1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
|
c-----------------------------------------------------------------------
c some routines extracted/ modified from SPARSKIT2 + one from blas
c-----------------------------------------------------------------------
subroutine readmtc (nmax,nzmax,job,fname,a,ja,ia,rhs,nrhs,
* guesol,nrow,ncol,nnz,title,key,type,ierr)
c-----------------------------------------------------------------------
c this subroutine reads a boeing/harwell matrix, given the
c corresponding file. handles right hand sides in full format
c only (no sparse right hand sides). Also the matrix must be
c in assembled forms.
c It differs from readmt, in that the name of the file needs
c to be passed, and then the file is opened and closed within
c this routine.
c Author: Youcef Saad - Date: Oct 31, 1989
c updated Jul 20, 1998 by Irene Moulitsas
c-----------------------------------------------------------------------
c on entry:
c---------
c nmax = max column dimension allowed for matrix. The array ia should
c be of length at least ncol+1 (see below) if job.gt.0
c nzmax = max number of nonzeros elements allowed. the arrays a,
c and ja should be of length equal to nnz (see below) if these
c arrays are to be read (see job).
c
c job = integer to indicate what is to be read. (note: job is an
c input and output parameter, it can be modified on return)
c job = 0 read the values of ncol, nrow, nnz, title, key,
c type and return. matrix is not read and arrays
c a, ja, ia, rhs are not touched.
c job = 1 read srtucture only, i.e., the arrays ja and ia.
c job = 2 read matrix including values, i.e., a, ja, ia
c job = 3 read matrix and right hand sides: a,ja,ia,rhs.
c rhs may contain initial guesses and exact
c solutions appended to the actual right hand sides.
c this will be indicated by the output parameter
c guesol [see below].
c
c fname = name of the file where to read the matrix from.
c
c nrhs = integer. nrhs is an input as well as ouput parameter.
c at input nrhs contains the total length of the array rhs.
c See also ierr and nrhs in output parameters.
c
c on return:
c----------
c job = on return job may be modified to the highest job it could
c do: if job=2 on entry but no matrix values are available it
c is reset to job=1 on return. Similarly of job=3 but no rhs
c is provided then it is rest to job=2 or job=1 depending on
c whether or not matrix values are provided.
c Note that no error message is triggered (i.e. ierr = 0
c on return in these cases. It is therefore important to
c compare the values of job on entry and return ).
c
c a = the a matrix in the a, ia, ja (column) storage format
c ja = column number of element a(i,j) in array a.
c ia = pointer array. ia(i) points to the beginning of column i.
c
c rhs = real array of size nrow + 1 if available (see job)
c
c nrhs = integer containing the number of right-hand sides found
c each right hand side may be accompanied with an intial guess
c and also the exact solution.
c
c guesol = a 2-character string indicating whether an initial guess
c (1-st character) and / or the exact solution (2-nd
c character) is provided with the right hand side.
c if the first character of guesol is 'G' it means that an
c an intial guess is provided for each right-hand side.
c These are appended to the right hand-sides in the array rhs.
c if the second character of guesol is 'X' it means that an
c exact solution is provided for each right-hand side.
c These are appended to the right hand-sides
c and the initial guesses (if any) in the array rhs.
c
c nrow = number of rows in matrix
c ncol = number of columns in matrix
c nnz = number of nonzero elements in A. This info is returned
c even if there is not enough space in a, ja, ia, in order
c to determine the minimum storage needed.
c
c title = character*72 = title of matrix test ( character a*72).
c key = character*8 = key of matrix
c type = charatcer*3 = type of matrix.
c for meaning of title, key and type refer to documentation
c Harwell/Boeing matrices.
c
c ierr = integer used for error messages
c * ierr = 0 means that the matrix has been read normally.
c * ierr = 1 means that the array matrix could not be read
c because ncol+1 .gt. nmax
c * ierr = 2 means that the array matrix could not be read
c because nnz .gt. nzmax
c * ierr = 3 means that the array matrix could not be read
c because both (ncol+1 .gt. nmax) and (nnz .gt. nzmax )
c * ierr = 4 means that the right hand side (s) initial
c guesse (s) and exact solution (s) could not be
c read because they are stored in sparse format (not handled
c by this routine ...)
c * ierr = 5 means that the right-hand-sides, initial guesses
c and exact solutions could not be read because the length of
c rhs as specified by the input value of nrhs is not
c sufficient to store them. The rest of the matrix may have
c been read normally.
c
c Notes:
c-------
c 1) This routine can be interfaced with the C language, since only
c the name of the file needs to be passed and no iounti number.
c
c 2) Refer to the documentation on the Harwell-Boeing formats for
c details on the format assumed by readmt.
c We summarize the format here for convenience.
c
c a) all lines in inout are assumed to be 80 character long.
c b) the file consists of a header followed by the block of the
c column start pointers followed by the block of the row
c indices, followed by the block of the real values and
c finally the numerical values of the right-hand-side if a
c right hand side is supplied.
c c) the file starts by a header which contains four lines if no
c right hand side is supplied and five lines otherwise.
c * first line contains the title (72 characters long)
c followed by the 8-character identifier (name of the
c matrix, called key) [ A72,A8 ]
c * second line contains the number of lines for each of the
c following data blocks (4 of them) and the total number of
c lines excluding the header. [5i4]
c * the third line contains a three character string
c identifying the type of matrices as they are referenced
c in the Harwell Boeing documentation [e.g., rua, rsa,..]
c and the number of rows, columns, nonzero entries.
c [A3,11X,4I14]
c * The fourth line contains the variable fortran format for
c the following data blocks. [2A16,2A20]
c * The fifth line is only present if right-hand-sides are
c supplied. It consists of three one character-strings
c containing the storage format for the right-hand-sides
c ('F'= full,'M'=sparse=same as matrix), an initial guess
c indicator ('G' for yes), an exact solution indicator
c ('X' for yes), followed by the number of right-hand-sides
c and then the number of row indices. [A3,11X,2I14]
c d) The three following blocks follow the header as described
c above.
c e) In case the right hand-side are in sparse formats then the
c fourth block uses the same storage format as for the
c matrix to describe the NRHS right hand sides provided,
c with a column being replaced by a right hand side.
c-----------------------------------------------------------------------
character title*72, key*8, type*3, ptrfmt*16, indfmt*16,
& valfmt*20, rhsfmt*20, rhstyp*3, guesol*2
integer totcrd, ptrcrd, indcrd, valcrd, rhscrd, nrow, ncol,
& nnz, neltvl, nrhs, nmax, nzmax, nrwindx
integer ia (nmax+1), ja (nzmax)
real*8 a(nzmax), rhs(*)
character fname*100
c-----------------------------------------------------------------------
ierr = 0
lenrhs = nrhs
c
iounit=15
open(iounit,file = fname)
read (iounit,10) title, key, totcrd, ptrcrd, indcrd, valcrd,
& rhscrd, type, nrow, ncol, nnz, neltvl, ptrfmt, indfmt,
& valfmt, rhsfmt
10 format (a72, a8 / 5i14 / a3, 11x, 4i14 / 2a16, 2a20)
c
if (rhscrd .gt. 0) read (iounit,11) rhstyp, nrhs, nrwindx
11 format (a3,11x,i14,i14)
c
c anything else to read ?
c
if (job .le. 0) goto 12
c ---- check whether matrix is readable ------
n = ncol
if (ncol .gt. nmax) ierr = 1
if (nnz .gt. nzmax) ierr = ierr + 2
if (ierr .ne. 0) goto 12
c ---- read pointer and row numbers ----------
read (iounit,ptrfmt) (ia (i), i = 1, n+1)
read (iounit,indfmt) (ja (i), i = 1, nnz)
c --- reading values of matrix if required....
if (job .le. 1) goto 12
c --- and if available -----------------------
if (valcrd .le. 0) then
job = 1
goto 12
endif
read (iounit,valfmt) (a(i), i = 1, nnz)
c --- reading rhs if required ----------------
if (job .le. 2) goto 12
c --- and if available -----------------------
if ( rhscrd .le. 0) then
job = 2
goto 12
endif
c
c --- read right-hand-side.--------------------
c
if (rhstyp(1:1) .eq. 'M') then
ierr = 4
goto 12
endif
c
guesol = rhstyp(2:3)
c
nvec = 1
if (guesol(1:1) .eq. 'G' .or. guesol(1:1) .eq. 'g') nvec=nvec+1
if (guesol(2:2) .eq. 'X' .or. guesol(2:2) .eq. 'x') nvec=nvec+1
c
len = nrhs*nrow
c
if (len*nvec .gt. lenrhs) then
ierr = 5
goto 12
endif
c
c read right-hand-sides
c
next = 1
iend = len
read(iounit,rhsfmt) (rhs(i), i = next, iend)
c
c read initial guesses if available
c
if (guesol(1:1) .eq. 'G' .or. guesol(1:1) .eq. 'g') then
next = next+len
iend = iend+ len
read(iounit,valfmt) (rhs(i), i = next, iend)
endif
c
c read exact solutions if available
c
if (guesol(2:2) .eq. 'X' .or. guesol(2:2) .eq. 'x') then
next = next+len
iend = iend+ len
read(iounit,valfmt) (rhs(i), i = next, iend)
endif
c
12 close(iounit)
return
c---------end-of-readmt_c-----------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine csrcsc (n,job,ipos,a,ja,ia,ao,jao,iao)
integer ia(n+1),iao(n+1),ja(*),jao(*)
real*8 a(*),ao(*)
c-----------------------------------------------------------------------
c Compressed Sparse Row to Compressed Sparse Column
c
c (transposition operation) Not in place.
c-----------------------------------------------------------------------
c -- not in place --
c this subroutine transposes a matrix stored in a, ja, ia format.
c ---------------
c on entry:
c----------
c n = dimension of A.
c job = integer to indicate whether to fill the values (job.eq.1) of the
c matrix ao or only the pattern., i.e.,ia, and ja (job .ne.1)
c
c ipos = starting position in ao, jao of the transposed matrix.
c the iao array takes this into account (thus iao(1) is set to ipos.)
c Note: this may be useful if one needs to append the data structure
c of the transpose to that of A. In this case use for example
c call csrcsc (n,1,ia(n+1),a,ja,ia,a,ja,ia(n+2))
c for any other normal usage, enter ipos=1.
c a = real array of length nnz (nnz=number of nonzero elements in input
c matrix) containing the nonzero elements.
c ja = integer array of length nnz containing the column positions
c of the corresponding elements in a.
c ia = integer of size n+1. ia(k) contains the position in a, ja of
c the beginning of the k-th row.
c
c on return:
c ----------
c output arguments:
c ao = real array of size nzz containing the "a" part of the transpose
c jao = integer array of size nnz containing the column indices.
c iao = integer array of size n+1 containing the "ia" index array of
c the transpose.
c
c-----------------------------------------------------------------------
call csrcsc2 (n,n,job,ipos,a,ja,ia,ao,jao,iao)
end
c-----------------------------------------------------------------------
subroutine csrcsc2 (n,n2,job,ipos,a,ja,ia,ao,jao,iao)
integer ia(n+1),iao(n2+1),ja(*),jao(*)
real*8 a(*),ao(*)
c-----------------------------------------------------------------------
c Compressed Sparse Row to Compressed Sparse Column
c
c (transposition operation) Not in place.
c-----------------------------------------------------------------------
c Rectangular version. n is number of rows of CSR matrix,
c n2 (input) is number of columns of CSC matrix.
c-----------------------------------------------------------------------
c -- not in place --
c this subroutine transposes a matrix stored in a, ja, ia format.
c ---------------
c on entry:
c----------
c n = number of rows of CSR matrix.
c n2 = number of columns of CSC matrix.
c job = integer to indicate whether to fill the values (job.eq.1) of the
c matrix ao or only the pattern., i.e.,ia, and ja (job .ne.1)
c
c ipos = starting position in ao, jao of the transposed matrix.
c the iao array takes this into account (thus iao(1) is set to ipos.)
c Note: this may be useful if one needs to append the data structure
c of the transpose to that of A. In this case use for example
c call csrcsc2 (n,n,1,ia(n+1),a,ja,ia,a,ja,ia(n+2))
c for any other normal usage, enter ipos=1.
c a = real array of length nnz (nnz=number of nonzero elements in input
c matrix) containing the nonzero elements.
c ja = integer array of length nnz containing the column positions
c of the corresponding elements in a.
c ia = integer of size n+1. ia(k) contains the position in a, ja of
c the beginning of the k-th row.
c
c on return:
c ----------
c output arguments:
c ao = real array of size nzz containing the "a" part of the transpose
c jao = integer array of size nnz containing the column indices.
c iao = integer array of size n+1 containing the "ia" index array of
c the transpose.
c
c-----------------------------------------------------------------------
c----------------- compute lengths of rows of transp(A) ----------------
do 1 i=1,n2+1
iao(i) = 0
1 continue
do 3 i=1, n
do 2 k=ia(i), ia(i+1)-1
j = ja(k)+1
iao(j) = iao(j)+1
2 continue
3 continue
c---------- compute pointers from lengths ------------------------------
iao(1) = ipos
do 4 i=1,n2
iao(i+1) = iao(i) + iao(i+1)
4 continue
c--------------- now do the actual copying -----------------------------
do 6 i=1,n
do 62 k=ia(i),ia(i+1)-1
j = ja(k)
next = iao(j)
if (job .eq. 1) ao(next) = a(k)
jao(next) = i
iao(j) = next+1
62 continue
6 continue
c-------------------------- reshift iao and leave ----------------------
do 7 i=n2,1,-1
iao(i+1) = iao(i)
7 continue
iao(1) = ipos
c--------------- end of csrcsc2 ----------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine gauss (n,a,ierr)
c-----------------------------------------------------------------------
implicit none
integer n, ierr
real*8 a(n,n)
c
c does the Gaussian factorization a := LU
c
integer i, j, k
real*8 piv
c-----------------------------------------------------------------------
ierr = 0
do k=1, n
if (a(k,k) .eq. 0.0) then
ierr = 1
return
endif
c
a(k,k) = 1.0/a(k,k)
do i=k+1, n
piv = a(i,k) * a(k,k)
do j=k+1, n
a(i,j) = a(i,j) - piv*a(k,j)
enddo
a(i,k) = piv
enddo
enddo
return
end
c-----------------------------------------------------------------------
subroutine bxinv (m, n, a, b, c)
implicit none
integer m, n
real*8 a(n,n), b(m,n), c(m,n)
c
c does the operation c := - b * inv(a)
c where a has already been factored by Gauss.
c
integer i, j, k
real*8 sum
c
c c = b (LU)**(-1) = b U\inv x L \inv
c get c := b U \inv
c
do i=1, m
c
c U solve -- solve for row number k : c(k,*) U = b(k,*)
c
c(i,1) = - b(i,1) * a(1,1)
do j=2, n
sum = - b(i,j)
do k=1, j-1
sum = sum - c(i,k) * a(k,j)
enddo
c(i,j) = sum*a(j,j)
enddo
enddo
c
do i=1, m
c
c L- solve -- solve for row number i : c(i,*) U = b(i,*)
c
do j=n-1, 1, -1
sum = c(i,j)
do k=j+1, n
sum = sum - c(i,k) * a(k,j)
enddo
c(i,j) = sum
enddo
enddo
c
end
c-----------------------------------------------------------------------
subroutine qsplit(a,ind,n,ncut)
real*8 a(n)
integer ind(n), n, ncut
c-----------------------------------------------------------------------
c does a quick-sort split of a real array.
c on input a(1:n). is a real array
c on output a(1:n) is permuted such that its elements satisfy:
c
c abs(a(i)) .ge. abs(a(ncut)) for i .lt. ncut and
c abs(a(i)) .le. abs(a(ncut)) for i .gt. ncut
c
c ind(1:n) is an integer array which permuted in the same way as a(*).
c-----------------------------------------------------------------------
real*8 tmp, abskey
integer itmp, first, last
c-----
first = 1
last = n
if (ncut .lt. first .or. ncut .gt. last) return
c
c outer loop -- while mid .ne. ncut do
c
1 mid = first
abskey = abs(a(mid))
do 2 j=first+1, last
if (abs(a(j)) .gt. abskey) then
mid = mid+1
c interchange
tmp = a(mid)
itmp = ind(mid)
a(mid) = a(j)
ind(mid) = ind(j)
a(j) = tmp
ind(j) = itmp
endif
2 continue
c
c interchange
c
tmp = a(mid)
a(mid) = a(first)
a(first) = tmp
c
itmp = ind(mid)
ind(mid) = ind(first)
ind(first) = itmp
c
c test for while loop
c
if (mid .eq. ncut) return
if (mid .gt. ncut) then
last = mid-1
else
first = mid+1
endif
goto 1
c----------------end-of-qsplit------------------------------------------
c-----------------------------------------------------------------------
end
c
subroutine rnrms (nrow, nrm, a, ia, diag)
real*8 a(*), diag(nrow), scal
integer ia(nrow+1)
c-----------------------------------------------------------------------
c gets the norms of each row of A. (choice of three norms)
c-----------------------------------------------------------------------
c on entry:
c ---------
c nrow = integer. The row dimension of A
c
c nrm = integer. norm indicator. nrm = 1, means 1-norm, nrm =2
c means the 2-nrm, nrm = 0 means max norm
c
c a,
c ja,
c ia = Matrix A in compressed sparse row format.
c
c on return:
c----------
c
c diag = real vector of length nrow containing the norms
c
c-----------------------------------------------------------------
do 1 ii=1,nrow
c
c compute the norm if each element.
c
scal = 0.0d0
k1 = ia(ii)
k2 = ia(ii+1)-1
if (nrm .eq. 0) then
do 2 k=k1, k2
scal = max(scal,abs(a(k) ) )
2 continue
elseif (nrm .eq. 1) then
do 3 k=k1, k2
scal = scal + abs(a(k) )
3 continue
else
do 4 k=k1, k2
scal = scal+a(k)**2
4 continue
endif
if (nrm .eq. 2) scal = sqrt(scal)
diag(ii) = scal
1 continue
return
c-----------------------------------------------------------------------
c-------------end-of-rnrms----------------------------------------------
end
c-----------------------------------------------------------------------
subroutine cnrms (nrow, nrm, a, ja, ia, diag)
real*8 a(*), diag(nrow)
integer ja(*), ia(nrow+1)
c-----------------------------------------------------------------------
c gets the norms of each column of A. (choice of three norms)
c-----------------------------------------------------------------------
c on entry:
c ---------
c nrow = integer. The row dimension of A
c
c nrm = integer. norm indicator. nrm = 1, means 1-norm, nrm =2
c means the 2-nrm, nrm = 0 means max norm
c
c a,
c ja,
c ia = Matrix A in compressed sparse row format.
c
c on return:
c----------
c
c diag = real vector of length nrow containing the norms
c
c-----------------------------------------------------------------
do 10 k=1, nrow
diag(k) = 0.0d0
10 continue
do 1 ii=1,nrow
k1 = ia(ii)
k2 = ia(ii+1)-1
do 2 k=k1, k2
j = ja(k)
c update the norm of each column
if (nrm .eq. 0) then
diag(j) = max(diag(j),abs(a(k) ) )
elseif (nrm .eq. 1) then
diag(j) = diag(j) + abs(a(k) )
else
diag(j) = diag(j)+a(k)**2
endif
2 continue
1 continue
if (nrm .ne. 2) return
do 3 k=1, nrow
diag(k) = sqrt(diag(k))
3 continue
return
c-----------------------------------------------------------------------
c------------end-of-cnrms-----------------------------------------------
end
c-----------------------------------------------------------------------
subroutine roscal(nrow,job,nrm,a,ja,ia,diag,b,jb,ib,ierr)
real*8 a(*), b(*), diag(nrow)
integer nrow,job,nrm,ja(*),jb(*),ia(nrow+1),ib(nrow+1),ierr
c-----------------------------------------------------------------------
c scales the rows of A such that their norms are one on return
c 3 choices of norms: 1-norm, 2-norm, max-norm.
c-----------------------------------------------------------------------
c on entry:
c ---------
c nrow = integer. The row dimension of A
c
c job = integer. job indicator. Job=0 means get array b only
c job = 1 means get b, and the integer arrays ib, jb.
c
c nrm = integer. norm indicator. nrm = 1, means 1-norm, nrm =2
c means the 2-nrm, nrm = 0 means max norm
c
c a,
c ja,
c ia = Matrix A in compressed sparse row format.
c
c on return:
c----------
c
c diag = diagonal matrix stored as a vector containing the matrix
c by which the rows have been scaled, i.e., on return
c we have B = Diag*A.
c
c b,
c jb,
c ib = resulting matrix B in compressed sparse row sparse format.
c
c ierr = error message. ierr=0 : Normal return
c ierr=i > 0 : Row number i is a zero row.
c Notes:
c-------
c 1) The column dimension of A is not needed.
c 2) algorithm in place (B can take the place of A).
c-----------------------------------------------------------------
call rnrms (nrow,nrm,a,ia,diag)
ierr = 0
do 1 j=1, nrow
if (diag(j) .eq. 0.0d0) then
ierr = j
return
else
diag(j) = 1.0d0/diag(j)
endif
1 continue
call diamua(nrow,job,a,ja,ia,diag,b,jb,ib)
return
c-------end-of-roscal---------------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine coscal(nrow,job,nrm,a,ja,ia,diag,b,jb,ib,ierr)
c-----------------------------------------------------------------------
real*8 a(*),b(*),diag(nrow)
integer nrow,job,ja(*),jb(*),ia(nrow+1),ib(nrow+1),ierr
c-----------------------------------------------------------------------
c scales the columns of A such that their norms are one on return
c result matrix written on b, or overwritten on A.
c 3 choices of norms: 1-norm, 2-norm, max-norm. in place.
c-----------------------------------------------------------------------
c on entry:
c ---------
c nrow = integer. The row dimension of A
c
c job = integer. job indicator. Job=0 means get array b only
c job = 1 means get b, and the integer arrays ib, jb.
c
c nrm = integer. norm indicator. nrm = 1, means 1-norm, nrm =2
c means the 2-nrm, nrm = 0 means max norm
c
c a,
c ja,
c ia = Matrix A in compressed sparse row format.
c
c on return:
c----------
c
c diag = diagonal matrix stored as a vector containing the matrix
c by which the columns have been scaled, i.e., on return
c we have B = A * Diag
c
c b,
c jb,
c ib = resulting matrix B in compressed sparse row sparse format.
c
c ierr = error message. ierr=0 : Normal return
c ierr=i > 0 : Column number i is a zero row.
c Notes:
c-------
c 1) The column dimension of A is not needed.
c 2) algorithm in place (B can take the place of A).
c-----------------------------------------------------------------
call cnrms (nrow,nrm,a,ja,ia,diag)
ierr = 0
do 1 j=1, nrow
if (diag(j) .eq. 0.0) then
ierr = j
return
else
diag(j) = 1.0d0/diag(j)
endif
1 continue
call amudia (nrow,job,a,ja,ia,diag,b,jb,ib)
return
c--------end-of-coscal--------------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine diamua (nrow,job, a, ja, ia, diag, b, jb, ib)
real*8 a(*), b(*), diag(nrow), scal
integer ja(*),jb(*), ia(nrow+1),ib(nrow+1)
c-----------------------------------------------------------------------
c performs the matrix by matrix product B = Diag * A (in place)
c-----------------------------------------------------------------------
c on entry:
c ---------
c nrow = integer. The row dimension of A
c
c job = integer. job indicator. Job=0 means get array b only
c job = 1 means get b, and the integer arrays ib, jb.
c
c a,
c ja,
c ia = Matrix A in compressed sparse row format.
c
c diag = diagonal matrix stored as a vector dig(1:n)
c
c on return:
c----------
c
c b,
c jb,
c ib = resulting matrix B in compressed sparse row sparse format.
c
c Notes:
c-------
c 1) The column dimension of A is not needed.
c 2) algorithm in place (B can take the place of A).
c in this case use job=0.
c-----------------------------------------------------------------
do 1 ii=1,nrow
c
c normalize each row
c
k1 = ia(ii)
k2 = ia(ii+1)-1
scal = diag(ii)
do 2 k=k1, k2
b(k) = a(k)*scal
2 continue
1 continue
c
if (job .eq. 0) return
c
do 3 ii=1, nrow+1
ib(ii) = ia(ii)
3 continue
do 31 k=ia(1), ia(nrow+1) -1
jb(k) = ja(k)
31 continue
return
c----------end-of-diamua------------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine amudia (nrow,job, a, ja, ia, diag, b, jb, ib)
real*8 a(*), b(*), diag(nrow)
integer ja(*),jb(*), ia(nrow+1),ib(nrow+1)
c-----------------------------------------------------------------------
c performs the matrix by matrix product B = A * Diag (in place)
c-----------------------------------------------------------------------
c on entry:
c ---------
c nrow = integer. The row dimension of A
c
c job = integer. job indicator. Job=0 means get array b only
c job = 1 means get b, and the integer arrays ib, jb.
c
c a,
c ja,
c ia = Matrix A in compressed sparse row format.
c
c diag = diagonal matrix stored as a vector dig(1:n)
c
c on return:
c----------
c
c b,
c jb,
c ib = resulting matrix B in compressed sparse row sparse format.
c
c Notes:
c-------
c 1) The column dimension of A is not needed.
c 2) algorithm in place (B can take the place of A).
c-----------------------------------------------------------------
do 1 ii=1,nrow
c
c scale each element
c
k1 = ia(ii)
k2 = ia(ii+1)-1
do 2 k=k1, k2
b(k) = a(k)*diag(ja(k))
2 continue
1 continue
c
if (job .eq. 0) return
c
do 3 ii=1, nrow+1
ib(ii) = ia(ii)
3 continue
do 31 k=ia(1), ia(nrow+1) -1
jb(k) = ja(k)
31 continue
return
c-----------------------------------------------------------------------
c-----------end-of-amudiag----------------------------------------------
end
c-----------------------------------------------------------------------
subroutine csrcoo(nrow,job,nzmax,a,ja,ia,nnz,ao,ir,jc,ierr)
c********************************************************************
c
c CSRCOO converts Compressed Sparse Row to Coordinate format.
c
c Discussion:
c
c This routine converts a matrix that is stored in row general sparse
c A, JA, IA format into coordinate format AO, IR, JC.
c
c Modified:
c
c 07 January 2004
c
c Author:
c
c Youcef Saad
c
c Parameters:
c
c Input, integer NROW, the row dimension of the matrix.
c job = integer serving as a job indicator.
c if job = 1 fill in only the array ir, ignore jc, and ao.
c if job = 2 fill in ir, and jc but not ao
c if job = 3 fill in everything.
c The reason why these options are provided is that on return
c ao and jc are the same as a, ja. So when job = 3, a and ja are
c simply copied into ao, jc. When job=2, only jc and ir are
c returned. With job=1 only the array ir is returned. Moreover,
c the algorithm is in place:
c call csrcoo (nrow,1,nzmax,a,ja,ia,nnz,a,ia,ja,ierr)
c will write the output matrix in coordinate format on a, ja,ia.
c (Important: note the order in the output arrays a, ja, ia. )
c i.e., ao can be the same as a, ir can be the same as ia
c and jc can be the same as ja.
c
c Input, complex A(*), integer JA(*), IA(NROW+1), the matrix in CSR
c Compressed Sparse Row format.
c
c nzmax = length of space available in ao, ir, jc.
c the code will stop immediatly if the number of
c nonzero elements found in input matrix exceeds nzmax.
c
c on return:
c -
c ao, ir, jc = matrix in coordinate format.
c
c nnz = number of nonzero elements in matrix.
c
c ierr = integer error indicator.
c ierr == 0 means normal retur
c ierr == 1 means that the the code stopped
c because there was no space in ao, ir, jc
c (according to the value of nzmax).
c
implicit none
integer nrow
real*8 a(*)
real*8 ao(*)
c double complex a(*), ao(*)
integer i
integer ia(nrow+1)
integer ierr
integer ir(*)
integer ja(*)
integer jc(*)
integer job
integer k
integer k1
integer k2
integer nnz
integer nzmax
ierr = 0
nnz = ia(nrow+1)-1
if ( nzmax < nnz ) then
ierr = 1
return
endif
if ( 3 <= job ) then
c ao(1:nnz) = a(1:nnz)
do i = 1, nnz
ao(i) = a(i)
enddo
endif
if ( 2 <= job ) then
c jc(1:nnz) = ja(1:nnz)
do i = 1, nnz
jc(i) = ja(i)
enddo
endif
c
c Copy backward.
c
do i = nrow, 1, -1
k1 = ia(i+1) - 1
k2 = ia(i)
do k = k1, k2, -1
ir(k) = i
enddo
enddo
return
end
c------ End of csrcoo -------------
|