1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
/*=========================================================================
Program: ITK-SNAP
Module: $RCSfile: ImageWrapper.txx,v $
Language: C++
Date: $Date: 2010/10/14 16:21:04 $
Version: $Revision: 1.11 $
Copyright (c) 2007 Paul A. Yushkevich
This file is part of ITK-SNAP
ITK-SNAP is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
-----
Copyright (c) 2003 Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
-----
Copyright (c) 2003 Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef NONORTHOGONALSLICER_TXX
#define NONORTHOGONALSLICER_TXX
#include "NonOrthogonalSlicer.h"
#include "FastLinearInterpolator.h"
#include "ImageRegionConstIteratorWithIndexOverride.h"
template <class TInputImage, class TOutputImage>
NonOrthogonalSlicer<TInputImage, TOutputImage>
::NonOrthogonalSlicer()
: m_UseNearestNeighbor(false)
{
}
template <class TInputImage, class TOutputImage>
NonOrthogonalSlicer<TInputImage, TOutputImage>
::~NonOrthogonalSlicer()
{
}
template <class TInputImage, class TOutputImage>
void
NonOrthogonalSlicer<TInputImage, TOutputImage>
::GenerateOutputInformation()
{
// The output information can be left to defaults because it's in screen
// space anyway and just does not matter for any geometry
OutputImagePointer output = this->GetOutput();
typename OutputImageType::SpacingType out_spacing;
typename OutputImageType::DirectionType out_direction;
typename OutputImageType::PointType out_origin;
out_origin.Fill(0.0);
out_spacing.Fill(1.0);
out_direction.SetIdentity();
// Set up the output region
OutputImageRegionType out_region;
for(int d = 0; d < ImageDimension; d++)
{
out_region.SetIndex(d, this->GetReferenceImage()->GetLargestPossibleRegion().GetIndex(d));
out_region.SetSize(d, this->GetReferenceImage()->GetLargestPossibleRegion().GetSize(d));
}
output->SetSpacing(out_spacing);
output->SetOrigin(out_origin);
output->SetDirection(out_direction);
output->SetLargestPossibleRegion(out_region);
output->SetNumberOfComponentsPerPixel(this->GetInput()->GetNumberOfComponentsPerPixel());
}
template <class TInputImage, class TOutputImage>
void
NonOrthogonalSlicer<TInputImage, TOutputImage>
::GenerateInputRequestedRegion()
{
// get pointers to the input and output
InputImageType *inputPtr =
const_cast< InputImageType * >( this->GetInput() );
// Request the entire input image
if(inputPtr)
inputPtr->SetRequestedRegionToLargestPossibleRegion();
}
template <class TInputImage, class TOutputImage>
void
NonOrthogonalSlicer<TInputImage, TOutputImage>
::ThreadedGenerateData(const OutputImageRegionType &outputRegionForThread,
itk::ThreadIdType threadId)
{
// The input 3D image volume
InputImageType *input = const_cast<InputImageType *>(this->GetInput());
// The reference image
const ReferenceImageBaseType *reference = this->GetReferenceImage();
// The transform
const TransformType *transform = this->GetTransform();
// Length of the line along which we are going to be sampling
int line_len = outputRegionForThread.GetSize(0);
// Create an iterator over the output image
typedef itk::ImageLinearIteratorWithIndex<OutputImageType> IterBase;
typedef IteratorExtender<IterBase> IterType;
// Determine the appropriate float/double type for the interpolator.
typedef typename itk::NumericTraits<OutputComponentType>::MeasurementVectorType::ValueType FloatType;
// Get the extents of the image cube that can be sampled
itk::ContinuousIndex<double, InputImageDimension> cixCubeStart, cixCubeEnd;
for(int d = 0; d < InputImageDimension; d++)
{
cixCubeStart[d] = input->GetBufferedRegion().GetIndex()[d] - 0.5;
cixCubeEnd[d] =
input->GetBufferedRegion().GetIndex()[d] +
input->GetBufferedRegion().GetSize()[d] - 0.5;
}
// Create a fast interpolator for the input image - via the traits, allowing for
// partial specialization for imageadapters and other such things
WorkerType worker(input);
// Whether to use nn
bool use_nn = this->GetUseNearestNeighbor();
// Loop over the lines in the input image
for(IterType it(this->GetOutput(), outputRegionForThread); !it.IsAtEnd(); it.NextLine())
{
// Get a pointer to the output pixels for this line
OutputComponentType *outPixelPtr = it.GetPixelPointer(this->GetOutput());
// Get the index of the first pixel - this is in 2D
typename OutputImageType::IndexType outIndex = it.GetIndex();
// Get the 3D index of the first pixel of the line
typename ReferenceImageBaseType::IndexType idxStart;
idxStart.Fill(0.0);
for(int d = 0; d < ImageDimension; d++)
idxStart[d] = outIndex[d];
// Get the 3D index of the second pixel of the line
typename ReferenceImageBaseType::IndexType idxNext = idxStart;
idxNext[0] += 1;
// Convert to a physical point relative to refernece image
typename ReferenceImageBaseType::PointType pRefStart, pRefNext;
reference->TransformIndexToPhysicalPoint(idxStart, pRefStart);
reference->TransformIndexToPhysicalPoint(idxNext, pRefNext);
// Apply the affine transform to this point - so it's relative to the input image
typename ReferenceImageBaseType::PointType pInpStart, pInpNext;
pInpStart = transform->TransformPoint(pRefStart);
pInpNext = transform->TransformPoint(pRefNext);
// Compute the sample point in input image space and the step
itk::ContinuousIndex<double, InputImageDimension> cixSample, cixNext, cixStep;
input->TransformPhysicalPointToContinuousIndex(pInpStart, cixSample);
input->TransformPhysicalPointToContinuousIndex(pInpNext, cixNext);
for(int d = 0; d < InputImageDimension; d++)
cixStep[d] = cixNext[d] - cixSample[d];
// Determine the starting and ending indices for the line
int kStart = 0, kEnd = line_len - 1;
bool skipLine = false;
for(int d = 0; d < InputImageDimension; d++)
{
double x0 = cixCubeStart[d], x1 = cixCubeEnd[d], dx = cixStep[d], x = cixSample[d];
// TODO: this may behave badly for small voxel sizes
if(fabs(dx) < 1.0e-5)
{
if(x < x0 || x > x1)
{
skipLine = true;
break;
}
}
else
{
double z0 = (x0 - x) / dx, z1 = (x1 - x) / dx;
if(z1 > z0)
{
kStart = std::max(kStart, (int) floor(z0));
kEnd = std::min(kEnd, (int) ceil(z1));
}
else
{
kStart = std::max(kStart, (int) floor(z1));
kEnd = std::min(kEnd, (int) ceil(z0));
}
}
}
if(kStart >= line_len || kEnd <= 0)
skipLine = true;
// Deal with skipped lines
if(skipLine)
{
worker.SkipVoxels(line_len, &outPixelPtr);
}
else
{
// Skip the starting voxels
if(kStart > 0)
{
// Skip the voxels
worker.SkipVoxels(kStart, &outPixelPtr);
// Update the sample location
for(int d = 0; d < InputImageDimension; d++)
cixSample[d] += kStart * cixStep[d];
}
// Process the voxels that cross the image cube
for(int i = kStart; i <= kEnd; i++)
{
worker.ProcessVoxel(cixSample.GetDataPointer(), use_nn, &outPixelPtr);
// Update the sample location
for(int d = 0; d < InputImageDimension; d++)
cixSample[d] += cixStep[d];
}
// Process the rest
if(kEnd < line_len - 1)
{
worker.SkipVoxels((line_len - 1) - kEnd, &outPixelPtr);
}
}
}
}
template <class TInputImage, class TOutputImage>
NonOrthogonalSlicerPixelAccessTraitsWorker<TInputImage, TOutputImage>
::NonOrthogonalSlicerPixelAccessTraitsWorker(TInputImage *image)
: m_Interpolator(image)
{
m_NumComponents = m_Interpolator.GetPointerIncrement();
m_Buffer = new double[m_NumComponents];
}
template <class TInputImage, class TOutputImage>
NonOrthogonalSlicerPixelAccessTraitsWorker<TInputImage, TOutputImage>
::~NonOrthogonalSlicerPixelAccessTraitsWorker()
{
delete m_Buffer;
}
template <class TInputImage, class TOutputImage>
void
NonOrthogonalSlicerPixelAccessTraitsWorker<TInputImage, TOutputImage>
::ProcessVoxel(double *cix, bool use_nn, OutputComponentType **out_ptr)
{
// Perform the interpolation
typename Interpolator::InOut status =
use_nn
? m_Interpolator.InterpolateNearestNeighbor(cix, m_Buffer)
: m_Interpolator.Interpolate(cix, m_Buffer);
if(status == Interpolator::INSIDE)
{
for(int k = 0; k < m_NumComponents; k++)
*(*out_ptr)++ = static_cast<OutputComponentType>(m_Buffer[k]);
}
else
{
// TODO: this is problematic!!!!
for(int k = 0; k < m_NumComponents; k++)
*(*out_ptr)++ = 0; //itk::NumericTraits<OutputComponentType>::Zero;
}
}
template <class TInputImage, class TOutputImage>
void
NonOrthogonalSlicerPixelAccessTraitsWorker<TInputImage, TOutputImage>
::SkipVoxels(int n, OutputComponentType **out_ptr)
{
int n_total = n * m_NumComponents;
for(int k = 0; k < n_total; k++)
*(*out_ptr)++ = 0; //itk::NumericTraits<OutputComponentType>::Zero;
}
/*
* Traits for the component extracting image adaptor. Note that in the call to the
* constructor for the interpolator, we are passing the buffer pointer offset by
* the component index, and only requesting a single component to be sampled
*/
template <typename TPixelType, unsigned int Dimension, typename TOutputImage>
NonOrthogonalSlicerPixelAccessTraitsWorker<itk::VectorImageToImageAdaptor<TPixelType, Dimension>, TOutputImage>
::NonOrthogonalSlicerPixelAccessTraitsWorker(AdaptorType *adaptor)
: m_Interpolator(adaptor,
adaptor->GetBufferPointer() + adaptor->GetPixelAccessor().GetExtractComponentIdx(),
adaptor->GetPixelAccessor().GetVectorLength(), 1)
{
m_NumComponents = m_Interpolator.GetPointerIncrement();
m_ExtractComponent = adaptor->GetPixelAccessor().GetExtractComponentIdx();
}
template <typename TPixelType, unsigned int Dimension, typename TOutputImage>
NonOrthogonalSlicerPixelAccessTraitsWorker<itk::VectorImageToImageAdaptor<TPixelType, Dimension>, TOutputImage>
::~NonOrthogonalSlicerPixelAccessTraitsWorker()
{
}
template <typename TPixelType, unsigned int Dimension, typename TOutputImage>
void
NonOrthogonalSlicerPixelAccessTraitsWorker<itk::VectorImageToImageAdaptor<TPixelType, Dimension>, TOutputImage>
::ProcessVoxel(double *cix, bool use_nn, OutputComponentType **out_ptr)
{
// Perform the interpolation
typename Interpolator::InOut status =
use_nn
? m_Interpolator.InterpolateNearestNeighbor(cix, &m_BufferValue)
: m_Interpolator.Interpolate(cix, &m_BufferValue);
if(status == Interpolator::INSIDE)
{
*(*out_ptr)++ = static_cast<OutputComponentType>(m_BufferValue);
}
else
{
*(*out_ptr)++ = 0;
}
}
template <typename TPixelType, unsigned int Dimension, typename TOutputImage>
void
NonOrthogonalSlicerPixelAccessTraitsWorker<itk::VectorImageToImageAdaptor<TPixelType, Dimension>, TOutputImage>
::SkipVoxels(int n, OutputComponentType **out_ptr)
{
for(int i = 0; i < n; i++)
*(*out_ptr)++ = 0;
}
/*
* Traits for a generic image adaptor with a vector image base
*/
template <typename TPixelType, unsigned int Dimension, typename TAccessor, typename TOutputImage>
NonOrthogonalSlicerPixelAccessTraitsWorker<
itk::ImageAdaptor<itk::VectorImage<TPixelType, Dimension>, TAccessor>, TOutputImage>
::NonOrthogonalSlicerPixelAccessTraitsWorker(AdaptorType *adaptor)
: m_Interpolator(adaptor, adaptor->GetBufferPointer(),
adaptor->GetPixelAccessor().GetVectorLength()),
m_VectorPixel(adaptor->GetPixelAccessor().GetVectorLength()),
m_Adaptor(adaptor)
{
m_NumComponents = m_Interpolator.GetPointerIncrement();
m_Buffer = new double[m_NumComponents];
}
template <typename TPixelType, unsigned int Dimension, typename TAccessor, typename TOutputImage>
NonOrthogonalSlicerPixelAccessTraitsWorker<
itk::ImageAdaptor<itk::VectorImage<TPixelType, Dimension>, TAccessor>, TOutputImage>
::~NonOrthogonalSlicerPixelAccessTraitsWorker()
{
delete m_Buffer;
}
template <typename TPixelType, unsigned int Dimension, typename TAccessor, typename TOutputImage>
void
NonOrthogonalSlicerPixelAccessTraitsWorker<
itk::ImageAdaptor<itk::VectorImage<TPixelType, Dimension>, TAccessor>, TOutputImage>
::ProcessVoxel(double *cix, bool use_nn, OutputComponentType **out_ptr)
{
// Perform the interpolation
typename Interpolator::InOut status =
use_nn
? m_Interpolator.InterpolateNearestNeighbor(cix, m_Buffer)
: m_Interpolator.Interpolate(cix, m_Buffer);
const typename VectorImageType::PixelType &vpref = m_VectorPixel;
if(status == Interpolator::INSIDE)
{
// Cast to the vector pixel type
for(int i = 0; i < m_NumComponents; i++)
m_VectorPixel[i] = static_cast<OutputComponentType>(m_Buffer[i]);
// Apply the accessor
*(*out_ptr)++ =
m_Adaptor->GetPixelAccessor().Get(m_VectorPixel.GetDataPointer());
}
else
{
*(*out_ptr)++ = 0;
}
}
template <typename TPixelType, unsigned int Dimension, typename TAccessor, typename TOutputImage>
void
NonOrthogonalSlicerPixelAccessTraitsWorker<
itk::ImageAdaptor<itk::VectorImage<TPixelType, Dimension>, TAccessor>, TOutputImage>
::SkipVoxels(int n, OutputComponentType **out_ptr)
{
for(int i = 0; i < n; i++)
*(*out_ptr)++ = 0;
}
#endif // NONORTHOGONALSLICER_TXX
|