1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
/*
* Copyright (c) 1998-2021 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "config.h"
# include <algorithm>
# include <vector>
# include <cstdlib>
# include "netlist.h"
# include "netmisc.h"
# include "functor.h"
# include "compiler.h"
# include "ivl_assert.h"
using namespace std;
/*
* The cprop function below invokes constant propagation where
* possible. The elaboration generates NetConst objects. I can remove
* these and replace the gates connected to it with simpler ones. I
* may even be able to replace nets with a new constant.
*/
struct cprop_functor : public functor_t {
unsigned count;
virtual void signal(Design*des, NetNet*obj);
virtual void lpm_add_sub(Design*des, NetAddSub*obj);
virtual void lpm_compare(Design*des, const NetCompare*obj);
virtual void lpm_concat(Design*des, NetConcat*obj);
virtual void lpm_ff(Design*des, NetFF*obj);
virtual void lpm_logic(Design*des, NetLogic*obj);
virtual void lpm_mux(Design*des, NetMux*obj);
virtual void lpm_part_select(Design*des, NetPartSelect*obj);
void lpm_compare_eq_(Design*des, const NetCompare*obj);
};
void cprop_functor::signal(Design*, NetNet*)
{
}
void cprop_functor::lpm_add_sub(Design*, NetAddSub*)
{
}
void cprop_functor::lpm_compare(Design*des, const NetCompare*obj)
{
if (obj->pin_AEB().is_linked()) {
assert( ! obj->pin_AGB().is_linked() );
assert( ! obj->pin_AGEB().is_linked() );
assert( ! obj->pin_ALB().is_linked() );
assert( ! obj->pin_ALEB().is_linked() );
assert( ! obj->pin_AGB().is_linked() );
assert( ! obj->pin_ANEB().is_linked() );
lpm_compare_eq_(des, obj);
return;
}
}
void cprop_functor::lpm_compare_eq_(Design*, const NetCompare*)
{
}
void cprop_functor::lpm_concat(Design*des, NetConcat*obj)
{
// Sorry, I don't know how to constant-propagate through
// transparent concatenations.
if (obj->transparent())
return;
verinum result (verinum::Vz, obj->width());
unsigned off = 0;
for (unsigned idx = 1 ; idx < obj->pin_count() ; idx += 1) {
Nexus*nex = obj->pin(idx).nexus();
// If there are non-constant drivers, then give up.
if (! nex->drivers_constant())
return;
verinum tmp = nex->driven_vector();
result.set(off, tmp);
off += tmp.len();
}
if (debug_optimizer)
cerr << obj->get_fileline() << ": cprop_functor::lpm_concat: "
<< "Replace NetConcat with " << result << "." << endl;
NetScope*scope = obj->scope();
// Create a NetConst object to carry the result. Give it the
// same name as the Concat object that we are replacing, and
// link the NetConst to the NetConcat object. Then delete the
// concat that is now replaced.
NetConst*result_obj = new NetConst(scope, obj->name(), result);
result_obj->set_line(*obj);
des->add_node(result_obj);
connect(obj->pin(0), result_obj->pin(0));
// Note that this will leave the const inputs to dangle. They
// will be reaped by other passes of cprop_functor.
delete obj;
count += 1;
}
void cprop_functor::lpm_ff(Design*, NetFF*obj)
{
// Look for and count unlinked FF outputs. Note that if the
// Data and Q pins are connected together, they can be removed
// from the circuit, since it doesn't do anything.
if (connected(obj->pin_Data(), obj->pin_Q())
&& (! obj->pin_Sclr().is_linked())
&& (! obj->pin_Sset().is_linked())
&& (! obj->pin_Aclr().is_linked())
&& (! obj->pin_Aset().is_linked())) {
obj->pin_Data().unlink();
obj->pin_Q().unlink();
delete obj;
}
}
void cprop_functor::lpm_logic(Design*, NetLogic*)
{
}
/*
* This detects the case where the mux selects between a value and
* Vz. In this case, replace the device with a mos with the sel
* input used to enable the output.
*/
void cprop_functor::lpm_mux(Design*des, NetMux*obj)
{
if (obj->size() != 2)
return;
if (obj->sel_width() != 1)
return;
Nexus*sel_nex = obj->pin_Sel().nexus();
/* If the select input is constant, then replace with a BUFZ */
// If the select is not constant, there is nothing we can do.
if (! sel_nex->drivers_constant())
return;
// If the constant select is 'bz or 'bx, then give up.
verinum::V sel_val = sel_nex->driven_value();
if (sel_val == verinum::Vz || sel_val == verinum::Vx)
return;
// The Select input must be a defined constant value, so we
// can replace the device with a BUFZ.
NetBUFZ*tmp = new NetBUFZ(obj->scope(), obj->name(), obj->width(), true);
tmp->set_line(*obj);
if (debug_optimizer)
cerr << obj->get_fileline() << ": debug: "
<< "Replace binary MUX with constant select=" << sel_val
<< " with a BUFZ to the selected input." << endl;
tmp->rise_time(obj->rise_time());
tmp->fall_time(obj->fall_time());
tmp->decay_time(obj->decay_time());
connect(tmp->pin(0), obj->pin_Result());
if (sel_val == verinum::V1)
connect(tmp->pin(1), obj->pin_Data(1));
else
connect(tmp->pin(1), obj->pin_Data(0));
delete obj;
des->add_node(tmp);
count += 1;
}
static bool compare_base(NetPartSelect*a, NetPartSelect*b)
{
return a->base() < b->base();
}
/*
* This optimization searches for Nexa that are driven only by
* NetPartSelect(PV) outputs. These might turn from Verilog input that
* looks like this:
* wire [7:0] foo
* assign foo[7:4] = a;
* assign foo[3:0] = b;
* The idea is to convert the part selects of the above to a single
* concatenation that looks like this:
* assign foo = {a, b};
*/
void cprop_functor::lpm_part_select(Design*des, NetPartSelect*obj)
{
if (obj->dir() != NetPartSelect::PV)
return;
NetScope*scope = obj->scope();
Nexus*nex = obj->pin(1).nexus();
vector<NetPartSelect*> obj_set;
for (Link*cur = nex->first_nlink() ; cur ; cur = cur->next_nlink()) {
// If this is an input (or passive) then ignore it.
if (cur->get_dir() != Link::OUTPUT)
continue;
// Check to see if this is the output of a
// NetPartSelect::PV. If not, then give up on the blend.
NetPins*tmp_obj = cur->get_obj();
unsigned tmp_pin = cur->get_pin();
NetPartSelect*cur_obj = dynamic_cast<NetPartSelect*> (tmp_obj);
if (cur_obj == 0)
return;
if (cur_obj->dir() != NetPartSelect::PV)
return;
if (tmp_pin != 1)
return;
obj_set.push_back(cur_obj);
}
if (obj_set.size() < 2)
return;
if (debug_optimizer)
cerr << obj->get_fileline() << ": cprop::lpm_part_select: "
<< "Found " << obj_set.size() << " NetPartSelect(PV) objects."
<< endl;
// Sort by increasing base offset.
sort(obj_set.begin(), obj_set.end(), compare_base);
// Check and make sure there are no overlaps. If there are,
// then give up on this optimization.
for (size_t idx = 1 ; idx < obj_set.size() ; idx += 1) {
unsigned top = obj_set[idx-1]->base() + obj_set[idx-1]->width();
if (top > obj_set[idx]->base()) {
if (debug_optimizer)
cerr << obj->get_fileline() << ": cprop::lpm_part_select: "
<< "Range [" << obj_set[idx-1]->base()
<< " " << top << ") overlaps PV starting at "
<< obj_set[idx]->base() << ". Give up." << endl;
return;
}
}
// Check if the tail runs off the end of the target. If so it
// should be possible to replace it with a bit select to
// shorten the object for the target, but for now just give up.
unsigned sig_width = nex->vector_width();
if (obj_set.back()->base() + obj_set.back()->width() > sig_width) {
if (debug_optimizer)
cerr << obj->get_fileline() << ": cprop::lpm_part_select: "
<< "Range [" << obj_set.back()->base()
<< ":" << (obj_set.back()->base() + obj_set.back()->width() - 1)
<< "] runs off the end of target." << endl;
return;
}
// Figure out how many components we are going to need.
unsigned part_count = 0;
unsigned off = 0;
for (size_t idx = 0 ; idx < obj_set.size() ; idx += 1) {
if (obj_set[idx]->base() > off) {
off = obj_set[idx]->base();
part_count += 1;
}
off += obj_set[idx]->width();
part_count += 1;
}
if (off < sig_width)
part_count += 1;
NetConcat*cncat = new NetConcat(scope, scope->local_symbol(),
sig_width, part_count);
cncat->set_line(*obj);
des->add_node(cncat);
connect(cncat->pin(0), obj->pin(1));
off = 0;
size_t concat_pin = 1;
for (size_t idx = 0 ; idx < obj_set.size() ; idx += 1) {
NetPartSelect*cobj = obj_set[idx];
if (cobj->base() > off) {
NetNet*zzz = make_const_z(des, scope, cobj->base()-off);
connect(cncat->pin(concat_pin), zzz->pin(0));
concat_pin += 1;
off = cobj->base();
}
connect(cncat->pin(concat_pin), cobj->pin(0));
concat_pin += 1;
off += cobj->width();
}
if (off < sig_width) {
NetNet*zzz = make_const_z(des, scope, sig_width-off);
connect(cncat->pin(concat_pin), zzz->pin(0));
concat_pin += 1;
}
ivl_assert(*obj, concat_pin == cncat->pin_count());
for (size_t idx = 0 ; idx < obj_set.size() ; idx += 1) {
delete obj_set[idx];
}
count += 1;
}
/*
* This functor looks to see if the constant is connected to nothing
* but signals. If that is the case, delete the dangling constant and
* the now useless signals. This functor is applied after the regular
* functor to clean up dangling constants that might be left behind.
*/
struct cprop_dc_functor : public functor_t {
virtual void lpm_const(Design*des, NetConst*obj);
};
struct nexus_info_s {
Nexus*nex;
unsigned inp;
unsigned out;
};
void cprop_dc_functor::lpm_const(Design*, NetConst*obj)
{
// 'bz constant values drive high impedance to whatever is
// connected to it. In other words, it is a noop. But that is
// only true if *all* the bits of the vectors.
{ unsigned tmp = 0;
ivl_assert(*obj, obj->pin_count()==1);
for (unsigned idx = 0 ; idx < obj->width() ; idx += 1) {
if (obj->value(idx) == verinum::Vz) {
tmp += 1;
}
}
if (tmp == obj->width()) {
delete obj;
return;
}
}
std::vector<nexus_info_s> nexus_info (obj->pin_count());
for (unsigned idx = 0 ; idx < obj->pin_count() ; idx += 1) {
nexus_info[idx].nex = obj->pin(idx).nexus();
unsigned inputs = 0, outputs = 0;
nexus_info[idx].nex -> count_io(inputs, outputs);
nexus_info[idx].inp = inputs;
nexus_info[idx].out = outputs;
}
// If there are any links that take input, the constant is
// used structurally somewhere.
for (unsigned idx = 0 ; idx < obj->pin_count() ; idx += 1)
if (nexus_info[idx].inp > 0)
return;
// Look for signals that have NetESignal nodes attached to
// them. If I find any, then this constant is used by a
// behavioral expression somewhere.
for (unsigned idx = 0 ; idx < obj->pin_count() ; idx += 1) {
for (Link*clnk = nexus_info[idx].nex->first_nlink()
; clnk ; clnk = clnk->next_nlink()) {
NetPins*cur;
unsigned pin;
clnk->cur_link(cur, pin);
const NetNet*tmp = dynamic_cast<NetNet*>(cur);
if (tmp == 0)
continue;
assert(tmp->scope());
// If the net is a signal name from the source,
// then users will probably want to see it in the
// waveform dump, so unhooking the constant will
// make it look wrong.
if (! tmp->local_flag())
return;
// If the net has an eref, then there is an
// expression somewhere that reads this signal. So
// the constant does get read.
if (tmp->peek_eref() > 0)
return;
// If the net is a port of the root module, then
// the constant may be driving something outside
// the design, so do not eliminate it.
if ((tmp->port_type() != NetNet::NOT_A_PORT)
&& (tmp->scope()->parent() == 0))
return;
}
}
// Done. Found no reason to keep this object, so delete it.
delete obj;
}
void cprop(Design*des)
{
// Continually propagate constants until a scan finds nothing
// to do.
cprop_functor prop;
do {
prop.count = 0;
des->functor(&prop);
if (verbose_flag) {
cout << " ... Iteration detected "
<< prop.count << " optimizations." << endl << flush;
}
} while (prop.count > 0);
if (verbose_flag) {
cout << " ... Look for dangling constants" << endl << flush;
}
cprop_dc_functor dc;
des->functor(&dc);
if (verbose_flag) {
cout << " ... done" << endl << flush;
}
}
|