File: elab_scope.cc

package info (click to toggle)
iverilog 12.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 30,148 kB
  • sloc: cpp: 109,972; ansic: 62,713; yacc: 10,216; sh: 3,470; vhdl: 3,246; perl: 1,814; makefile: 1,774; python: 78; csh: 2
file content (1773 lines) | stat: -rw-r--r-- 58,352 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
/*
 * Copyright (c) 2000-2021 Stephen Williams (steve@icarus.com)
 * Copyright CERN 2013 / Stephen Williams (steve@icarus.com)
 *
 *    This source code is free software; you can redistribute it
 *    and/or modify it in source code form under the terms of the GNU
 *    General Public License as published by the Free Software
 *    Foundation; either version 2 of the License, or (at your option)
 *    any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

# include  "config.h"
# include  "compiler.h"
# include  "netmisc.h"
# include  "netvector.h"
# include  "netparray.h"
# include  <cstring>
# include  <iostream>
# include  <cstdlib>
# include  <cstdio>

/*
 * Elaboration happens in two passes, generally. The first scans the
 * pform to generate the NetScope tree and attach it to the Design
 * object. The methods in this source file implement the elaboration
 * of the scopes.
 */

# include  "Module.h"
# include  "PClass.h"
# include  "PExpr.h"
# include  "PEvent.h"
# include  "PClass.h"
# include  "PGate.h"
# include  "PGenerate.h"
# include  "PPackage.h"
# include  "PTask.h"
# include  "PWire.h"
# include  "Statement.h"
# include  "AStatement.h"
# include  "netlist.h"
# include  "netclass.h"
# include  "netenum.h"
# include  "netqueue.h"
# include  "parse_api.h"
# include  "util.h"
# include  <typeinfo>
# include  <cassert>
# include  "ivl_assert.h"

using namespace std;

void set_scope_timescale(Design*des, NetScope*scope, PScope*pscope)
{
      scope->time_unit(pscope->time_unit);
      scope->time_precision(pscope->time_precision);
      scope->time_from_timescale(pscope->has_explicit_timescale());
      des->set_precision(pscope->time_precision);
}

typedef map<perm_string,LexicalScope::param_expr_t*>::const_iterator mparm_it_t;

static void collect_parm_item(Design*des, NetScope*scope, perm_string name,
			      const LexicalScope::param_expr_t&cur,
			      bool is_annotatable)
{
      if (debug_scopes) {
	    cerr << cur.get_fileline() << ": " << __func__  << ": "
		 << "parameter " << name << " ";
	    if (cur.data_type)
		  cerr << *cur.data_type;
	    else
		  cerr << "(nil type)";
	    ivl_assert(cur, cur.expr);
	    cerr << " = " << *cur.expr << "; ";
	    if (cur.range)
		  cerr << "with ranges ";
	    else
		  cerr << "without ranges ";
	    cerr << "; in scope " << scope_path(scope) << endl;
      }

      NetScope::range_t*range_list = 0;
      for (LexicalScope::range_t*range = cur.range ; range ; range = range->next) {
	    NetScope::range_t*tmp = new NetScope::range_t;
	    tmp->exclude_flag = range->exclude_flag;
	    tmp->low_open_flag = range->low_open_flag;
	    tmp->high_open_flag = range->high_open_flag;

	    if (range->low_expr) {
		  tmp->low_expr = elab_and_eval(des, scope, range->low_expr, -1);
		  ivl_assert(*range->low_expr, tmp->low_expr);
	    } else {
		  tmp->low_expr = 0;
	    }

	    if (range->high_expr && range->high_expr==range->low_expr) {
		    // Detect the special case of a "point"
		    // range. These are called out by setting the high
		    // and low expression ranges to the same
		    // expression. The exclude_flags should be false
		    // in this case
		  ivl_assert(*range->high_expr, tmp->low_open_flag==false && tmp->high_open_flag==false);
		  tmp->high_expr = tmp->low_expr;

	    } else if (range->high_expr) {
		  tmp->high_expr = elab_and_eval(des, scope, range->high_expr, -1);
		  ivl_assert(*range->high_expr, tmp->high_expr);
	    } else {
		  tmp->high_expr = 0;
	    }

	    tmp->next = range_list;
	    range_list = tmp;
      }

      // The type of the parameter, if unspecified in the source, will come
      // from the type of the value assigned to it. Therefore, if the type is
      // not yet known, don't try to guess here, put the type guess off. Also
      // don't try to elaborate it here, because there may be references to
      // other parameters still being located during scope elaboration.
      scope->set_parameter(name, is_annotatable, cur, range_list);
}

static void collect_scope_parameters(Design*des, NetScope*scope,
      const map<perm_string,LexicalScope::param_expr_t*>&parameters)
{
      if (debug_scopes) {
	    cerr << scope->get_fileline() << ": " << __func__ << ": "
		 << "collect parameters for " << scope_path(scope) << "." << endl;
      }

      for (mparm_it_t cur = parameters.begin()
		 ; cur != parameters.end() ;  ++ cur ) {

	    collect_parm_item(des, scope, cur->first, *(cur->second), false);
      }
}

static void collect_scope_specparams(Design*des, NetScope*scope,
      const map<perm_string,LexicalScope::param_expr_t*>&specparams)
{
      if (debug_scopes) {
	    cerr << scope->get_fileline() << ": " << __func__ << ": "
		 << "collect specparams for " << scope_path(scope) << "." << endl;
      }

      for (mparm_it_t cur = specparams.begin()
		 ; cur != specparams.end() ;  ++ cur ) {

	    collect_parm_item(des, scope, cur->first, *(cur->second), true);
      }
}

/*
 * Elaborate the enumeration into the given scope.
 */
static void elaborate_scope_enumeration(Design*des, NetScope*scope,
					enum_type_t*enum_type)
{
      bool rc_flag;

      enum_type->elaborate_type(des, scope);

      netenum_t *use_enum = scope->enumeration_for_key(enum_type);

      size_t name_idx = 0;
	// Find the enumeration width.
      long raw_width = use_enum->packed_width();
      assert(raw_width > 0);
      unsigned enum_width = (unsigned)raw_width;
      bool is_signed = use_enum->get_signed();
	// Define the default start value and the increment value to be the
	// correct type for this enumeration.
      verinum cur_value ((uint64_t)0, enum_width);
      cur_value.has_sign(is_signed);
      verinum one_value ((uint64_t)1, enum_width);
      one_value.has_sign(is_signed);
	// Find the maximum allowed enumeration value.
      verinum max_value (0);
      if (is_signed) {
	    max_value = pow(verinum(2), verinum(enum_width-1)) - one_value;
      } else {
	    max_value = pow(verinum(2), verinum(enum_width)) - one_value;
      }
      max_value.has_sign(is_signed);
	// Variable to indicate when a defined value wraps.
      bool implicit_wrapped = false;
	// Process the enumeration definition.
      for (list<named_pexpr_t>::const_iterator cur = enum_type->names->begin()
		 ; cur != enum_type->names->end() ;  ++ cur, name_idx += 1) {
	      // Check to see if the enumeration name has a value given.
	    if (cur->parm) {
		    // There is an explicit value. elaborate/evaluate
		    // the value and assign it to the enumeration name.
		  NetExpr*val = elab_and_eval(des, scope, cur->parm, -1);
		  NetEConst*val_const = dynamic_cast<NetEConst*> (val);
		  if (val_const == 0) {
			cerr << use_enum->get_fileline()
			     << ": error: Enumeration expression for "
			     << cur->name <<" is not an integer constant."
			     << endl;
			des->errors += 1;
			continue;
		  }
		  cur_value = val_const->value();
		    // Clear the implicit wrapped flag if a parameter is given.
		  implicit_wrapped = false;

		    // A 2-state value can not have a constant with X/Z bits.
		  if (use_enum->base_type() == IVL_VT_BOOL &&
		      ! cur_value.is_defined()) {
			cerr << use_enum->get_fileline()
			     << ": error: Enumeration name " << cur->name
			     << " can not have an undefined value." << endl;
			des->errors += 1;
		  }
		    // If this is a literal constant and it has a defined
		    // width then the width must match the enumeration width.
		  if (PENumber *tmp = dynamic_cast<PENumber*>(cur->parm)) {
			if (tmp->value().has_len() &&
			    (tmp->value().len() != enum_width)) {
			      cerr << use_enum->get_fileline()
			           << ": error: Enumeration name " << cur->name
			           << " has an incorrectly sized constant."
			           << endl;
			      des->errors += 1;
			}
		  }

		    // If we are padding/truncating a negative value for an
		    // unsigned enumeration that is an error or if the new
		    // value does not have a defined width.
		  if (((cur_value.len() != enum_width) ||
		       ! cur_value.has_len()) &&
		      ! is_signed && cur_value.is_negative()) {
			cerr << use_enum->get_fileline()
			     << ": error: Enumeration name " << cur->name
			     << " has a negative value." << endl;
			des->errors += 1;
		  }

		    // Narrower values need to be padded to the width of the
		    // enumeration and defined to have the specified width.
		  if (cur_value.len() < enum_width) {
			cur_value = pad_to_width(cur_value, enum_width);
		  }

		    // Some wider values can be truncated.
		  if (cur_value.len() > enum_width) {
			unsigned check_width = enum_width - 1;
			  // Check that the upper bits match the MSB
			for (unsigned idx = enum_width;
			     idx < cur_value.len();
			     idx += 1) {
			      if (cur_value[idx] != cur_value[check_width]) {
				      // If this is an unsigned enumeration
				      // then zero padding is okay.
				    if (!is_signed &&
				        (idx == enum_width) &&
				        (cur_value[idx] == verinum::V0)) {
					  check_width += 1;
					  continue;
				    }
				    if (cur_value.is_defined()) {
					  cerr << use_enum->get_fileline()
					       << ": error: Enumeration name "
					       << cur->name
					       << " has a value that is too "
					       << ((cur_value > max_value) ?
					           "large" : "small")
					       << " " << cur_value << "."
					       << endl;
				    } else {
					  cerr << use_enum->get_fileline()
					       << ": error: Enumeration name "
					       << cur->name
					       << " has trimmed bits that do "
					       << "not match the enumeration "
					       << "MSB: " << cur_value << "."
					       << endl;
				    }
				    des->errors += 1;
				    break;
			      }
			}
			  // If this is an unsigned value then make sure
			  // The upper bits are not 1.
			if (! cur_value.has_sign() &&
			    (cur_value[enum_width] == verinum::V1)) {
			      cerr << use_enum->get_fileline()
			           << ": error: Enumeration name "
			           << cur->name
			           << " has a value that is too large: "
			           << cur_value << "." << endl;
			      des->errors += 1;
			      break;
			}
			cur_value = verinum(cur_value, enum_width);
		  }

		    // At this point the value has the correct size and needs
		    // to have the correct sign attribute set.
		  cur_value.has_len(true);
		  cur_value.has_sign(is_signed);

	    } else if (! cur_value.is_defined()) {
		  cerr << use_enum->get_fileline()
		       << ": error: Enumeration name " << cur->name
		       << " has an undefined inferred value." << endl;
		  des->errors += 1;
		  continue;
	    }

	      // Check to see if an implicitly wrapped value is used.
	    if (implicit_wrapped) {
		  cerr << use_enum->get_fileline()
		       << ": error: Enumeration name " << cur->name
		       << " has an inferred value that overflowed." << endl;
		  des->errors += 1;
	    }

	    // The enumeration value must be unique.
	    perm_string dup_name = use_enum->find_value(cur_value);
	    if (dup_name) {
		  cerr << use_enum->get_fileline()
		       << ": error: Enumeration name "
		       << cur->name << " and " << dup_name
		       << " have the same value: " << cur_value << endl;
		  des->errors += 1;
	    }

	    rc_flag = use_enum->insert_name(name_idx, cur->name, cur_value);
	    rc_flag &= scope->add_enumeration_name(use_enum, cur->name);

	    if (! rc_flag) {
		  cerr << use_enum->get_fileline()
		       << ": error: Duplicate enumeration name "
		       << cur->name << endl;
		  des->errors += 1;
	    }

	      // In case the next name has an implicit value,
	      // increment the current value by one.
	    if (cur_value.is_defined()) {
		  if (cur_value == max_value) implicit_wrapped = true;
		  cur_value = cur_value + one_value;
	    }
      }

      use_enum->insert_name_close();
}

static void elaborate_scope_enumerations(Design*des, NetScope*scope,
					 const vector<enum_type_t*>&enum_types)
{
      if (debug_scopes) {
	    cerr << scope->get_fileline() << ": " << __func__ << ": "
		 << "Elaborate " << enum_types.size() << " enumerations"
		 << " in scope " << scope_path(scope) << "."
		 << endl;
      }

      for (vector<enum_type_t*>::const_iterator cur = enum_types.begin()
		 ; cur != enum_types.end() ; ++ cur) {
	    enum_type_t*curp = *cur;
	    elaborate_scope_enumeration(des, scope, curp);
      }
}

/*
 * If the pclass includes an implicit and explicit constructor, then
 * merge the implicit constructor into the explicit constructor as
 * statements in the beginning.
 *
 * This is not necessary for proper functionality, it is an
 * optimization, so we can easily give up if it doesn't seem like it
 * will obviously work.
 */
static void blend_class_constructors(PClass*pclass)
{
      perm_string new1 = perm_string::literal("new");
      perm_string new2 = perm_string::literal("new@");

      PFunction*use_new;
      PFunction*use_new2;

	// Locate the explicit constructor.
      map<perm_string,PFunction*>::iterator iter_new = pclass->funcs.find(new1);
      if (iter_new == pclass->funcs.end())
	    use_new = 0;
      else
	    use_new = iter_new->second;

	// Locate the implicit constructor.
      map<perm_string,PFunction*>::iterator iter_new2 = pclass->funcs.find(new2);
      if (iter_new2 == pclass->funcs.end())
	    use_new2 = 0;
      else
	    use_new2 = iter_new2->second;

	// If there are no constructors, then we are done.
      if (use_new==0 && use_new2==0)
	    return;

	// While we're here, look for a super.new() call. If we find
	// it, strip it out of the constructor and set it aside for
	// when we actually call the chained constructor.
      PChainConstructor*chain_new = use_new? use_new->extract_chain_constructor() : 0;

	// If we do not have an explicit constructor chain, but there
	// is a parent class, then create an implicit chain.
      if (chain_new==0 && pclass->type->base_type) {
	    chain_new = new PChainConstructor(pclass->type->base_args);
	    chain_new->set_line(*pclass);
      }

	// If there are both an implicit and explicit constructor,
	// then blend the implicit constructor into the explicit
	// constructor. This eases the task for the elaborator later.
      if (use_new && use_new2) {
	      // These constructors must be methods of the same class.
	    ivl_assert(*use_new, use_new->method_of() == use_new2->method_of());

	    Statement*def_new = use_new->get_statement();
	    Statement*def_new2 = use_new2->get_statement();

	      // It is possible, i.e. recovering from a parse error,
	      // for the statement from the constructor to be
	      // missing. In that case, create an empty one.
	    if (def_new==0) {
		  def_new = new PBlock(PBlock::BL_SEQ);
		  use_new->set_statement(def_new);
	    }

	    if (def_new2) use_new->push_statement_front(def_new2);

	      // Now the implicit initializations are all built into
	      // the constructor. Delete the "new@" constructor.
	    pclass->funcs.erase(iter_new2);
	    delete use_new2;
	    use_new2 = 0;
      }

      if (chain_new) {
	    if (use_new2) {
		  use_new2->push_statement_front(chain_new);
	    } else {
		  use_new->push_statement_front(chain_new);
	    }
	    chain_new = 0;
      }
}

static void elaborate_scope_class(Design*des, NetScope*scope, PClass*pclass)
{
      class_type_t*use_type = pclass->type;

      if (debug_scopes) {
	    cerr << pclass->get_fileline() <<": elaborate_scope_class: "
		 << "Elaborate scope class " << pclass->pscope_name()
		 << " within scope " << scope_path(scope)
		 << endl;
      }


      const netclass_t*use_base_class = 0;
      if (use_type->base_type) {
	    ivl_type_t base_type = use_type->base_type->elaborate_type(des, scope);
	    use_base_class = dynamic_cast<const netclass_t *>(base_type);
	    if (!use_base_class) {
		  cerr << pclass->get_fileline() << ": error: "
		       << "Base type of " << use_type->name
		       << " is not a class." << endl;
		  des->errors += 1;
	    }
      }

      netclass_t*use_class = new netclass_t(use_type->name, use_base_class);

      NetScope*class_scope = new NetScope(scope, hname_t(pclass->pscope_name()),
					  NetScope::CLASS, scope->unit());
      class_scope->set_line(pclass);
      class_scope->set_class_def(use_class);
      use_class->set_class_scope(class_scope);
      use_class->set_definition_scope(scope);
      use_class->set_virtual(use_type->virtual_class);
      set_scope_timescale(des, class_scope, pclass);

      class_scope->add_typedefs(&pclass->typedefs);

      collect_scope_parameters(des, class_scope, pclass->parameters);

	// Elaborate enum types declared in the class. We need these
	// now because enumeration constants can be used during scope
	// elaboration.
      if (debug_scopes) {
	    cerr << pclass->get_fileline() << ": elaborate_scope_class: "
		 << "Elaborate " << pclass->enum_sets.size() << " enumerations"
		 << " in class " << scope_path(class_scope)
		 << ", scope=" << scope_path(scope) << "."
		 << endl;
      }
      elaborate_scope_enumerations(des, class_scope, pclass->enum_sets);

      for (map<perm_string,PTask*>::iterator cur = pclass->tasks.begin()
		 ; cur != pclass->tasks.end() ; ++cur) {

	    hname_t use_name (cur->first);
	    NetScope*method_scope = new NetScope(class_scope, use_name, NetScope::TASK);

	      // Task methods are always automatic...
	    if (!cur->second->is_auto()) {
		  cerr << "error: Lifetime of method `"
		       << scope_path(method_scope)
		       << "` must not be static" << endl;
		  des->errors += 1;
	    }
	    method_scope->is_auto(true);
	    method_scope->set_line(cur->second);
	    method_scope->add_imports(&cur->second->explicit_imports);

	    if (debug_scopes) {
		  cerr << cur->second->get_fileline() << ": elaborate_scope_class: "
		       << "Elaborate method (task) scope "
		       << scope_path(method_scope) << endl;
	    }

	    cur->second->elaborate_scope(des, method_scope);
      }

      for (map<perm_string,PFunction*>::iterator cur = pclass->funcs.begin()
		 ; cur != pclass->funcs.end() ; ++cur) {

	    hname_t use_name (cur->first);
	    NetScope*method_scope = new NetScope(class_scope, use_name, NetScope::FUNC);

	      // Function methods are always automatic...
	    if (!cur->second->is_auto()) {
		  cerr << "error: Lifetime of method `"
		       << scope_path(method_scope)
		       << "` must not be static" << endl;
		  des->errors += 1;
	    }
	    method_scope->is_auto(true);
	    method_scope->set_line(cur->second);
	    method_scope->add_imports(&cur->second->explicit_imports);

	    if (debug_scopes) {
		  cerr << cur->second->get_fileline() << ": elaborate_scope_class: "
		       << "Elaborate method (function) scope "
		       << scope_path(method_scope) << endl;
	    }

	    cur->second->elaborate_scope(des, method_scope);
      }

      scope->add_class(use_class);
}

static void elaborate_scope_classes(Design*des, NetScope*scope,
				    const vector<PClass*>&classes)
{
      if (debug_scopes) {
	    cerr << scope->get_fileline() << ": " << __func__ << ": "
		 << "Elaborate " << classes.size() << " classes"
		 << " in scope " << scope_path(scope) << "."
		 << endl;
      }

      for (size_t idx = 0 ; idx < classes.size() ; idx += 1) {
	    blend_class_constructors(classes[idx]);
	    elaborate_scope_class(des, scope, classes[idx]);
      }
}

static void replace_scope_parameters(Design *des, NetScope*scope, const LineInfo&loc,
				     const Module::replace_t&replacements)
{
      if (debug_scopes) {
	    cerr << scope->get_fileline() << ": " << __func__ << ": "
		 << "Replace scope parameters for " << scope_path(scope) << "." << endl;
      }

      for (Module::replace_t::const_iterator cur = replacements.begin()
		 ; cur != replacements.end() ;  ++ cur ) {

	    PExpr*val = (*cur).second;
	    if (val == 0) {
		  cerr << loc.get_fileline() << ": internal error: "
		       << "Missing expression in parameter replacement for "
		       << (*cur).first << endl;;
	    }
	    assert(val);
	    if (debug_scopes) {
		  cerr << loc.get_fileline() << ": debug: "
		       << "Replace " << (*cur).first
		       << " with expression " << *val
		       << " from " << val->get_fileline() << "." << endl;
		  cerr << loc.get_fileline() << ":      : "
		       << "Type=" << val->expr_type() << endl;
	    }
	    scope->replace_parameter(des, (*cur).first, val, scope->parent());
      }
}

static void elaborate_scope_events_(Design*des, NetScope*scope,
                                    const map<perm_string,PEvent*>&events)
{
      for (map<perm_string,PEvent*>::const_iterator et = events.begin()
		 ; et != events.end() ;  ++ et ) {

	    (*et).second->elaborate_scope(des, scope);
      }
}

static void elaborate_scope_task(Design*des, NetScope*scope, PTask*task)
{
      hname_t use_name( task->pscope_name() );

      NetScope*task_scope = new NetScope(scope, use_name, NetScope::TASK);
      task_scope->is_auto(task->is_auto());
      task_scope->set_line(task);
      task_scope->add_imports(&task->explicit_imports);

      if (debug_scopes) {
	    cerr << task->get_fileline() << ": elaborate_scope_task: "
		 << "Elaborate task scope " << scope_path(task_scope) << endl;
      }

      task->elaborate_scope(des, task_scope);
}

static void elaborate_scope_tasks(Design*des, NetScope*scope,
				  const map<perm_string,PTask*>&tasks)
{
      typedef map<perm_string,PTask*>::const_iterator tasks_it_t;

      for (tasks_it_t cur = tasks.begin()
		 ; cur != tasks.end() ;  ++ cur ) {

	    elaborate_scope_task(des, scope, cur->second);
      }

}

static void elaborate_scope_func(Design*des, NetScope*scope, PFunction*task)
{
      hname_t use_name( task->pscope_name() );

      NetScope*task_scope = new NetScope(scope, use_name, NetScope::FUNC);
      task_scope->is_auto(task->is_auto());
      task_scope->set_line(task);
      task_scope->add_imports(&task->explicit_imports);

      if (debug_scopes) {
	    cerr << task->get_fileline() << ": elaborate_scope_func: "
		 << "Elaborate function scope " << scope_path(task_scope)
		 << endl;
      }

      task->elaborate_scope(des, task_scope);
}

static void elaborate_scope_funcs(Design*des, NetScope*scope,
				  const map<perm_string,PFunction*>&funcs)
{
      typedef map<perm_string,PFunction*>::const_iterator funcs_it_t;

      for (funcs_it_t cur = funcs.begin()
		 ; cur != funcs.end() ;  ++ cur ) {

	    elaborate_scope_func(des, scope, cur->second);
      }

}

class generate_schemes_work_item_t : public elaborator_work_item_t {
    public:
      generate_schemes_work_item_t(Design*des__, NetScope*scope, Module*mod)
      : elaborator_work_item_t(des__), scope_(scope), mod_(mod)
      { }

      void elaborate_runrun()
      {
	    if (debug_scopes)
		  cerr << mod_->get_fileline() << ": debug: "
		       << "Processing generate schemes for "
		       << scope_path(scope_) << endl;

	      // Generate schemes can create new scopes in the form of
	      // generated code. Scan the generate schemes, and *generate*
	      // new scopes, which is slightly different from simple
	      // elaboration.
	    typedef list<PGenerate*>::const_iterator generate_it_t;
	    for (generate_it_t cur = mod_->generate_schemes.begin()
		       ; cur != mod_->generate_schemes.end() ; ++ cur ) {
		  (*cur) -> generate_scope(des, scope_);
	    }
      }

    private:
	// The scope_ is the scope that contains the generate scheme
	// we are to work on. the mod_ is the Module definition for
	// that scope, and contains the parsed generate schemes.
      NetScope*scope_;
      Module*mod_;
};

bool PPackage::elaborate_scope(Design*des, NetScope*scope)
{
      if (debug_scopes) {
	    cerr << get_fileline() << ": PPackage::elaborate_scope: "
		 << "Elaborate package " << scope_path(scope) << "." << endl;
      }

      scope->add_typedefs(&typedefs);

      collect_scope_parameters(des, scope, parameters);

      if (debug_scopes) {
	    cerr << get_fileline() << ": PPackage::elaborate_scope: "
		 << "Elaborate " << enum_sets.size() << " enumerations"
		 << " in package scope " << scope_path(scope) << "."
		 << endl;
      }
      elaborate_scope_enumerations(des, scope, enum_sets);

      elaborate_scope_classes(des, scope, classes_lexical);
      elaborate_scope_funcs(des, scope, funcs);
      elaborate_scope_tasks(des, scope, tasks);
      elaborate_scope_events_(des, scope, events);
      return true;
}

bool Module::elaborate_scope(Design*des, NetScope*scope,
			     const replace_t&replacements)
{
      if (debug_scopes) {
	    cerr << get_fileline() << ": Module::elaborate_scope: "
		 << "Elaborate " << scope_path(scope) << "." << endl;
      }

      scope->add_typedefs(&typedefs);

	// Add the genvars to the scope.
      typedef map<perm_string,LineInfo*>::const_iterator genvar_it_t;
      for (genvar_it_t cur = genvars.begin(); cur != genvars.end(); ++ cur ) {
	    scope->add_genvar((*cur).first, (*cur).second);
      }

	// Scan the parameters in the module, and store the information
	// needed to evaluate the parameter expressions. The expressions
	// will be evaluated later, once all parameter overrides for this
	// module have been done.

      collect_scope_parameters(des, scope, parameters);

      collect_scope_specparams(des, scope, specparams);

	// Run parameter replacements that were collected from the
	// containing scope and meant for me.

      replace_scope_parameters(des, scope, *this, replacements);

      elaborate_scope_enumerations(des, scope, enum_sets);

      assert(classes.size() == classes_lexical.size());
      elaborate_scope_classes(des, scope, classes_lexical);

	// Run through the defparams for this module and save the result
	// in a table for later final override.

      typedef list<Module::named_expr_t>::const_iterator defparms_iter_t;
      for (defparms_iter_t cur = defparms.begin()
		 ; cur != defparms.end() ; ++ cur ) {
	    scope->defparams.push_back(make_pair(cur->first, cur->second));
      }

	// Evaluate the attributes. Evaluate them in the scope of the
	// module that the attribute is attached to. Is this correct?
      unsigned nattr;
      attrib_list_t*attr = evaluate_attributes(attributes, nattr, des, scope);

      for (unsigned idx = 0 ;  idx < nattr ;  idx += 1)
	    scope->attribute(attr[idx].key, attr[idx].val);

      delete[]attr;

	// Generate schemes need to have their scopes elaborated, but
	// we can not do that until defparams are run, so push it off
	// into an elaborate work item.
      if (debug_scopes)
	    cerr << get_fileline() << ": " << __func__ << ": "
		 << "Schedule generates within " << scope_path(scope)
		 << " for elaboration after defparams." << endl;

      des->elaboration_work_list.push_back(new generate_schemes_work_item_t(des, scope, this));

	// Tasks introduce new scopes, so scan the tasks in this
	// module. Create a scope for the task and pass that to the
	// elaborate_scope method of the PTask for detailed
	// processing.

      elaborate_scope_tasks(des, scope, tasks);


	// Functions are very similar to tasks, at least from the
	// perspective of scopes. So handle them exactly the same
	// way.

      elaborate_scope_funcs(des, scope, funcs);

	// Look for implicit modules and implicit gates for them.

      for (map<perm_string,Module*>::iterator cur = nested_modules.begin()
		 ; cur != nested_modules.end() ; ++cur) {
	      // Skip modules that must be explicitly instantiated.
	    if (cur->second->port_count() > 0)
		  continue;

	    PGModule*nested_gate = new PGModule(cur->second, cur->second->mod_name());
	    nested_gate->set_line(*cur->second);
	    gates_.push_back(nested_gate);
      }

	// Gates include modules, which might introduce new scopes, so
	// scan all of them to create those scopes.

      typedef list<PGate*>::const_iterator gates_it_t;
      for (gates_it_t cur = gates_.begin()
		 ; cur != gates_.end() ; ++ cur ) {

	    (*cur) -> elaborate_scope(des, scope);
      }


	// initial and always blocks may contain begin-end and
	// fork-join blocks that can introduce scopes. Therefore, I
	// get to scan processes here.

      typedef list<PProcess*>::const_iterator proc_it_t;

      for (proc_it_t cur = behaviors.begin()
		 ; cur != behaviors.end() ; ++ cur ) {

	    (*cur) -> statement() -> elaborate_scope(des, scope);
      }

	// Scan through all the named events in this scope. We do not
	// need anything more than the current scope to do this
	// elaboration, so do it now. This allows for normal
	// elaboration to reference these events.

      elaborate_scope_events_(des, scope, events);

      scope->is_cell(is_cell);

      return des->errors == 0;
}

bool PGenerate::generate_scope(Design*des, NetScope*container)
{
      switch (scheme_type) {
	  case GS_LOOP:
	    return generate_scope_loop_(des, container);

	  case GS_CONDIT:
	    return generate_scope_condit_(des, container, false);

	  case GS_ELSE:
	    return generate_scope_condit_(des, container, true);

	  case GS_CASE:
	    return generate_scope_case_(des, container);

	  case GS_NBLOCK:
	    return generate_scope_nblock_(des, container);

	  case GS_CASE_ITEM:
	    cerr << get_fileline() << ": internal error: "
		 << "Case item outside of a case generate scheme?" << endl;
	    return false;

	  default:
	    cerr << get_fileline() << ": sorry: Generate of this sort"
		 << " is not supported yet!" << endl;
	    return false;
      }
}

void PGenerate::check_for_valid_genvar_value_(long value)
{
      if (generation_flag < GN_VER2005 && value < 0) {
	    cerr << get_fileline() << ": warning: A negative value (" << value
		 << ") has been assigned to genvar '" << loop_index << "'."
		 << endl;
	    cerr << get_fileline() << ":        : This is illegal in "
		    "Verilog-2001. Use at least -g2005 to remove this warning."
		 << endl;
      }
}

/*
 * This is the elaborate scope method for a generate loop.
 */
bool PGenerate::generate_scope_loop_(Design*des, NetScope*container)
{
      if (!local_index) {
	      // Check that the loop_index variable was declared in a
	      // genvar statement.
	    NetScope*cscope = container;
	    while (cscope && !cscope->find_genvar(loop_index)) {
		  if (cscope->symbol_exists(loop_index)) {
			cerr << get_fileline() << ": error: "
			     << "generate loop variable '" << loop_index
			     << "' is not a genvar in this scope." << endl;
			des->errors += 1;
			return false;
		  }
		  cscope = cscope->parent();
            }
	    if (!cscope) {
		  cerr << get_fileline() << ": error: genvar is missing for "
			  "generate \"loop\" variable '" << loop_index << "'."
		       << endl;
		  des->errors += 1;
		  return false;
	    }
      }

	// We're going to need a genvar...
      long genvar;

	// The initial value for the genvar does not need (nor can it
	// use) the genvar itself, so we can evaluate this expression
	// the same way any other parameter value is evaluated.
      NetExpr*init_ex = elab_and_eval(des, container, loop_init, -1, true);
      NetEConst*init = dynamic_cast<NetEConst*> (init_ex);
      if (init == 0) {
	    cerr << get_fileline() << ": error: Cannot evaluate genvar"
		 << " init expression: " << *loop_init << endl;
	    des->errors += 1;
	    return false;
      }

      genvar = init->value().as_long();
      check_for_valid_genvar_value_(genvar);
      delete init_ex;

      if (debug_scopes)
	    cerr << get_fileline() << ": debug: genvar init = " << genvar << endl;
      container->genvar_tmp = loop_index;
      container->genvar_tmp_val = genvar;
      NetExpr*test_ex = elab_and_eval(des, container, loop_test, -1, true);
      NetEConst*test = dynamic_cast<NetEConst*>(test_ex);
      if (test == 0) {
	    cerr << get_fileline() << ": error: Cannot evaluate genvar"
		 << " conditional expression: " << *loop_test << endl;
	    des->errors += 1;
	    return false;
      }
      while (test->value().as_long()) {

	      // The actual name of the scope includes the genvar so
	      // that each instance has a unique name in the
	      // container. The format of using [] is part of the
	      // Verilog standard.
	    hname_t use_name (scope_name, genvar);

	    if (debug_scopes)
		  cerr << get_fileline() << ": debug: "
		       << "Create generated scope " << use_name << endl;

	    NetScope*scope = new NetScope(container, use_name,
					  NetScope::GENBLOCK);
	    scope->set_line(get_file(), get_lineno());
	    scope->add_imports(&explicit_imports);

	      // Set in the scope a localparam for the value of the
	      // genvar within this instance of the generate
	      // block. Code within this scope thus has access to the
	      // genvar as a constant.
	    {
		  verinum genvar_verinum;
		  if (gn_strict_expr_width_flag)
			genvar_verinum = verinum(genvar, integer_width);
		  else
			genvar_verinum = verinum(genvar);
		  genvar_verinum.has_sign(true);
		  NetEConstParam*gp = new NetEConstParam(scope,
							 loop_index,
							 genvar_verinum);
		    // The file and line information should really come
		    // from the genvar statement, not the for loop.
		  scope->set_parameter(loop_index, gp, *this);
		  if (debug_scopes)
			cerr << get_fileline() << ": debug: "
			     << "Create implicit localparam "
			     << loop_index << " = " << genvar_verinum << endl;
	    }

	    elaborate_subscope_(des, scope);

	      // Calculate the step for the loop variable.
	    NetExpr*step_ex = elab_and_eval(des, container, loop_step, -1, true);
	    NetEConst*step = dynamic_cast<NetEConst*>(step_ex);
	    if (step == 0) {
		  cerr << get_fileline() << ": error: Cannot evaluate genvar"
		       << " step expression: " << *loop_step << endl;
		  des->errors += 1;
		  return false;
	    }
	    if (debug_scopes)
		  cerr << get_fileline() << ": debug: genvar step from "
		       << genvar << " to " << step->value().as_long() << endl;

	    genvar = step->value().as_long();
	    check_for_valid_genvar_value_(genvar);
	    container->genvar_tmp_val = genvar;
	    delete step;
	    delete test_ex;
	    test_ex = elab_and_eval(des, container, loop_test, -1, true);
	    test = dynamic_cast<NetEConst*>(test_ex);
	    assert(test);
      }

	// Clear the genvar_tmp field in the scope to reflect that the
	// genvar is no longer valid for evaluating expressions.
      container->genvar_tmp = perm_string();

      return true;
}

bool PGenerate::generate_scope_condit_(Design*des, NetScope*container, bool else_flag)
{
      NetExpr*test_ex = elab_and_eval(des, container, loop_test, -1, true);
      NetEConst*test = dynamic_cast<NetEConst*> (test_ex);
      if (test == 0) {
	    cerr << get_fileline() << ": error: Cannot evaluate genvar"
		 << " conditional expression: " << *loop_test << endl;
	    des->errors += 1;
	    return false;
      }

	// If the condition evaluates as false, then do not create the
	// scope.
      if ( (test->value().as_long() == 0 && !else_flag)
	|| (test->value().as_long() != 0 &&  else_flag) ) {
	    if (debug_scopes)
		  cerr << get_fileline() << ": debug: Generate condition "
		       << (else_flag? "(else)" : "(if)")
		       << " value=" << test->value() << ": skip generation"
		       << endl;
	    delete test_ex;
	    return true;
      }

      hname_t use_name (scope_name);
      if (debug_scopes)
	    cerr << get_fileline() << ": debug: Generate condition "
		 << (else_flag? "(else)" : "(if)")
		 << " value=" << test->value() << ": Generate scope="
		 << use_name << endl;

      if (directly_nested) {
	    if (debug_scopes)
		  cerr << get_fileline() << ": debug: Generate condition "
		       << (else_flag? "(else)" : "(if)")
		       << " detected direct nesting." << endl;
	    elaborate_subscope_direct_(des, container);
	    return true;
      }

	// If this is not directly nested, then generate a scope
	// for myself. That is what I will pass to the subscope.
      NetScope*scope = new NetScope(container, use_name, NetScope::GENBLOCK);
      scope->set_line(get_file(), get_lineno());
      scope->add_imports(&explicit_imports);

      elaborate_subscope_(des, scope);

      return true;
}

bool PGenerate::generate_scope_case_(Design*des, NetScope*container)
{
      NetExpr*case_value_ex = elab_and_eval(des, container, loop_test, -1, true);
      NetEConst*case_value_co = dynamic_cast<NetEConst*>(case_value_ex);
      if (case_value_co == 0) {
	    cerr << get_fileline() << ": error: Cannot evaluate genvar case"
		 << " expression: " << *loop_test << endl;
	    des->errors += 1;
	    return false;
      }

      if (debug_scopes)
	    cerr << get_fileline() << ": debug: Generate case "
		 << "switch value=" << case_value_co->value() << endl;

      PGenerate*default_item = 0;

      typedef list<PGenerate*>::const_iterator generator_it_t;
      generator_it_t cur = generate_schemes.begin();
      while (cur != generate_schemes.end()) {
	    PGenerate*item = *cur;
	    assert( item->scheme_type == PGenerate::GS_CASE_ITEM );

	      // Detect that the item is a default.
	    if (item->item_test.size() == 0) {
		  default_item = item;
		  ++ cur;
		  continue;
	    }

	    bool match_flag = false;
	    for (unsigned idx = 0 ; idx < item->item_test.size() && !match_flag ; idx +=1 ) {
		  NetExpr*item_value_ex = elab_and_eval(des, container,
                                                        item->item_test[idx],
                                                        -1, true);
		  NetEConst*item_value_co = dynamic_cast<NetEConst*>(item_value_ex);
		  if (item_value_co == 0) {
			cerr << get_fileline() << ": error: Cannot evaluate "
			     << " genvar case item expression: "
			     << *item->item_test[idx] << endl;
			des->errors += 1;
			return false;
		  }

		  if (debug_scopes)
			cerr << get_fileline() << ": debug: Generate case "
			     << "item value=" << item_value_co->value() << endl;

		  if (case_value_co->value() == item_value_co->value())
			match_flag = true;
		  delete item_value_co;
	    }

	      // If we stumble on the item that matches, then break out now.
	    if (match_flag)
		  break;

	    ++ cur;
      }

      delete case_value_co;
      case_value_co = 0;

      PGenerate*item = (cur == generate_schemes.end())? default_item : *cur;
      if (item == 0) {
	    cerr << get_fileline() << ": debug: "
		 << "No generate items found" << endl;
	    return true;
      }

      if (debug_scopes)
	    cerr << get_fileline() << ": debug: "
		 << "Generate case matches item at "
		 << item->get_fileline() << endl;

	// The name of the scope to generate, whatever that item is.
      hname_t use_name (item->scope_name);

      if (item->directly_nested) {
	    if (debug_scopes)
		  cerr << get_fileline() << ": debug: Generate case item " << scope_name
		       << " detected direct nesting." << endl;
	    item->elaborate_subscope_direct_(des, container);
	    return true;
      }

      if (debug_scopes) {
	    cerr << get_fileline() << ": PGenerate::generate_scope_case_: "
		 << "Generate subscope " << use_name
		 << " and elaborate." << endl;
      }

      NetScope*scope = new NetScope(container, use_name,
				    NetScope::GENBLOCK);
      scope->set_line(get_file(), get_lineno());
      scope->add_imports(&explicit_imports);

      item->elaborate_subscope_(des, scope);

      return true;
}

bool PGenerate::generate_scope_nblock_(Design*des, NetScope*container)
{
      hname_t use_name (scope_name);
      if (debug_scopes)
	    cerr << get_fileline() << ": debug: Generate named block "
		 << ": Generate scope=" << use_name << endl;

      NetScope*scope = new NetScope(container, use_name,
				    NetScope::GENBLOCK);
      scope->set_line(get_file(), get_lineno());
      scope->add_imports(&explicit_imports);

      elaborate_subscope_(des, scope);

      return true;
}

void PGenerate::elaborate_subscope_direct_(Design*des, NetScope*scope)
{
      typedef list<PGenerate*>::const_iterator generate_it_t;
      for (generate_it_t cur = generate_schemes.begin()
		 ; cur != generate_schemes.end() ; ++ cur ) {
	    PGenerate*curp = *cur;
	    if (debug_scopes) {
		  cerr << get_fileline() << ": elaborate_subscope_direct_: "
		       << "Elaborate direct subscope " << curp->scope_name
		       << " within scope " << scope_name << endl;
	    }
	    curp -> generate_scope(des, scope);
      }
}

void PGenerate::elaborate_subscope_(Design*des, NetScope*scope)
{
      scope->add_typedefs(&typedefs);

	// Add the genvars to this scope.
      typedef map<perm_string,LineInfo*>::const_iterator genvar_it_t;
      for (genvar_it_t cur = genvars.begin(); cur != genvars.end(); ++ cur ) {
	    scope->add_genvar((*cur).first, (*cur).second);
      }

	// Scan the parameters in this scope, and store the information
        // needed to evaluate the parameter expressions. The expressions
	// will be evaluated later, once all parameter overrides for this
	// module have been done.
      collect_scope_parameters(des, scope, parameters);

	// Run through the defparams for this scope and save the result
	// in a table for later final override.

      typedef list<PGenerate::named_expr_t>::const_iterator defparms_iter_t;
      for (defparms_iter_t cur = defparms.begin()
		 ; cur != defparms.end() ; ++ cur ) {
	    scope->defparams.push_back(make_pair(cur->first, cur->second));
      }

	// Scan the generated scope for nested generate schemes,
	// and *generate* new scopes, which is slightly different
	// from simple elaboration.

      typedef list<PGenerate*>::const_iterator generate_it_t;
      for (generate_it_t cur = generate_schemes.begin()
		 ; cur != generate_schemes.end() ; ++ cur ) {
	    (*cur) -> generate_scope(des, scope);
      }

        // Scan through all the task and function declarations in this
        // scope.
      elaborate_scope_tasks(des, scope, tasks);
      elaborate_scope_funcs(des, scope, funcs);

	// Scan the generated scope for gates that may create
	// their own scopes.
      typedef list<PGate*>::const_iterator pgate_list_it_t;
      for (pgate_list_it_t cur = gates.begin()
		 ; cur != gates.end() ; ++ cur ) {
	    (*cur) ->elaborate_scope(des, scope);
      }

      typedef list<PProcess*>::const_iterator proc_it_t;
      for (proc_it_t cur = behaviors.begin()
		 ; cur != behaviors.end() ; ++ cur ) {
	    (*cur) -> statement() -> elaborate_scope(des, scope);
      }

	// Scan through all the named events in this scope.
      elaborate_scope_events_(des, scope, events);

      if (debug_scopes)
	    cerr << get_fileline() << ": debug: Generated scope " << scope_path(scope)
		 << " for generate block " << scope_name << endl;

	// Save the scope that we created, for future use.
      scope_list_.push_back(scope);
}

class delayed_elaborate_scope_mod_instances : public elaborator_work_item_t {

    public:
      delayed_elaborate_scope_mod_instances(Design*des__,
					    const PGModule*obj,
					    Module*mod,
					    NetScope*sc)
      : elaborator_work_item_t(des__), obj_(obj), mod_(mod), sc_(sc)
      { }
      ~delayed_elaborate_scope_mod_instances() { }

      virtual void elaborate_runrun();

    private:
      const PGModule*obj_;
      Module*mod_;
      NetScope*sc_;
};

void delayed_elaborate_scope_mod_instances::elaborate_runrun()
{
      if (debug_scopes)
	    cerr << obj_->get_fileline() << ": debug: "
		 << "Resume scope elaboration of instances of "
		 << mod_->mod_name() << "." << endl;

      obj_->elaborate_scope_mod_instances_(des, mod_, sc_);
}

/*
 * Here we handle the elaborate scope of a module instance. The caller
 * has already figured out that this "gate" is a module, and has found
 * the module definition. The "sc" argument is the scope that will
 * contain this instance.
 */
void PGModule::elaborate_scope_mod_(Design*des, Module*mod, NetScope*sc) const
{
      if (get_name() == "") {
	    cerr << get_fileline() << ": error: Instantiation of module "
		 << mod->mod_name() << " requires an instance name." << endl;
	    des->errors += 1;
	    return;
      }

	// Missing module instance names have already been rejected.
      assert(get_name() != "");

	// check for recursive instantiation by scanning the current
	// scope and its parents. Look for a module instantiation of
	// the same module, but farther up in the scope.
      unsigned rl_count = 0;
      bool in_genblk = false;
      for (NetScope*scn = sc ;  scn ;  scn = scn->parent()) {
	      // We need to know if we are inside a generate block to allow
	      // recursive instances.
	    if (scn->type() == NetScope::GENBLOCK) {
		  in_genblk = true;
		  continue;
	    }

	    if (scn->type() != NetScope::MODULE) continue;

	    if (strcmp(mod->mod_name(), scn->module_name()) != 0) continue;

	      // We allow nested scopes if they are inside a generate block,
	      // but only to a certain nesting depth.
	    if (in_genblk) {
		  rl_count += 1;
		  if (rl_count > recursive_mod_limit) {
			cerr << get_fileline() << ": error: instance "
			     << scope_path(sc) << "." << get_name()
			     << " of module " << mod->mod_name()
			     << " is nested too deep." << endl;
			cerr << get_fileline() << ":      : check for "
			        "proper recursion termination or increase the "
			        "limit (" << recursive_mod_limit
			     << ") with the -pRECURSIVE_MOD_LIMIT flag."
			     << endl;
			des->errors += 1;
			return;
		  }
		  continue;
	    }

	    cerr << get_fileline() << ": error: You can not instantiate "
		 << "module " << mod->mod_name() << " within itself." << endl;
	    cerr << get_fileline() << ":      : The offending instance is "
		 << get_name() << " within " << scope_path(scn) << "." << endl;
	    des->errors += 1;
	    return;
      }

      if (is_array()) {
	      // If there are expressions to evaluate in order to know
	      // the actual number of instances that will be
	      // instantiated, then we have to delay further scope
	      // elaboration until after defparams (above me) are
	      // run. Do that by appending a work item to the
	      // elaboration work list.
	    if (debug_scopes)
		  cerr << get_fileline() << ": debug: delay elaborate_scope"
		       << " of array of " << get_name()
		       << " in scope " << scope_path(sc) << "." << endl;

	    elaborator_work_item_t*tmp
		  = new delayed_elaborate_scope_mod_instances(des, this, mod, sc);
	    des->elaboration_work_list.push_back(tmp);

      } else {
	      // If there are no expressions that need to be evaluated
	      // to elaborate the scope of this next instances, then
	      // get right to it.
	    elaborate_scope_mod_instances_(des, mod, sc);
      }
}

/*
 * This method is called to process a module instantiation after basic
 * sanity testing is already complete.
 */
void PGModule::elaborate_scope_mod_instances_(Design*des, Module*mod, NetScope*sc) const
{
      long instance_low  = 0;
      long instance_high = 0;
      long instance_count = calculate_array_size_(des, sc, instance_high, instance_low);
      if (instance_count == 0)
	    return;

      NetScope::scope_vec_t instances (instance_count);

      struct attrib_list_t*attrib_list;
      unsigned attrib_list_n = 0;
      attrib_list = evaluate_attributes(attributes, attrib_list_n, des, sc);

	// Run through the module instances, and make scopes out of
	// them. Also do parameter overrides that are done on the
	// instantiation line.
      for (int idx = 0 ;  idx < instance_count ;  idx += 1) {

	    hname_t use_name (get_name());

	    if (is_array()) {
		  int instance_idx;
		  if (instance_low < instance_high)
			instance_idx = instance_low + idx;
		  else
			instance_idx = instance_low - idx;

		  use_name = hname_t(get_name(), instance_idx);
	    }

	    if (debug_scopes) {
		  cerr << get_fileline() << ": debug: Module instance " << use_name
		       << " becomes child of " << scope_path(sc)
		       << "." << endl;
	    }

	      // Create the new scope as a MODULE with my name. Note
	      // that if this is a nested module, mark it thus so that
	      // scope searches will continue into the parent scope.
	    NetScope*my_scope = new NetScope(sc, use_name, NetScope::MODULE, 0,
					     bound_type_? true : false,
					     mod->program_block,
					     mod->is_interface);
	    my_scope->set_line(get_file(), mod->get_file(),
	                       get_lineno(), mod->get_lineno());
	    my_scope->set_module_name(mod->mod_name());
	    my_scope->add_imports(&mod->explicit_imports);

	    for (unsigned adx = 0 ;  adx < attrib_list_n ;  adx += 1)
	      my_scope->attribute(attrib_list[adx].key, attrib_list[adx].val);

	    instances[idx] = my_scope;

	    set_scope_timescale(des, my_scope, mod);

	      // Look for module parameter replacements. The "replace" map
	      // maps parameter name to replacement expression that is
	      // passed. It is built up by the ordered overrides or named
	      // overrides.

	    Module::replace_t replace;

	      // Positional parameter overrides are matched to parameter
	      // names by using the param_names list of parameter
	      // names. This is an ordered list of names so the first name
	      // is parameter 0, the second parameter 1, and so on.

	    if (overrides_) {
		  assert(parms_ == 0);
		  list<perm_string>::const_iterator cur
			= mod->param_names.begin();
		  list<PExpr*>::const_iterator jdx = overrides_->begin();
		  for (;;) {
			if (jdx == overrides_->end())
			      break;
			  // If we reached here we have more overrides than
			  // module parameters, so print a warning.
			if (cur == mod->param_names.end()) {
			      cerr << get_fileline() << ": warning: "
			              "ignoring "
			           << overrides_->size() -
			              mod->param_names.size()
			           << " extra parameter override(s) for "
			              "instance '" << use_name
			           << "' of module '" << mod->mod_name()
			           << "' which expects "
			           << mod->param_names.size()
			           << " parameter(s)." << endl;
			      break;
			}

		          // No expression means that the parameter is not
		          // replaced at all.
			if (*jdx)
			      replace[*cur] = *jdx;

			++ jdx;
			++ cur;
		  }
	    }

	      // Named parameter overrides carry a name with each override
	      // so the mapping into the replace list is much easier.
	    if (parms_) {
		  assert(overrides_ == 0);
		  for (unsigned jdx = 0 ;  jdx < nparms_ ;  jdx += 1) {
		          // No expression means that the parameter is not
		          // replaced.
			if (parms_[jdx].parm)
			      replace[parms_[jdx].name] = parms_[jdx].parm;
		  }

	    }

	      // This call actually arranges for the description of the
	      // module type to process this instance and handle parameters
	      // and sub-scopes that might occur. Parameters are also
	      // created in that scope, as they exist. (I'll override them
	      // later.)
	    mod->elaborate_scope(des, my_scope, replace);

      }
	    delete[]attrib_list;

	/* Stash the instance array of scopes into the parent
	   scope. Later elaboration passes will use this vector to
	   further elaborate the array.

	   Note that the array is ordered from LSB to MSB. We will use
	   that fact in the main elaborate to connect things in the
	   correct order. */
      sc->instance_arrays[get_name()] = instances;
}

/*
 * The isn't really able to create new scopes, but it does create the
 * event name in the current scope, so can be done during the
 * elaborate_scope scan. Note that the name_ of the PEvent object has
 * no hierarchy, but neither does the NetEvent, until it is stored in
 * the NetScope object.
 */
void PEvent::elaborate_scope(Design*, NetScope*scope) const
{
      NetEvent*ev = new NetEvent(name_);
      ev->set_line(*this);
      scope->add_event(ev);
}

void PFunction::elaborate_scope(Design*des, NetScope*scope) const
{
      ivl_assert(*this, scope->type() == NetScope::FUNC);

        // Save a reference to the pform representation of the function
        // in case we need to perform early elaboration.
      scope->set_func_pform(this);

        // Assume the function is a constant function until we
        // find otherwise.
      scope->is_const_func(true);

      scope->add_typedefs(&typedefs);

	// Scan the parameters in the function, and store the information
        // needed to evaluate the parameter expressions.

      collect_scope_parameters(des, scope, parameters);

	// Scan through all the named events in this scope.
      elaborate_scope_events_(des, scope, events);

      if (statement_)
	    statement_->elaborate_scope(des, scope);
}

void PTask::elaborate_scope(Design*des, NetScope*scope) const
{
      assert(scope->type() == NetScope::TASK);

      scope->add_typedefs(&typedefs);

	// Scan the parameters in the task, and store the information
        // needed to evaluate the parameter expressions.

      collect_scope_parameters(des, scope, parameters);

	// Scan through all the named events in this scope.
      elaborate_scope_events_(des, scope, events);

      if (statement_)
	    statement_->elaborate_scope(des, scope);
}


/*
 * The base statement does not have sub-statements and does not
 * introduce any scope, so this is a no-op.
 */
void Statement::elaborate_scope(Design*, NetScope*) const
{
}

/*
 * When I get a behavioral block, check to see if it has a name. If it
 * does, then create a new scope for the statements within it,
 * otherwise use the current scope. Use the selected scope to scan the
 * statements that I contain.
 */
void PBlock::elaborate_scope(Design*des, NetScope*scope) const
{
      NetScope*my_scope = scope;

      if (pscope_name() != 0) {
	    hname_t use_name(pscope_name());
	    if (debug_scopes)
		  cerr << get_fileline() << ": debug: "
		       << "Elaborate block scope " << use_name
		       << " within " << scope_path(scope) << endl;

	      // The scope type is begin-end or fork-join. The
	      // sub-types of fork-join are not interesting to the scope.
	    my_scope = new NetScope(scope, use_name, bl_type_!=BL_SEQ
				    ? NetScope::FORK_JOIN
				    : NetScope::BEGIN_END);
	    my_scope->set_line(get_file(), get_lineno());
            my_scope->is_auto(scope->is_auto());
	    my_scope->add_imports(&explicit_imports);
	    my_scope->add_typedefs(&typedefs);

	      // Scan the parameters in the scope, and store the information
	      // needed to evaluate the parameter expressions.

            collect_scope_parameters(des, my_scope, parameters);

              // Scan through all the named events in this scope.
            elaborate_scope_events_(des, my_scope, events);
      }

      for (unsigned idx = 0 ;  idx < list_.size() ;  idx += 1)
	    list_[idx] -> elaborate_scope(des, my_scope);
}

/*
 * The case statement itself does not introduce scope, but contains
 * other statements that may be named blocks. So scan the case items
 * with the elaborate_scope method.
 */
void PCase::elaborate_scope(Design*des, NetScope*scope) const
{
      assert(items_);
      for (unsigned idx = 0 ;  idx < (*items_).size() ;  idx += 1) {
	    assert( (*items_)[idx] );

	    if (Statement*sp = (*items_)[idx]->stat)
		  sp -> elaborate_scope(des, scope);
      }
}

/*
 * The conditional statement (if-else) does not introduce scope, but
 * the statements of the clauses may, so elaborate_scope the contained
 * statements.
 */
void PCondit::elaborate_scope(Design*des, NetScope*scope) const
{
      if (if_)
	    if_ -> elaborate_scope(des, scope);

      if (else_)
	    else_ -> elaborate_scope(des, scope);
}

/*
 * Statements that contain a further statement but do not
 * intrinsically add a scope need to elaborate_scope the contained
 * statement.
 */
void PDelayStatement::elaborate_scope(Design*des, NetScope*scope) const
{
      if (statement_)
	    statement_ -> elaborate_scope(des, scope);
}

/*
 * Statements that contain a further statement but do not
 * intrinsically add a scope need to elaborate_scope the contained
 * statement.
 */
void PDoWhile::elaborate_scope(Design*des, NetScope*scope) const
{
      if (statement_)
	    statement_ -> elaborate_scope(des, scope);
}

/*
 * Statements that contain a further statement but do not
 * intrinsically add a scope need to elaborate_scope the contained
 * statement.
 */
void PEventStatement::elaborate_scope(Design*des, NetScope*scope) const
{
      if (statement_)
	    statement_ -> elaborate_scope(des, scope);
}

/*
 * The standard says that we create an implicit scope for foreach
 * loops, but that is just to hold the index variables, and we'll
 * handle them by creating unique names. So just jump into the
 * contained statement for scope elaboration.
 */
void PForeach::elaborate_scope(Design*des, NetScope*scope) const
{
      if (statement_)
	    statement_ -> elaborate_scope(des, scope);
}

/*
 * Statements that contain a further statement but do not
 * intrinsically add a scope need to elaborate_scope the contained
 * statement.
 */
void PForever::elaborate_scope(Design*des, NetScope*scope) const
{
      if (statement_)
	    statement_ -> elaborate_scope(des, scope);
}

/*
 * Statements that contain a further statement but do not
 * intrinsically add a scope need to elaborate_scope the contained
 * statement.
 */
void PForStatement::elaborate_scope(Design*des, NetScope*scope) const
{
      if (statement_)
	    statement_ -> elaborate_scope(des, scope);
}

/*
 * Statements that contain a further statement but do not
 * intrinsically add a scope need to elaborate_scope the contained
 * statement.
 */
void PRepeat::elaborate_scope(Design*des, NetScope*scope) const
{
      if (statement_)
	    statement_ -> elaborate_scope(des, scope);
}

/*
 * Statements that contain a further statement but do not
 * intrinsically add a scope need to elaborate_scope the contained
 * statement.
 */
void PWhile::elaborate_scope(Design*des, NetScope*scope) const
{
      if (statement_)
	    statement_ -> elaborate_scope(des, scope);
}