File: MatOps.c

package info (click to toggle)
itsol 1.0.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, trixie
  • size: 2,152 kB
  • sloc: ansic: 6,795; sh: 686; fortran: 349; makefile: 35
file content (922 lines) | stat: -rw-r--r-- 28,176 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h> 
#include "globheads.h"
#include "protos.h"


int diag_scal( vbsptr vbmat ){
/*----------------------------------------------------------------------------
 * Diagonal scaling:
 * For the matrix with block diagonals D1, D2, ..., Dp :
 *       D1 x  x  x
 *       x  D2 x  x
 *  A =  x  x ... x
 *       x  x  x  Dp
 * simply take the block diagonal matrix
 *       D1 0  0  0
 *       0  D2 0  0
 *  D =  0  0 ... 0
 *       0  0  0  Dp
 * invert D and do A := inv(D)*A
 * then the diagonal blocks of A are now identities.
 *----------------------------------------------------------------------------
 * Parameters
 *----------------------------------------------------------------------------
 * on entry:
 * =========
 * vbmat    = block matrix stored in VBSpaFmt format -- see globheads.h for
 *            details on format, the block sizes might be different
 * on return:
 * ==========
 * vbmat    = inv(D)*vbmat
 *--------------------------------------------------------------------------*/
    int i, j, k, dim, sz, size, ierr = 0, col;
    double one=1.0, zero=0.0; 
    int nzcount, n = vbmat->n, *bsz = vbmat->bsz, *ja;
    int bufsz = sizeof(double)*MAX_BLOCK_SIZE*MAX_BLOCK_SIZE;
    BData *ba, *D, buf;
    D = (BData *)Malloc( sizeof(BData)*n, "diag_scal" );
    buf = (BData)Malloc( bufsz, "diag_scal" );
    for( i = 0; i < n; i++ ) {
        nzcount = vbmat->nzcount[i];
        ja = vbmat->ja[i];
        for( j = 0; j < nzcount; j++ ) {
            if( ja[j] != i ) continue;
            dim = B_DIM( bsz, i );
            size = sizeof(double)*dim*dim;
            D[i] = (BData)Malloc( size, "diag_scal" );
            memcpy(D[i], vbmat->ba[i][j], size );
            ierr = invSVD( dim, D[i] );
            if( ierr != 0 ) {
                for( k = 0; k < i; k++ ) free( D[k] );
                free( D );
                fprintf( stderr, "error: Singular diagonal block...\n" );
                return -2;
            }
        }
    }
    for( i = 0; i < n; i++ ) {
        dim = B_DIM( bsz, i );
        nzcount = vbmat->nzcount[i];
        ja = vbmat->ja[i];
        ba = vbmat->ba[i];
        for( j = 0; j < nzcount; j++ ) {
            col = ja[j];
            sz = B_DIM( bsz, col );
	    DGEMM ("n","n",  dim, sz, dim, one,D[i], dim, ba[j], dim,
		   zero, buf,dim) ; 
	    copyBData( dim, sz, ba[j], buf, 0 );
        }
    }
    vbmat->D = D;
    free( buf );
    return 0;
}

int diagvec( vbsptr vbmat, BData x, BData y )
{
/*---------------------------------------------------------------------
| This function does y = inv(D) x, where D is diagonals of A.
|----------------------------------------------------------------------
| on entry:
| vbmat = the matrix (in BSpaFmt form)
| x     = a vector
|
| on return
| y     = the product inv(D) * x
|--------------------------------------------------------------------*/
    int i, n = vbmat->n, *bsz = vbmat->bsz, dim, sz = 1;
    double zero=0.0, one = 1.0;
    BData *D = vbmat->D;
    for (i = 0; i < n; i++ ) {
        dim = B_DIM( bsz, i );
	DGEMM ("n","n", dim,sz,dim,one,D[i],dim,x+bsz[i],dim,zero,
	       y+bsz[i],dim) ;  
    }
    return 0;
}


void matvec( csptr mata, double *x, double *y )  
{
/*---------------------------------------------------------------------
| This function does the matrix vector product y = A x.
|----------------------------------------------------------------------
| on entry:
| mata  = the matrix (in SpaFmt form)
| x     = a vector
|
| on return
| y     = the product A * x
|--------------------------------------------------------------------*/
/*   local variables    */
   int i, k, *ki;
   double *kr;
   for (i=0; i<mata->n; i++) {
      y[i] = 0.0;
      kr = mata->ma[i];
      ki = mata->ja[i];
      for (k=0; k<mata->nzcount[i]; k++)
         y[i] += kr[k] * x[ki[k]];
   }
   return;
}

void vbmatvec(vbsptr vbmat, double *x, double *y )
{
/*-------------------- matrix -- vector product in VB format */
  int i, j, nzcount, col, inc = 1, dim, sz, nBs, nBsj; 
  int n = vbmat->n, *ja, *bsz = vbmat->bsz;
  double one=1.0;
  BData *ba;
  
  for( i = 0; i < n; i++ ) {
    nBs = bsz[i];
    dim = B_DIM(bsz,i);
    for( j = 0; j < dim; j++ ) 
      y[nBs+j] = 0;
    nzcount = vbmat->nzcount[i];
    ja = vbmat->ja[i];
    ba = vbmat->ba[i];
    for( j = 0; j < nzcount; j++ ) {
      col = ja[j];
      nBsj = bsz[col];
      sz = B_DIM(bsz,col);
/*-------------------- operation:  y = Block*x + y */
      DGEMV ("n", dim, sz,one, ba[j],dim,&x[nBsj],inc,one,&y[nBs],inc);
    }
  }
}


void Lsol(csptr mata, double *b, double *x)
{
/*---------------------------------------------------------------------
| This function does the forward solve L x = b.
| Can be done in place.
|----------------------------------------------------------------------
| on entry:
| mata  = the matrix (in SpaFmt form)
| b     = a vector
|
| on return
| x     = the solution of L x = b 
|--------------------------------------------------------------------*/
/*   local variables    */
  int i, k;
  double *kr;
  int *ki;
  for (i=0; i<mata->n; i++) {
    x[i] = b[i];
    if ( mata->nzcount[i] > 0 ) {
      kr = mata->ma[i];
      ki = mata->ja[i];
      for (k=0; k<mata->nzcount[i]; k++)
	x[i] -= kr[k]*x[ki[k]];
    }
  }
  return;
}
/*---------------end of Lsol-----------------------------------------
----------------------------------------------------------------------*/
void Usol(csptr mata, double *b, double *x)
{
/*---------------------------------------------------------------------
| This function does the backward solve U x = b.
| Can be done in place.
|----------------------------------------------------------------------
| on entry:
| mata  = the matrix (in SpaFmt form)
| b    = a vector
|
| on return
| x     = the solution of U * x = b 
|
|---------------------------------------------------------------------*/
/*   local variables    */
  int i, k, *ki;
  double *kr;
  for (i=mata->n-1; i>=0; i--) {
    kr = mata->ma[i];
    ki = mata->ja[i];
    x[i] = b[i] ;
    for (k=1; k<mata->nzcount[i]; k++)
      x[i] -= kr[k] * x[ki[k]];
    x[i] *= kr[0];
  }
  return;
}
/*----------------end of Usol----------------------------------------
----------------------------------------------------------------------*/

int descend(p4ptr levmat, double *x, double *wk)
{
/*---------------------------------------------------------------------
| This function does the (block) forward elimination in ARMS
|                       new       old
|     |            |  |     |    |    |
|     | L        0 |  | wx1 |    | x1 |
|     |            |  |     | =  |    | 
|     | EU^{-1}  I |  | wx2 |    | x2 |
|     |            |  |     |    |    |
| x used and not touched -- or can be the same as wk.
|--------------------------------------------------------------------*/
/*  local variables   */
  int j, len=levmat->n, lenB=levmat->nB, *iperm=levmat->rperm; 
  double *work = levmat->wk; 
/*------------------------------------------------------
|   apply permutation P to rhs 
|-----------------------------------------------------*/
  for (j=0; j<len; j++)
    work[iperm[j]] = x[j] ;
  Lsol(levmat->L, work, wk);       /* sol:   L x = x                 */
  Usol(levmat->U, wk, work);        /* sol:   U work(2) = work         */
/*-------------------- compute x[lenb:.] = x [lenb:.] - E * work(1) */
  matvecz (levmat->E, work, &work[lenB], &wk[lenB]) ; 
  return 0;
}
/*----end-of-descend---------------------------------------------------
|----------------------------------------------------------------------
|--------------------------------------------------------------------*/
int ascend (p4ptr levmat, double *x, double *wk) 
{
/*---------------------------------------------------------------------
| This function does the (block) backward substitution: 
|
|     |            |  |     |    |    |
|     | U  L^{-1}F |  | wk1 |    | x1 |
|     |            |  |     | =  |    |
|     | 0       S  |  | wk2 |    | x2 |  <<-- x2 already computed.
|     |            |  |     |    |    |       and we need x1
|
|    with x2 = S^{-1} wk2 [assumed to have been computed ] 
|--------------------------------------------------------------------*/
 /*--------------------  local variables  */
  int j, len=levmat->n, lenB=levmat->nB, *qperm=levmat->perm;
  double *work = levmat->wk; 
  /*-------------------- copy x onto wk */  
  matvec(levmat->F, &x[lenB], work);   /*  work = F * x_2   */
  Lsol(levmat->L, work, work);         /*  work = L \ work    */
  for (j=0; j<lenB; j++)               /*  wk1 = wk1 - work  */
    work[j] = x[j] - work[j];
  Usol(levmat->U, work, work);         /*  wk1 = U \ wk1 */ 
  memcpy(&work[lenB],&x[lenB],(len-lenB)*sizeof(double));
/*---------------------------------------
|   apply reverse permutation
|--------------------------------------*/
  for (j=0; j<len; j++)
     wk[j] = work[qperm[j]];     
  return 0;
}
/*----end-of-ascend----------------------------------------------------
|----------------------------------------------------------------------
|--------------------------------------------------------------------*/

void matvecz(csptr mata, double *x, double *y, double *z) 
{
/*---------------------------------------------------------------------
| This function does the matrix vector  z = y - A x.
|----------------------------------------------------------------------
| on entry:
| mata  = the matrix (in SpaFmt form)
| x, y   = two input vector
|
| on return
| z    = the result:  y - A * x
| z-location must be different from that of x 
| i.e., y and x are used but not modified.
|--------------------------------------------------------------------*/
/*   local variables    */
  int i, k, *ki;
  double *kr, t;
  for (i=0; i<mata->n; i++) {
    kr = mata->ma[i];
    ki = mata->ja[i];
    t = y[i] ;
    for (k=0; k<mata->nzcount[i]; k++)
      t -= kr[k] * x[ki[k]];
    z[i] = t; 
  }
  return;
}
/*---------------end of matvecz----------------------------------------
 *--------------------------------------------------------------------*/



p4ptr Lvsol2(double *x, int nlev, p4ptr levmat, ilutptr ilusch) 
{
  /* Macro L-solve -- corresponds to left (L) part of arms
  |  preconditioning operation -- 
  |  on entry : 
  |   x =  right- hand side to be operated on by the preconditioner
  |  on return : x is overwritten
  |   x =  output result of operation 
  |  
  |  Note : in-place operation -- b and x can occupy the same space..
  | --------------------------------------------------------------------*/ 
/*-------------------- local variables  */
  int nloc=levmat->n, first, lenB;
  p4ptr last=levmat; 
/*-------------------- take care of  special cases :  nlev==0 --> lusol  */
  if (nlev == 0) {
    SchLsol(ilusch,x);
    return (last);
  }
  first = 0;
/*-------------------- descend                                      */
  while (levmat) { 
    nloc=levmat->n;
    lenB =levmat->nB;
/*-------------------- left scaling                                  */
    if (levmat->D1 !=  NULL) 
      dscale(nloc,levmat->D1, &x[first],  &x[first]); 
/*--------------------  RESTRICTION/ DESCENT OPERATION  */
    if (lenB) 
      descend (levmat, &x[first], &x[first]);
    first += lenB; 
    last = levmat;
    levmat = levmat->next;
/*---------------------------------------------------------------------
| next level 
+--------------------------------------------------------------------*/
   } 
  SchLsol(ilusch,&x[first]);
  return last; 
}

int Uvsol2(double *x, int nlev, int n, p4ptr levmat,
	   ilutptr ilusch) 
{
  /* Macro U-solve -- corresponds to right (U) part of arms
  |  preconditioning operation -- 
  |  on entry : 
  |  b  =  right- hand side to be operated on by the preconditioner
  |  on return  = x has been overwritten =
  |  x  =  output result of operation 
  |  
  |  Note : in-place operation -- b and x  can occupy the same space..
  | --------------------------------------------------------------------*/ 

/*-------------------- local variables  */
  int nloc, lenB, first; 
  /*-------------------- work array                                        */
  /*-------------------- take care of  special cases :  nlev==0 --> lusol  */
/*-------------------- case of zero levels                             */
  if (nlev == 0) { 
    SchUsol(ilusch, x);  
    return(0);
  }
/*-------------------- general case                               */
  nloc=levmat->n; 
  lenB=levmat->nB; 
  first = n - nloc; 
/*-------------------- last level                                 */
  first += lenB; 
  SchUsol(ilusch, &x[first]); 
/*-------------------- other levels                               */
  while (levmat) {
    nloc = levmat->n; 
    first -= levmat->nB;
    if (levmat->n) 
      ascend(levmat, &x[first],&x[first]);
/*-------------------- right scaling */
    if (levmat->D2 !=  NULL) 
      dscale(nloc, levmat->D2, &x[first], &x[first]) ;
    levmat = levmat->prev; 
  }
  return 0;
/*--------------------  PROLONGATION/ ASCENT OPERATION */
}

int armsol2(double *x,  arms Prec) 
{ /* combined preconditioning operation -- combines the
  |  left and right actions. 
  | 
  |  on entry : 
  |   x =  right- hand side to be operated on by the preconditioner
  |  on return : x is overwritten - 
  |   x =  output result of operation 
  |  
  |  Note : in-place operation -- b and x can occupy the same space..
  | --------------------------------------------------------------------*/ 
/*-------------------- local variables  */
  p4ptr levmat = Prec->levmat;
  ilutptr ilusch = Prec->ilus;
  int nlev = Prec->nlev;
  int n = levmat->n; 
  p4ptr last;
  if (nlev == 0) {
    n = ilusch->n;
    SchLsol(ilusch, x); 
    SchUsol(ilusch, x); 
    return 0;
  }
  last = Lvsol2(x, nlev, levmat, ilusch) ;
  Uvsol2(x, nlev, n, last, ilusch) ; 
  return 0; 
}

void SchLsol(ilutptr ilusch, double *y) 
{
/*---------------------------------------------------------------------
|  Forward solve for Schur complement part = 
|----------------------------------------------------------------------
| on entry:
| ilusch  = the LU matrix as provided from the ILU functions.
| y       = the right-hand-side vector
|
| on return
| y       = solution of LU x = y. [overwritten] 
|---------------------------------------------------------------------*/
/*-------------------- local variables                        */
  int n = ilusch->n, j, *perm = ilusch->rperm;
  double *work = ilusch->wk; 
/*-------------------- begin: right scaling                          */
   if (ilusch->D1 != NULL) 
     dscale(n, ilusch->D1, y, y); 
/*-------------------- ONE SIDED ROW PERMS */
   if (perm != NULL) { 
     for (j=0; j<n; j++)
       work[perm[j]] = y[j]; 
/*--------------------  L solve proper */
     Lsol(ilusch->L, work, y); 
   } else 
     Lsol(ilusch->L, y, y); 
/*---------------end of SchLsol---------------------------------------
----------------------------------------------------------------------*/
}

void SchUsol(ilutptr ilusch, double *y) 
{
/*---------------------------------------------------------------------
| U-solve for Schur complement  - 
|----------------------------------------------------------------------
| on entry:
| ilusch  = the LU matrix as provided from the ILU functions.
| y       = the right-hand-side vector
|
| on return 
| y       = solution of U x = y. [overwritten on y] 
|----------------------------------------------------------------------*/
  int n = ilusch->n, j,  *perm = ilusch->perm, *cperm;
  double *work = ilusch->wk; 
/* -------------------- begin by U-solving */
/*-------------------- CASE: column pivoting  used (as in ILUTP) */
  if (ilusch->perm2 != NULL) {
    Usol(ilusch->U, y, y);
    cperm = ilusch->perm2; 
    for (j=0; j<n; j++)
      work[cperm[j]] = y[j];
  }
  else
/*-------------------- CASE: no column pivoting  used                   */
    Usol(ilusch->U, y, work);
/*-------------------- generic permutation                              */
  if (perm != NULL) {
    for (j=0; j<n; j++)
      y[j] = work[perm[j]];
  } else
    memcpy(y, work,n*sizeof(double));
    
/*-------------------- case when diagonal scaling is done on columns    */ 
    if (ilusch->D2 !=NULL) 
      dscale(n, ilusch->D2, y, y);
}
/*---------------end of SchUsol---------------------------------------
----------------------------------------------------------------------*/

void luinv( int n, double *a, double *x, double *y )
{
/*--------------------------------------------------------
 *    does the operation y = inv(a) * x
 *    where a has already been factored by Gauss.
 *    LUy = x
 *------------------------------------------------------*/
    int i, j, bsA, bsB;
    double sum;
    /* Ly0 = x -- use Lsol ? */   
    for( i = 0; i < n; i++ ) {
        sum = x[i];
        bsA = i - n;
        for( j = 0; j < i; j++ ) {
            bsA += n;
            sum -= a[bsA] * y[j]; /* a(i,j) * y(j) */
        }
        y[i] = sum;
    }
    /* Uy = y0 */
    bsB = i * n;
    for( i = n-1; i >= 0; i-- ) {
        sum = y[i];
        bsB -= n;
        bsA = i+bsB;
        for( j = i+1; j < n; j++ ) {
            bsA += n;
            sum -= a[bsA] * y[j]; /* a(i,j) * y(j) */
        }
        y[i] = sum * a[bsB+i]; /* a(i,i) */
    }
}


int lusolC( double *y, double *x, iluptr lu )
{
/*----------------------------------------------------------------------
 *    performs a forward followed by a backward solve
 *    for LU matrix as produced by iluk
 *    y  = right-hand-side 
 *    x  = solution on return 
 *    lu = LU matrix as produced by iluk. 
 *--------------------------------------------------------------------*/
    int n = lu->n, i, j, nzcount, *ja;
    double *D;
    csptr L, U;

    L = lu->L;
    U = lu->U;
    D = lu->D;

    /* Block L solve */
    for( i = 0; i < n; i++ ) {
        x[i] = y[i];
        nzcount = L->nzcount[i];
        ja = L->ja[i];
        for( j = 0; j < nzcount; j++ ) {
            x[i] -= x[ja[j]] * L->ma[i][j];
        }
    }
    /* Block -- U solve */
    for( i = n-1; i >= 0; i-- ) {
        nzcount = U->nzcount[i];
        ja = U->ja[i];
        for( j = 0; j < nzcount; j++ ) {
            x[i] -= x[ja[j]] * U->ma[i][j];
        }
        x[i] *= D[i];
    }
    return (0); 
}

int vblusolC( double *y, double *x, vbiluptr lu)  
{
/*----------------------------------------------------------------------
 *    performs a forward followed by a backward block solve
 *    for LU matrix as produced by VBILUT
 *    y  = right-hand-side 
 *    x  = solution on return 
 *    lu = LU matrix as produced by VBILUT
 *
 *    note: lu->bf is used to store vector
 *--------------------------------------------------------------------*/
    int n = lu->n, *bsz = lu->bsz, i, j, bi, icol, dim, sz;
    int nzcount, nBs, nID, *ja, inc = 1, OPT;
    double *data, alpha = -1.0, beta = 1.0, alpha2 = 1.0, beta2 = 0.0;
    vbsptr L, U;
    BData *D, *ba;

    L = lu->L;
    U = lu->U;
    D = lu->D;
    OPT = lu->DiagOpt;
    /* Block L solve */
    for( i = 0; i < n; i++ ) {
        dim = B_DIM(bsz,i);
        nBs = bsz[i];
        for( j = 0; j < dim; j++ ) {
            nID = nBs + j;
            x[nID] = y[nID];
        }

        nzcount = L->nzcount[i];
        ja = L->ja[i];
        ba = L->ba[i];
        for( j = 0; j < nzcount; j++ ) {
            icol = ja[j];
            sz = B_DIM(bsz,icol);
            data = ba[j];
            DGEMV( "n",  dim,  sz,  alpha, data, dim, x+bsz[icol],
		   inc, beta, x+nBs, inc ); 
        }
    }
    /* Block -- U solve */
    for( i = n-1; i >= 0; i-- ) {
        dim = B_DIM(bsz,i);
        nzcount = U->nzcount[i];
        nBs = bsz[i];
        ja = U->ja[i];
        ba = U->ba[i];
        for( j = 0; j < nzcount; j++ ) {
            icol = ja[j];
            sz = B_DIM(bsz,icol);
            data = ba[j];
            DGEMV( "n", dim, sz, alpha, data, dim, x+bsz[icol], inc,
		   beta, x+nBs, inc ); 
        }
        data = D[i];
	if (OPT == 1) 
	  luinv( dim, data, x+nBs, lu->bf );
	else
	  DGEMV( "n", dim, dim, alpha2, data, dim, x+nBs, inc, beta2,
		 lu->bf, inc ); 
	
        for( bi = 0; bi < dim; bi++ ) {
            x[nBs+bi] = lu->bf[bi];
        }
    }

    return 0;
}

int rpermC(csptr mat, int *perm)
{
/*----------------------------------------------------------------------
|
| This subroutine permutes the rows of a matrix in SpaFmt format. 
| rperm  computes B = P A  where P is a permutation matrix.  
| The permutation P is defined through the array perm: for each j, 
| perm[j] represents the destination row number of row number j. 
|
|-----------------------------------------------------------------------
| on entry:
|----------
| (amat) = a matrix stored in SpaFmt format.
|
|
| on return:
| ----------
| (amat) = P A stored in SpaFmt format.
|
| integer value returned:
|             0   --> successful return.
|             1   --> memory allocation error.
|---------------------------------------------------------------------*/
   int **addj, *nnz, i, size=mat->n;
   double **addm;
   addj = (int **)Malloc( size*sizeof(int *), "rpermC" );
   addm = (double **) Malloc( size*sizeof(double *), "rpermC" );
   nnz = (int *) Malloc( size*sizeof(int), "rpermC" );
   for (i=0; i<size; i++) {
      addj[perm[i]] = mat->ja[i];
      addm[perm[i]] = mat->ma[i];
      nnz[perm[i]] = mat->nzcount[i];
   }
   for (i=0; i<size; i++) {
      mat->ja[i] = addj[i];
      mat->ma[i] = addm[i];
      mat->nzcount[i] = nnz[i];
   }
   free(addj);
   free(addm);
   free(nnz);
   return 0;
}

int cpermC(csptr mat, int *perm) 
{
/*----------------------------------------------------------------------
|
| This subroutine permutes the columns of a matrix in SpaFmt format.
| cperm computes B = A P, where P is a permutation matrix.
| that maps column j into column perm(j), i.e., on return 
| The permutation P is defined through the array perm: for each j, 
| perm[j] represents the destination column number of column number j. 
|
|-----------------------------------------------------------------------
| on entry:
|----------
| (mat) = a matrix stored in SpaFmt format.
|
|
| on return:
| ----------
| (mat) = A P stored in SpaFmt format.
|
| integer value returned:
|             0   --> successful return.
|             1   --> memory allocation error.
|---------------------------------------------------------------------*/
   int i, j, *newj, size=mat->n, *aja;

   newj = (int *) Malloc( size*sizeof(int), "cpermC" );
   for (i=0; i<size; i++) {
      aja = mat->ja[i];
      for (j=0; j<mat->nzcount[i]; j++)
	 newj[j] = perm[aja[j]];
  
      for (j=0; j<mat->nzcount[i]; j++)
	 aja[j] = newj[j];
      mat->ja[i] = aja;
   }
   free(newj);
   return 0;
}

int dpermC(csptr mat, int *perm) 
{
/*----------------------------------------------------------------------
|
| This subroutine permutes the rows and columns of a matrix in 
| SpaFmt format.  dperm computes B = P^T A P, where P is a permutation 
| matrix.
|
|-----------------------------------------------------------------------
| on entry:
|----------
| (amat) = a matrix stored in SpaFmt format.
|
|
| on return:
| ----------
| (amat) = P^T A P stored in SpaFmt format.
|
| integer value returned:
|             0   --> successful return.
|             1   --> memory allocation error.
|---------------------------------------------------------------------*/
   if (rpermC(mat, perm)) return 1;
   if (cpermC(mat, perm)) return 1;
   return 0;
}

int CSparTran( csptr amat, csptr bmat, CompressType *compress )
{
/*----------------------------------------------------------------------
| Finds the compressed transpose of a matrix stored in SpaFmt format.
| Patterns only.
|-----------------------------------------------------------------------
| on entry:
|----------
| (amat)     = a matrix stored in SpaFmt format.
| (compress) = quotient graph of matrix amat
|
| on return:
| ----------
| (bmat)     = the compressed transpose of (mata) stored in SpaFmt
|              format.
|
| integer value returned:
|             0   --> successful return.
|             1   --> memory allocation error.
|---------------------------------------------------------------------*/
   int i, j, *ind, nzcount, pos, size=amat->n, *aja;
   ind = bmat->nzcount;

   for (i=0; i<size; i++)
      ind[i] = 0;
/*-------------------- compute lengths  */
   for (i=0; i<size; i++) {
     if( compress[i].grp != -1 ) continue;
     aja = amat->ja[i];
     nzcount = amat->nzcount[i];
     for (j=0; j < nzcount; j++) {
       pos = aja[j];
       if( compress[pos].grp == -1 ) {
         ind[pos]++;
       }
     }
   }

/*--------------------  allocate space  */
   for (i=0; i<size; i++) {
      if( ind[i] == 0 ) {
        bmat->ja[i] = NULL;
        continue;
      }
      bmat->ja[i] = (int *)Malloc( ind[i]*sizeof(int), "CSparTran" );
      ind[i] = 0; /* indicate next available position of each row */
   }
/*--------------------  now do the actual copying  */
   for (i=0; i<size; i++) {
      if( compress[i].grp != -1 ) continue;
      aja = amat->ja[i];
      nzcount = amat->nzcount[i];
      for (j = 0; j < nzcount; j++) {
         pos = aja[j];
         if( compress[pos].grp == -1 ) {
           bmat->ja[pos][ind[pos]] = i;
           ind[pos]++;
         }
      }
   }
   return 0;
}

double vbnorm2( int sz, double *a )
{
/*-------------------- return average norm among a[sz] */
    int tmp = 1;

    return DNRM2( sz, a, tmp ) / (double)sz;
}

int condestLU( iluptr lu, double *y, double *x, FILE *fp )
{
    int n = lu->n, i;
    double norm = 0.0;

    for( i = 0; i < n; i++ ) {
        y[i] = 1.0;
    }
    lusolC( y, x, lu );
    for( i = 0; i < n; i++ ) {
        norm = max( norm, fabs(x[i]) );
    }
    fprintf( fp, "ILU inf-norm lower bound : %16.2f\n", norm );
    if( norm > 1e30 ) {
        return -1;
    }
    return 0;
}
/*-----------------------------------------------------------------------*/

int condestArms(arms armspre, double *y, FILE *fp )
{
/*-------------------- simple estimate of cond. number of precon */
  int n = armspre->n, i;
  double norm = 0.0;
  
  for( i = 0; i < n; i++ ) 
    y[i] = 1.0;
  armsol2(y, armspre)  ;
  for( i = 0; i < n; i++ ) {
    norm = max( norm, fabs(y[i]) );
  }
  fprintf( fp, "ARMS inf-norm lower bound = : %16.2f\n", norm );
  if( norm > 1e30 ) {
    return -1;
  }
  return 0;
}

int VBcondestC( vbiluptr lu, double *y, double *x, FILE *fp )
{
    int n = lu->n, i;
    double norm = 0.0;

    for( i = 0; i < lu->bsz[n]; i++ ) {
        y[i] = 1.0;
    }
    vblusolC( y, x, lu );
    for( i = 0; i < lu->bsz[n]; i++ ) {
        norm = max( norm, fabs(x[i]) );
    }
    fprintf( fp, "VBILU inf-norm lower bound : %16.2f\n", norm );
    if( norm > 1e30 ) {
        return -1;
    }
    return 0;
}

void matvecCSR(SMatptr mat, double *x, double *y)
{
  /*-------------------- matvec for csr format using the SMatptr struct*/
  matvec(mat->CSR, x, y )  ;
}

void matvecVBR(SMatptr mat, double *x, double *y)
{
  /*-------------------- matvec for vbr format using the SMat struct*/
  vbmatvec(mat->VBCSR, x, y )  ;
}
/* for iluc -- now removed. 
void matvecLDU(SMatptr mat, double *x, double *y)
{
 -------------------- matvec for ldu format using the Smatrix struct
  lumatvec(mat->LDU, x, y );
}
*/

/*-------------------- preconditioning operations */

int  preconILU(double *x, double *y, SPreptr mat)
{ 
  /*-------------------- precon for csr format using the SPre struct*/
  return lusolC(x, y, mat->ILU)  ;
}

int  preconVBR(double *x, double *y, SPreptr mat)
{
  /*-------------------- precon for ldu format using the SPre struct*/
  return vblusolC(x, y, mat->VBILU)  ;
}

/* removed -- ILUC related
   int  preconLDU(double *x, double *y, SPreptr mat)
   {
   -------------------- precon for vbr format using the SPre struct
   return lumsolC(x, y, mat->ILU)  ;
}
*/


int  preconARMS(double *x, double *y, SPreptr mat)
{
  /*-------------------- precon for ldu format using the SPre struct*/
  int n = (mat->ARMS)->n ; 
  memcpy(y, x, n*sizeof(double));  
  return armsol2(y, mat->ARMS)  ;
}