast<OutputComponentType>(m_BufferValue);
    }
  else
    {
    *(*out_ptr)++ = 0;
    }
}

template <typename TPixelType, unsigned int Dimension, typename TOutputImage>
void
NonOrthogonalSlicerPixelAccessTraitsWorker<itk::VectorImageToImageAdaptor<TPixelType, Dimension>, TOutputImage>
::SkipVoxels(int n, OutputComponentType **out_ptr)
{
  for(int i = 0; i < n; i++)
    *(*out_ptr)++ = 0;
}

/*
 * Traits for a generic image adaptor with a vector image base
 */
template <typename TPixelType, unsigned int Dimension, typename TAccessor, typename TOutputImage>
NonOrthogonalSlicerPixelAccessTraitsWorker<
  itk::ImageAdaptor<itk::VectorImage<TPixelType, Dimension>, TAccessor>, TOutputImage>
::NonOrthogonalSlicerPixelAccessTraitsWorker(AdaptorType *adaptor)
  : m_Interpolator(adaptor, adaptor->GetBufferPointer(),
                    adaptor->GetPixelAccessor().GetVectorLength()),
    m_VectorPixel(adaptor->GetPixelAccessor().GetVectorLength()),
    m_Adaptor(adaptor)
{
  m_NumComponents = m_Interpolator.GetPointerIncrement();
  m_Buffer = new double[m_NumComponents];
}

template <typename TPixelType, unsigned int Dimension, typename TAccessor, typename TOutputImage>
NonOrthogonalSlicerPixelAccessTraitsWorker<
  itk::ImageAdaptor<itk::VectorImage<TPixelType, Dimension>, TAccessor>, TOutputImage>
::~NonOrthogonalSlicerPixelAccessTraitsWorker()
{
  delete m_Buffer;
}

template <typename TPixelType, unsigned int Dimension, typename TAccessor, typename TOutputImage>
void
NonOrthogonalSlicerPixelAccessTraitsWorker<
  itk::ImageAdaptor<itk::VectorImage<TPixelType, Dimension>, TAccessor>, TOutputImage>
::ProcessVoxel(double *cix, bool use_nn, OutputComponentType **out_ptr)
{
  // Perform the interpolation
  typename Interpolator::InOut status =
      use_nn
      ? m_Interpolator.InterpolateNearestNeighbor(cix, m_Buffer)
      : m_Interpolator.Interpolate(cix, m_Buffer);

  const typename VectorImageType::PixelType &vpref = m_VectorPixel;

  if(status == Interpolator::INSIDE)
    {
    // Cast to the vector pixel type
    for(int i = 0; i < m_NumComponents; i++)
      m_VectorPixel[i] = static_cast<OutputComponentType>(m_Buffer[i]);

    // Apply the accessor
    *(*out_ptr)++ =
        m_Adaptor->GetPixelAccessor().Get(m_VectorPixel.GetDataPointer());
    }
  else
    {
    *(*out_ptr)++ = 0;
    }
}


template <typename TPixelType, unsigned int Dimension, typename TAccessor, typename TOutputImage>
void
NonOrthogonalSlicerPixelAccessTraitsWorker<
  itk::ImageAdaptor<itk::VectorImage<TPixelType, Dimension>, TAccessor>, TOutputImage>
::SkipVoxels(int n, OutputComponentType **out_ptr)
{
  for(int i = 0; i < n; i++)
    *(*out_ptr)++ = 0;
}



#endif // NONORTHOGONALSLICER_TXX