1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
|
#ifndef IVL_netlist_H
#define IVL_netlist_H
/*
* Copyright (c) 1998-2021 Stephen Williams (steve@icarus.com)
* Copyright CERN 2013 / Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/*
* The netlist types, as described in this header file, are intended
* to be the output from elaboration of the source design. The design
* can be passed around in this form to the various stages and design
* processors.
*/
# include <string>
# include <map>
# include <list>
# include <memory>
# include <vector>
# include <set>
# include <utility>
# include "ivl_target.h"
# include "ivl_target_priv.h"
# include "pform_types.h"
# include "config.h"
# include "nettypes.h"
# include "verinum.h"
# include "verireal.h"
# include "StringHeap.h"
# include "HName.h"
# include "LineInfo.h"
# include "Attrib.h"
# include "PScope.h"
# include "PUdp.h"
#ifdef HAVE_IOSFWD
# include <iosfwd>
#else
# include <iostream>
#endif
class Design;
class Link;
class Nexus;
class NetEvent;
class NetNet;
class NetNode;
class NetObj;
class NetPins;
class NetProc;
class NetProcTop;
class NetRelease;
class NetScope;
class NetEvProbe;
class NetExpr;
class NetEAccess;
class NetEConstEnum;
class NetESignal;
class NetFuncDef;
class NetRamDq;
class NetTaskDef;
class NetEvTrig;
class NetEvNBTrig;
class NetEvWait;
class PClass;
class PExpr;
class PFunction;
class PPackage;
class PTaskFunc;
class data_type_t;
struct enum_type_t;
class netclass_t;
class netdarray_t;
class netparray_t;
class netqueue_t;
class netenum_t;
class netstruct_t;
class netvector_t;
struct target;
struct functor_t;
#if defined(__cplusplus) && defined(_MSC_VER)
# define ENUM_UNSIGNED_INT : unsigned int
#else
# define ENUM_UNSIGNED_INT
#endif
std::ostream& operator << (std::ostream&o, ivl_variable_type_t val);
extern void join_island(NetPins*obj);
class Link {
friend void connect(Link&, Link&);
friend class NetPins;
friend class Nexus;
friend class NexusSet;
public:
enum DIR ENUM_UNSIGNED_INT { PASSIVE, INPUT, OUTPUT };
private: // Only NetPins can create/delete Link objects
Link();
~Link();
public:
// Manipulate the link direction.
void set_dir(DIR d);
DIR get_dir() const;
// Set the delay for all the drivers to this nexus.
void drivers_delays(NetExpr*rise, NetExpr*fall, NetExpr*decay);
// A link has a drive strength for 0 and 1 values. The drive0
// strength is for when the link has the value 0, and drive1
// strength is for when the link has a value 1.
void drive0(ivl_drive_t);
void drive1(ivl_drive_t);
// This sets the drives for all drivers of this link, and not
// just the current link.
void drivers_drive(ivl_drive_t d0, ivl_drive_t d1);
ivl_drive_t drive0() const;
ivl_drive_t drive1() const;
void cur_link(NetPins*&net, unsigned &pin);
void cur_link(const NetPins*&net, unsigned &pin) const;
// Get a pointer to the nexus that represents all the links
// connected to me.
Nexus* nexus();
const Nexus* nexus()const;
// Return a pointer to the next link in the nexus.
Link* next_nlink();
const Link* next_nlink() const;
// Remove this link from the set of connected pins. The
// destructor will automatically do this if needed.
void unlink();
// Return true if this link is connected to anything else.
bool is_linked() const;
// Return true if these pins are connected.
bool is_linked(const Link&that) const;
// Return true if this is the same pin of the same object of
// that link.
bool is_equal(const Link&that) const;
// Return information about the object that this link is
// a part of. Note that the get_obj() method can return NIL if
// this Link is part of a NexusSet. That should be OK, because
// they are collection variables, and not functional parts of
// a design.
const NetPins*get_obj() const;
NetPins*get_obj();
unsigned get_pin() const;
void dump_link(std::ostream&fd, unsigned ind) const;
private:
// The NetNode manages these. They point back to the
// NetNode so that following the links can get me here.
union {
NetPins *node_;
unsigned pin_;
};
bool pin_zero_ : 1;
DIR dir_ : 2;
ivl_drive_t drive0_ : 3;
ivl_drive_t drive1_ : 3;
private:
Nexus* find_nexus_() const;
private:
// The Nexus uses these to maintain its list of Link
// objects. If this link is not connected to anything,
// then these pointers are both nil.
Link *next_;
Nexus*nexus_;
private: // not implemented
Link(const Link&);
Link& operator= (const Link&);
};
class NetPins : public LineInfo {
public:
explicit NetPins(unsigned npins);
virtual ~NetPins();
unsigned pin_count() const { return npins_; }
Link&pin(unsigned idx);
const Link&pin(unsigned idx) const;
void dump_node_pins(std::ostream&, unsigned, const char**pin_names =0) const;
void set_default_dir(Link::DIR d);
bool is_linked() const;
bool pins_are_virtual(void) const;
void devirtualize_pins(void);
// This is for showing a brief description of the object to
// the stream. It is used for debug and diagnostics.
virtual void show_type(std::ostream&fd) const;
private:
Link*pins_;
const unsigned npins_;
Link::DIR default_dir_;
};
/* =========
* A NetObj is anything that has any kind of behavior in the
* netlist. Nodes can be gates, registers, etc. and are linked
* together to form a design web.
*
* The web of nodes that makes up a circuit is held together by the
* Link class. There is a link for each pin. All mutually connected
* pins form a ring of links.
*
* A link can be INPUT, OUTPUT or PASSIVE. An input never drives the
* signal, and PASSIVE never receives the value of the signal. Wires
* are PASSIVE, for example.
*
* A NetObj also has delays specified as rise_time, fall_time and
* decay_time. The rise and fall time are the times to transition to 1
* or 0 values. The decay_time is the time needed to decay to a 'bz
* value, or to decay of the net is a trireg. The exact and precise
* interpretation of the rise/fall/decay times is typically left to
* the target to properly interpret.
*/
class NetObj : public NetPins, public Attrib {
public:
// The name of the object must be a permallocated string. A
// lex_strings string, for example.
explicit NetObj(NetScope*s, perm_string n, unsigned npins);
virtual ~NetObj();
NetScope* scope();
const NetScope* scope() const;
perm_string name() const { return name_; }
void rename(perm_string n) { name_ = n; }
const NetExpr* rise_time() const { return delay1_; }
const NetExpr* fall_time() const { return delay2_; }
const NetExpr* decay_time() const { return delay3_; }
void rise_time(const NetExpr* d) { delay1_ = d; }
void fall_time(const NetExpr* d) { delay2_ = d; }
void decay_time(const NetExpr* d) { delay3_ = d; }
void dump_obj_attr(std::ostream&, unsigned) const;
virtual void show_type(std::ostream&fd) const;
private:
NetScope*scope_;
perm_string name_;
const NetExpr* delay1_;
const NetExpr* delay2_;
const NetExpr* delay3_;
};
/*
* Objects that can be island branches are derived from this. (It is
* possible for an object to be a NetObj and an IslandBranch.) This is
* used to collect island information about the node.
*/
class IslandBranch {
public:
explicit IslandBranch(ivl_discipline_t dis =0) : island_(0), discipline_(dis) { }
ivl_island_t get_island() const { return island_; }
friend void join_island(NetPins*);
private:
ivl_island_t island_;
ivl_discipline_t discipline_;
};
/*
* A NetBranch is a construct of Verilog-A that is a branch between
* two nodes. The branch has exactly 2 pins and a discipline.
*
* pin(0) is the source of flow through a branch and the plus side of
* potential. Pin(1) is the sink of flow and the minus (or ground) of
* potential.
*/
class NetBranch : public NetPins, public IslandBranch {
public:
explicit NetBranch(ivl_discipline_t dis);
explicit NetBranch(ivl_discipline_t dis, perm_string name);
~NetBranch();
// If the branch is named, this returns the name.
perm_string name() const { return name_; }
ivl_branch_s* target_obj() const { return &target_obj_; }
void dump(std::ostream&, unsigned) const;
private:
perm_string name_;
mutable ivl_branch_s target_obj_;
// The design class uses this member to list the branches.
friend class Design;
NetBranch*next_;
};
/*
* The Nexus represents a collection of links that are joined
* together. Each link has its own properties, this class holds the
* properties of the group.
*
* The links in a nexus are grouped into a circularly linked list,
* with the nexus pointing to the last Link. Each link in turn points
* to the next link in the nexus, with the last link pointing back to
* the first. The last link also has a non-nil nexus_ pointer back to
* this nexus.
*
* The t_cookie() is an ivl_nexus_t that the code generator uses to
* store data in the nexus. When a Nexus is created, this cookie is
* set to nil. The code generator may set the cookie once. This locks
* the nexus, and rewrites the Link list to be optimal for the code
* generator. In the process, *all* of the other methods are no longer
* functional.
*/
class Nexus {
friend void connect(Link&, Link&);
friend class Link;
private:
// Only Link objects can create (or delete) Nexus objects
explicit Nexus(Link&r);
~Nexus();
public:
void connect(Link&r);
const char* name() const;
void drivers_delays(NetExpr*rise, NetExpr*fall, NetExpr*decay);
void drivers_drive(ivl_drive_t d0, ivl_drive_t d1);
Link*first_nlink();
const Link* first_nlink()const;
/* Get the width of the Nexus, or 0 if there are no vectors
(in the form of NetNet objects) linked. */
unsigned vector_width() const;
NetNet* pick_any_net();
NetNode* pick_any_node();
/* This method counts the number of input and output links for
this nexus, and assigns the results to the output arguments. */
void count_io(unsigned&inp, unsigned&out) const;
/* This method returns true if there are any assignments that
use this nexus as an l-value. This can be true if the nexus
is a variable, but also if this is a net with a force. */
bool assign_lval() const;
/* This method returns true if there are any inputs
attached to this nexus but no drivers. */
bool has_floating_input() const;
/* This method returns true if there are any drivers
(including variables) attached to this nexus. */
bool drivers_present() const;
/* This method returns true if all the possible drivers of
this nexus are constant. It will also return true if there
are no drivers at all. */
bool drivers_constant() const;
/* Given the nexus has constant drivers, this method returns
the value that has been driven. */
verinum::V driven_value() const;
verinum driven_vector() const;
/* Return a mask of the bits of this vector that are
driven. This is usually all false or all true, but in
special cases it may be a blend. */
std::vector<bool> driven_mask(void)const;
/* The code generator sets an ivl_nexus_t to attach code
generation details to the nexus. */
ivl_nexus_t t_cookie() const { return t_cookie_; }
void t_cookie(ivl_nexus_t) const;
private:
Link*list_;
void unlink(Link*);
mutable char* name_; /* Cache the calculated name for the Nexus. */
mutable ivl_nexus_t t_cookie_;
enum VALUE { NO_GUESS, V0, V1, Vx, Vz, VAR };
mutable VALUE driven_;
private: // not implemented
Nexus(const Nexus&);
Nexus& operator= (const Nexus&);
};
inline void connect(Nexus*l, Link&r) { l->connect(r); }
class NexusSet {
public:
struct elem_t {
inline elem_t(Nexus*n, unsigned b, unsigned w)
: base(b), wid(w)
{
lnk.set_dir(Link::PASSIVE);
n->connect(lnk);
}
inline elem_t() : base(0), wid(0)
{
}
inline bool operator == (const struct elem_t&that) const
{ return lnk.is_linked(that.lnk) && base==that.base && wid==that.wid; }
bool contains(const struct elem_t&that) const;
Link lnk;
unsigned base;
unsigned wid;
private:
elem_t(const elem_t&);
elem_t& operator= (elem_t&);
};
public:
~NexusSet();
NexusSet();
size_t size() const;
// Add the nexus/part to the set, if it is not already present.
void add(Nexus*that, unsigned base, unsigned wid);
void add(NexusSet&that);
// Remove the nexus from the set, if it is present.
void rem(const NexusSet&that);
unsigned find_nexus(const elem_t&that) const;
elem_t& at(unsigned idx);
inline elem_t& operator[] (unsigned idx) { return at(idx); }
// Return true if this set contains every nexus/part in that
// set. That means that every bit of that set is accounted for
// this set.
bool contains(const NexusSet&that) const;
// Return true if this set contains any nexus in that set.
bool intersect(const NexusSet&that) const;
private:
// NexSet items are canonical part selects of vectors.
std::vector<struct elem_t*> items_;
size_t bsearch_(const struct elem_t&that) const;
void rem_(const struct elem_t*that);
bool contains_(const elem_t&that) const;
private: // not implemented
NexusSet(const NexusSet&);
NexusSet& operator= (const NexusSet&);
};
/*
* A NetBus is a transparent device that is merely a bunch of pins
* used to tie some pins to. It is a convenient way to collect a
* bundle of pins and pass that bundle around.
*/
class NetBus : public NetObj {
public:
NetBus(NetScope*scope, unsigned pin_count);
~NetBus();
unsigned find_link(const Link&that) const;
private: // not implemented
NetBus(const NetBus&);
NetBus& operator= (const NetBus&);
};
/*
* A NetNode is a device of some sort, where each pin has a different
* meaning. (i.e., pin(0) is the output to an and gate.) NetNode
* objects are listed in the nodes_ of the Design object.
*/
class NetNode : public NetObj {
public:
// The name parameter must be a permallocated string.
explicit NetNode(NetScope*s, perm_string n, unsigned npins);
virtual ~NetNode();
virtual bool emit_node(struct target_t*) const;
virtual void dump_node(std::ostream&, unsigned) const;
// This is used to scan a modifiable netlist, one node at a time.
virtual void functor_node(Design*, functor_t*);
private:
friend class Design;
NetNode*node_next_, *node_prev_;
Design*design_;
};
/*
* A NetDelaySrc is an input-only device that calculates a path delay
* based on the time that the inputs change. This class is used by the
* NetNet class, and NetDelaySrc objects cannot exist outside of its
* association with NetNet objects.
*/
class NetDelaySrc : public NetObj {
public:
explicit NetDelaySrc(NetScope*s, perm_string n, unsigned nsrc,
bool condit_src, bool conditional, bool parallel);
~NetDelaySrc();
// These functions set the delays from the values in the
// source. These set_delays functions implement the various
// rules wrt collections of transitions.
// One transition specified.
void set_delays(uint64_t del);
// Two transitions: rise and fall
void set_delays(uint64_t rise, uint64_t fall);
// Three transitions
void set_delays(uint64_t rise, uint64_t fall, uint64_t tz);
void set_delays(uint64_t t01, uint64_t t10, uint64_t t0z,
uint64_t tz1, uint64_t t1z, uint64_t tz0);
void set_delays(uint64_t t01, uint64_t t10, uint64_t t0z,
uint64_t tz1, uint64_t t1z, uint64_t tz0,
uint64_t t0x, uint64_t tx1, uint64_t t1x,
uint64_t tx0, uint64_t txz, uint64_t tzx);
uint64_t get_delay(unsigned pe) const;
void set_posedge();
void set_negedge();
bool is_posedge() const;
bool is_negedge() const;
unsigned src_count() const;
Link&src_pin(unsigned);
const Link&src_pin(unsigned) const;
bool is_condit() const;
bool has_condit() const;
Link&condit_pin();
const Link&condit_pin() const;
bool is_parallel() const;
void dump(std::ostream&, unsigned ind) const;
private:
uint64_t transition_delays_[12];
bool condit_flag_;
bool conditional_;
bool parallel_;
bool posedge_;
bool negedge_;
private: // Not implemented
NetDelaySrc(const NetDelaySrc&);
NetDelaySrc& operator= (const NetDelaySrc&);
};
/*
* NetNet is a special kind of NetObj that doesn't really do anything,
* but carries the properties of the wire/reg/trireg, including its
* name. Scalars and vectors are all the same thing here, a NetNet
* with a single pin. The difference between a scalar and vector is
* the width of the atomic vector datum it carries.
*
* NetNet objects can also appear as side effects of synthesis or
* other abstractions.
*
* Note that INTEGER types are an alias for a ``reg signed [31:0]''.
*
* NetNet objects have a name and exist within a scope, so the
* constructor takes a pointer to the containing scope. The object
* automatically adds itself to the scope.
*
* NetNet objects are located by searching NetScope objects.
*
* The pins of a NetNet object are usually PASSIVE: they do not drive
* anything and they are not a data sink, per se. The pins follow the
* values on the nexus. The exceptions are reg, trireg, tri0, tri1,
* supply0, and supply1 objects, whose pins are classed as OUTPUT.
*/
class PortType
{
public:
enum Enum ENUM_UNSIGNED_INT { NOT_A_PORT, PIMPLICIT, PINPUT, POUTPUT, PINOUT, PREF };
/*
* Merge Port types (used to construct a sane combined port-type
* for module ports with complex defining expressions).
*
*/
static Enum merged( Enum lhs, Enum rhs );
};
extern std::ostream& operator << (std::ostream&, PortType::Enum);
/*
* Information on actual ports (rather than port-connected signals) of
* module.
* N.b. must be POD as passed through a "C" interface in the t-dll-api.
*/
struct PortInfo
{
PortType::Enum type;
unsigned long width;
perm_string name;
};
class NetNet : public NetObj, public PortType {
public:
enum Type ENUM_UNSIGNED_INT { NONE, IMPLICIT, IMPLICIT_REG, WIRE, TRI, TRI1,
SUPPLY0, SUPPLY1, WAND, TRIAND, TRI0, WOR, TRIOR, REG,
UNRESOLVED_WIRE };
typedef PortType::Enum PortType;
static const std::list<netrange_t>not_an_array;
public:
// This form is the more generic form of the constructor. For
// now, the unpacked type is not buried into an ivl_type_s object.
explicit NetNet(NetScope*s, perm_string n, Type t,
const std::list<netrange_t>&unpacked,
ivl_type_t type);
explicit NetNet(NetScope*s, perm_string n, Type t, ivl_type_t type);
virtual ~NetNet();
Type type() const;
void type(Type t);
PortType port_type() const;
void port_type(PortType t);
// If this net net is a port (i.e. a *sub*port net of a module port)
// its port index is number of the module it connects through
int get_module_port_index() const; // -1 Not connected to port...
void set_module_port_index(unsigned idx);
ivl_variable_type_t data_type() const;
/* If a NetNet is signed, then its value is to be treated as
signed. Otherwise, it is unsigned. */
bool get_signed() const;
bool get_scalar() const;
inline const ivl_type_s* net_type(void) const { return net_type_; }
const netenum_t*enumeration(void) const;
const netstruct_t*struct_type(void) const;
const netdarray_t*darray_type(void) const;
const netqueue_t*queue_type(void) const;
const netclass_t*class_type(void) const;
/* Attach a discipline to the net. */
ivl_discipline_t get_discipline() const;
void set_discipline(ivl_discipline_t dis);
/* This method returns a reference to the packed dimensions
for the vector. These are arranged as a list where the
first range in the list (front) is the left-most range in
the Verilog declaration. These packed dims are compressed
to represent the dimensions of all the subtypes. */
const std::vector<netrange_t>& packed_dims() const { return slice_dims_; }
const std::vector<netrange_t>& unpacked_dims() const { return unpacked_dims_; }
/* The vector_width returns the bit width of the packed array,
vector or scalar that is this NetNet object. */
inline unsigned long vector_width() const { return slice_width(0); }
/* Given a prefix of indices, figure out how wide the
resulting slice would be. This is a generalization of the
vector_width(), where the depth would be 0. */
unsigned long slice_width(size_t depth) const;
/* This method converts a signed index (the type that might be
found in the Verilog source) to canonical. It accounts
for variation in the definition of the
reg/wire/whatever. Note that a canonical index of a
multi-dimensioned packed array is a single dimension. For
example, "reg [4:1][3:0]..." has the canonical dimension
[15:0] and the sb_to_idx() method will convert [2][2] to
the canonical index [6]. */
long sb_to_idx(const std::list<long>&prefix, long sb) const;
/* This method converts a partial packed indices list and a
tail index, and generates a canonical slice offset and
width. */
bool sb_to_slice(const std::list<long>&prefix, long sb, long&off, unsigned long&wid) const;
/* This method checks that the signed index is valid for this
signal. If it is, the above sb_to_idx can be used to get
the pin# from the index. */
bool sb_is_valid(const std::list<long>&prefix, long sb) const;
/* This method returns 0 for scalars and vectors, and greater
for arrays. The value is the number of array
indices. (Currently only one array index is supported.) */
inline unsigned unpacked_dimensions() const { return unpacked_dims_.size(); }
/* This method returns 0 for scalars, but vectors and other
PACKED arrays have packed dimensions. */
inline size_t packed_dimensions() const { return slice_dims_.size(); }
// This is the number of array elements.
unsigned unpacked_count() const;
bool local_flag() const { return local_flag_; }
void local_flag(bool f) { local_flag_ = f; }
// NetESignal objects may reference this object. Keep a
// reference count so that I keep track of them.
void incr_eref();
void decr_eref();
unsigned peek_eref() const;
// Assignment statements count their lrefs here. And by
// assignment statements, we mean BEHAVIORAL assignments.
void incr_lref();
void decr_lref();
unsigned peek_lref() const { return lref_count_; }
// Treating this node as a uwire, this function tests whether
// any bits in the canonical part are already driven. This is
// only useful for UNRESOLVED_WIRE objects. The msb and lsb
// are the part select of the signal, and the widx is the word
// index if this is an unpacked array.
bool test_and_set_part_driver(unsigned msb, unsigned lsb, int widx =0);
unsigned get_refs() const;
/* Manage path delays */
void add_delay_path(class NetDelaySrc*path);
unsigned delay_paths(void) const;
const class NetDelaySrc*delay_path(unsigned idx) const;
virtual void dump_net(std::ostream&, unsigned) const;
private:
void initialize_dir_();
private:
Type type_ : 5;
PortType port_type_ : 3;
bool local_flag_: 1;
ivl_type_t net_type_;
ivl_discipline_t discipline_;
std::vector<netrange_t> unpacked_dims_;
// These are the widths of the various slice depths. There is
// one entry in this vector for each packed dimension. The
// value at N is the slice width if N indices are provided.
//
// For example: slice_wids_[0] is vector_width().
void calculate_slice_widths_from_packed_dims_(void);
std::vector<netrange_t> slice_dims_;
std::vector<unsigned long> slice_wids_;
unsigned eref_count_;
unsigned lref_count_;
// When the signal is an unresolved wire, we need more detail
// which bits are assigned. This mask is true for each bit
// that is known to be driven.
std::vector<bool> lref_mask_;
std::vector<class NetDelaySrc*> delay_paths_;
int port_index_;
};
/*
* This object type is used for holding local variable values when
* evaluating constant user functions.
*/
struct LocalVar {
int nwords; // zero for a simple variable, -1 for reference
union {
NetExpr* value; // a simple variable
NetExpr** array; // an array variable
LocalVar* ref; // A reference to a previous scope
};
};
class NetBaseDef {
public:
NetBaseDef(NetScope*n, const std::vector<NetNet*>&po,
const std::vector<NetExpr*>&pd);
virtual ~NetBaseDef();
const NetScope*scope() const;
NetScope*scope();
unsigned port_count() const;
NetNet*port(unsigned idx) const;
NetExpr*port_defe(unsigned idx) const;
void set_proc(NetProc*p);
//const string& name() const;
const NetProc*proc() const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
private:
NetScope*scope_;
std::vector<NetNet*>ports_;
std::vector<NetExpr*>pdefaults_;
protected:
NetProc*proc_;
};
/*
* Some definitions (and methods to manipulate them) are common to a
* couple of types. Keep them here.
*/
class Definitions {
public:
Definitions();
~Definitions();
// Add the enumeration to the set of enumerations in this
// scope. Include a key that the elaboration can use to look
// up this enumeration based on the pform type.
void add_enumeration_set(const enum_type_t*key, netenum_t*enum_set);
bool add_enumeration_name(netenum_t*enum_set, perm_string enum_name);
// Look up the enumeration set that was added with the given
// key. This is used by enum_type_t::elaborate_type to locate
// a previously elaborated enumeration.
netenum_t* enumeration_for_key(const enum_type_t*key) const;
// Look up an enumeration literal in this scope. If the
// literal is present, return the expression that defines its
// value.
const NetExpr* enumeration_expr(perm_string key);
// Definitions scopes can also hold classes, by name.
void add_class(netclass_t*class_type);
protected:
// Enumerations. The enum_sets_ is a list of all the
// enumerations present in this scope. The enum_names_ is a
// map of all the enumeration names back to the sets that
// contain them.
std::map<const enum_type_t*,netenum_t*> enum_sets_;
std::map<perm_string,NetEConstEnum*> enum_names_;
// This is a map of all the classes (by name) in this scope.
std::map<perm_string,netclass_t*> classes_;
};
/*
* This object type is used to contain a logical scope within a
* design. The scope doesn't represent any executable hardware, but is
* just a handle that netlist processors can use to grab at the design.
*/
class NetScope : public Definitions, public Attrib {
public:
enum TYPE { MODULE, CLASS, TASK, FUNC, BEGIN_END, FORK_JOIN, GENBLOCK, PACKAGE };
/* Create a new scope associated with a given compilation unit,
and attach it to the given parent. If no compilation unit is
specified, the parent's compilation unit is used. The name
is expected to have been permallocated. */
NetScope(NetScope*up, const hname_t&name, TYPE t, NetScope*in_unit=0,
bool nest=false, bool program=false, bool interface=false,
bool compilation_unit=false);
~NetScope();
/* Rename the scope using the name generated by inserting as
many pad characters as required between prefix and suffix
to make the name unique in the parent scope. Return false
if a unique name couldn't be generated. */
bool auto_name(const char* prefix, char pad, const char* suffix);
void add_imports(const std::map<perm_string,PPackage*>*imports);
NetScope*find_import(const Design*des, perm_string name);
void add_typedefs(const std::map<perm_string,typedef_t*>*typedefs);
/* Search the scope hierarchy for the scope where 'type' was defined. */
NetScope*find_typedef_scope(const Design*des, const typedef_t*type);
/* Parameters exist within a scope, and these methods allow
one to manipulate the set. In these cases, the name is the
*simple* name of the parameter, the hierarchy is implicit in
the scope. */
struct range_t;
void set_parameter(perm_string name, bool is_annotatable,
const LexicalScope::param_expr_t ¶m,
NetScope::range_t *range_list);
void set_parameter(perm_string name, NetExpr*val,
const LineInfo&file_line);
const NetExpr*get_parameter(Design*des, const char* name,
ivl_type_t&ivl_type);
const NetExpr*get_parameter(Design*des, perm_string name,
ivl_type_t&ivl_type);
/* These are used by defparam elaboration to replace the
expression with a new expression, without affecting the
range or signed_flag. Return false if the name does not
exist. */
void replace_parameter(Design *des, perm_string name, PExpr*val,
NetScope*scope, bool defparam = false);
/* This is used to ensure the value of a parameter cannot be
changed at run-time. This is required if a specparam is used
in an expression that must be evaluated at compile-time.
Returns true if the named parameter is a specparam and has
not already been set to be unannotatable. */
bool make_parameter_unannotatable(perm_string name);
/* These methods set or access events that live in this
scope. */
void add_event(NetEvent*);
void rem_event(NetEvent*);
NetEvent*find_event(perm_string name);
/* These methods add or find a genvar that lives in this scope. */
void add_genvar(perm_string name, LineInfo *li);
LineInfo* find_genvar(perm_string name);
/* These methods manage signals. The add_ and rem_signal
methods are used by the NetNet objects to make themselves
available to the scope, and the find_signal method can be
used to locate signals within a scope. */
void add_signal(NetNet*);
void rem_signal(NetNet*);
NetNet* find_signal(perm_string name);
netclass_t* find_class(const Design*des, perm_string name);
/* The unit(), parent(), and child() methods allow users of
NetScope objects to locate nearby scopes. */
NetScope* unit() { return unit_; }
NetScope* parent() { return up_; }
NetScope* child(const hname_t&name);
const NetScope* unit() const { return unit_; }
const NetScope* parent() const { return up_; }
const NetScope* child(const hname_t&name) const;
/* A helper function to find the enclosing class scope. */
const NetScope* get_class_scope() const;
// Look for a child scope by name. This ignores the number
// part of the child scope name, so there may be multiple
// matches. Only return one. This function is only really
// useful for some elaboration error checking.
const NetScope* child_byname(perm_string name) const;
// Nested modules have slightly different scope search rules.
inline bool nested_module() const { return nested_module_; }
// Program blocks and interfaces have elaboration constraints.
inline bool program_block() const { return program_block_; }
inline bool is_interface() const { return is_interface_; }
inline bool is_unit() const { return is_unit_; }
inline TYPE type() const { return type_; }
void print_type(std::ostream&) const;
// This provides a link to the variable initialisation process
// for use when evaluating a constant function. Note this is
// only used for static functions - the variable initialization
// for automatic functions is included in the function definition.
void set_var_init(const NetProc*proc) { var_init_ = proc; }
const NetProc* var_init() const { return var_init_; }
void set_task_def(NetTaskDef*);
void set_func_def(NetFuncDef*);
void set_class_def(netclass_t*);
void set_module_name(perm_string);
NetTaskDef* task_def();
NetFuncDef* func_def();
// This is used by the evaluate_function setup to collect
// local variables from the scope.
void evaluate_function_find_locals(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
void set_line(perm_string file, perm_string def_file,
unsigned lineno, unsigned def_lineno);
void set_line(perm_string file, unsigned lineno);
void set_line(const LineInfo *info);
perm_string get_file() const { return file_; };
perm_string get_def_file() const { return def_file_; };
unsigned get_lineno() const { return lineno_; };
unsigned get_def_lineno() const { return def_lineno_; };
std::string get_fileline() const;
std::string get_def_fileline() const;
bool in_func() const;
/* Provide a link back to the pform to allow early elaboration of
constant functions. */
void set_func_pform(const PFunction*pfunc) { func_pform_ = pfunc; };
const PFunction*func_pform() const { return func_pform_; };
/* Allow tracking of elaboration stages. The three stages are:
1 - scope elaboration
2 - signal elaboration
3 - statement elaboration
This is only used for functions, to support early elaboration.
*/
void set_elab_stage(unsigned stage) { elab_stage_ = stage; };
unsigned elab_stage() const { return elab_stage_; };
/* Is this a function called in a constant expression. */
void need_const_func(bool need_const) { need_const_func_ = need_const; };
bool need_const_func() const { return need_const_func_; };
/* Is this a constant function. */
void is_const_func(bool is_const) { is_const_func_ = is_const; };
bool is_const_func() const { return is_const_func_; };
/* Is the task or function automatic. */
void is_auto(bool is_auto__) { is_auto_ = is_auto__; };
bool is_auto() const { return is_auto_; };
/* Is the module a cell (is in a `celldefine) */
void is_cell(bool is_cell__) { is_cell_ = is_cell__; };
bool is_cell() const { return is_cell_; };
/* Is there a call to a system task in this scope. */
void calls_sys_task(bool calls_stask__) { calls_stask_ = calls_stask__; };
bool calls_sys_task() const { return calls_stask_; };
/* Is this scope elaborating a final procedure? */
void in_final(bool in_final__) { in_final_ = in_final__; };
bool in_final() const { return in_final_; };
const NetTaskDef* task_def() const;
const NetFuncDef* func_def() const;
const netclass_t* class_def() const;
/* If the scope represents a module instance, the module_name
is the name of the module itself. */
perm_string module_name() const;
/* If the scope is a module then it may have ports that we need
* to keep track of. */
void set_num_ports(unsigned int num_ports);
void add_module_port_net(NetNet*port);
unsigned module_port_nets() const;
NetNet*module_port_net(unsigned idx) const;
void add_module_port_info( unsigned idx,
perm_string name, // May be "" for undeclared port
PortType::Enum type,
unsigned long width );
const std::vector<PortInfo> &module_port_info() const;
/* Scopes have their own time units and time precision. The
unit and precision are given as power of 10, i.e., -3 is
units of milliseconds.
If a NetScope is created with a parent scope, the new scope
will initially inherit the unit and precision of the
parent scope. */
void time_unit(int);
void time_precision(int);
void time_from_timescale(bool);
int time_unit() const;
int time_precision() const;
bool time_from_timescale() const;
/* The fullname of the scope is the hierarchical name
component (which includes the name and array index) whereas
the basename is just my name. */
perm_string basename() const;
const hname_t& fullname() const { return name_; }
void run_defparams(class Design*);
void run_defparams_later(class Design*);
void evaluate_parameters(class Design*);
// Look for defparams that never matched, and print warnings.
void residual_defparams(class Design*);
bool symbol_exists(perm_string sym);
/* This method generates a non-hierarchical name that is
guaranteed to be unique within this scope. */
perm_string local_symbol();
void dump(std::ostream&) const;
// Check to see if the scope has items that are not allowed
// in an always_comb/ff/latch process.
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
void emit_scope(struct target_t*tgt) const;
bool emit_defs(struct target_t*tgt) const;
/* This method runs the functor on me. Recurse through the
children of this node as well. */
void run_functor(Design*des, functor_t*fun);
/* These are used in synthesis. They provide shared pullup and
pulldown nodes for this scope. */
void add_tie_hi(Design*des);
void add_tie_lo(Design*des);
Link&tie_hi() const { return tie_hi_->pin(0); };
Link&tie_lo() const { return tie_lo_->pin(0); };
/* This member is used during elaboration to pass defparam
assignments from the scope pass to the parameter evaluation
step. After that, it is not used. */
std::list<std::pair<pform_name_t,PExpr*> > defparams;
std::list<std::pair<std::list<hname_t>,PExpr*> > defparams_later;
public:
struct range_t {
bool exclude_flag;
// Lower bound
bool low_open_flag;
NetExpr*low_expr;
// Upper bound
bool high_open_flag;
NetExpr*high_expr;
// Link to the next range specification
struct range_t*next;
};
/* After everything is all set up, the code generators like
access to these things to make up the parameter lists. */
struct param_expr_t : public LineInfo {
param_expr_t() : val_expr(0), val_type(0), val_scope(0),
solving(false), is_annotatable(false),
local_flag(false),
range(0), val(0), ivl_type(0) { }
// Source expression and data type (before elaboration)
PExpr*val_expr;
data_type_t*val_type;
// Scope information
NetScope*val_scope;
// Evaluation status
bool solving;
// specparam status
bool is_annotatable;
// Is this a localparam?
bool local_flag;
// Can it be overriden?
bool overridable = false;
// Is it a type parameter
bool type_flag = false;
// range constraints
struct range_t*range;
// Expression value. Elaborated version of val_expr.
// For type parameters this will always be 0.
NetExpr*val;
// For non-type parameter this contains the elaborate type of the
// parameter itself. For type parameters this contains the
// elaborated assigned type value.
ivl_type_t ivl_type;
};
std::map<perm_string,param_expr_t>parameters;
typedef std::map<perm_string,param_expr_t>::iterator param_ref_t;
LineInfo get_parameter_line_info(perm_string name) const;
/* Module instance arrays are collected here for access during
the multiple elaboration passes. */
typedef std::vector<NetScope*> scope_vec_t;
std::map<perm_string, scope_vec_t>instance_arrays;
/* Loop generate uses this as scratch space during
elaboration. Expression evaluation can use this to match
names. */
perm_string genvar_tmp;
long genvar_tmp_val;
std::map<perm_string,LocalVar> loop_index_tmp;
private:
void evaluate_type_parameter_(Design*des, param_ref_t cur);
void evaluate_parameter_logic_(Design*des, param_ref_t cur);
void evaluate_parameter_real_(Design*des, param_ref_t cur);
void evaluate_parameter_string_(Design*des, param_ref_t cur);
void evaluate_parameter_(Design*des, param_ref_t cur);
private:
TYPE type_;
hname_t name_;
// True if the scope is a nested module/program block
bool nested_module_;
// True if the scope is a program block
bool program_block_;
// True if the scope is an interface
bool is_interface_;
// True if the scope is a compilation unit
bool is_unit_;
perm_string file_;
perm_string def_file_;
unsigned lineno_;
unsigned def_lineno_;
signed char time_unit_, time_prec_;
bool time_from_timescale_;
const std::map<perm_string,PPackage*>*imports_;
std::map<perm_string,typedef_t*>typedefs_;
NetEvent *events_;
std::map<perm_string,LineInfo*> genvars_;
typedef std::map<perm_string,NetNet*>::const_iterator signals_map_iter_t;
std::map <perm_string,NetNet*> signals_map_;
perm_string module_name_;
std::vector<NetNet*> port_nets;
std::vector<PortInfo> ports_;
const NetProc*var_init_;
union {
NetTaskDef*task_;
NetFuncDef*func_;
netclass_t*class_def_;
};
const PFunction*func_pform_;
unsigned elab_stage_;
NetScope*unit_;
NetScope*up_;
std::map<hname_t,NetScope*> children_;
unsigned lcounter_;
bool need_const_func_, is_const_func_, is_auto_, is_cell_, calls_stask_;
/* Final procedures sets this to notify statements that
they are part of a final procedure. */
bool in_final_;
NetNode*tie_hi_;
NetNode*tie_lo_;
};
/*
* This class implements the LPM_ABS component. The node has a single
* input, a signed expression, that it converts to the absolute
* value. The gate is simple: pin(0) is the output and pin(1) is the input.
*/
class NetAbs : public NetNode {
public:
NetAbs(NetScope*s, perm_string n, unsigned width);
~NetAbs();
unsigned width() const;
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
virtual void functor_node(Design*des, functor_t*fun);
private:
unsigned width_;
};
/*
* This class implements the LPM_ADD_SUB component as described in the
* EDIF LPM Version 2 1 0 standard. It is used as a structural
* implementation of the + and - operators.
*/
class NetAddSub : public NetNode {
public:
NetAddSub(NetScope*s, perm_string n, unsigned width);
~NetAddSub();
// Get the width of the device (that is, the width of the
// operands and results).
unsigned width() const;
Link& pin_Cout();
Link& pin_DataA();
Link& pin_DataB();
Link& pin_Result();
const Link& pin_Cout() const;
const Link& pin_DataA() const;
const Link& pin_DataB() const;
const Link& pin_Result() const;
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
virtual void functor_node(Design*des, functor_t*fun);
private:
unsigned width_;
};
/*
* The NetArrayDq node represents an array dereference. The NetNet
* that this object refers to is an array, and the Address pin selects
* which word of the array to place on the Result.
*/
class NetArrayDq : public NetNode {
public:
NetArrayDq(NetScope*s, perm_string name, NetNet*mem, unsigned awid);
~NetArrayDq();
unsigned width() const;
unsigned awidth() const;
unsigned size() const;
const NetNet*mem() const;
Link& pin_Address();
Link& pin_Result();
const Link& pin_Address() const;
const Link& pin_Result() const;
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
private:
NetNet*mem_;
unsigned awidth_;
};
/*
* Convert an IVL_VT_REAL input to a logical value with the
* given width. The input is pin(1) and the output is pin(0).
*/
class NetCastInt4 : public NetNode {
public:
NetCastInt4(NetScope*s, perm_string n, unsigned width);
unsigned width() const { return width_; }
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
private:
unsigned width_;
};
class NetCastInt2 : public NetNode {
public:
NetCastInt2(NetScope*s, perm_string n, unsigned width);
unsigned width() const { return width_; }
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
private:
unsigned width_;
};
/*
* Convert an input to IVL_VT_REAL. The input is pin(1), which can be
* any vector type (VT_BOOL or VT_LOGIC) and the output is pin(0),
* which is IVL_VT_REAL. The conversion interprets the input as an
* unsigned value unless the signed_flag is true.
*/
class NetCastReal : public NetNode {
public:
NetCastReal(NetScope*s, perm_string n, bool signed_flag);
bool signed_flag() const { return signed_flag_; }
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
private:
bool signed_flag_;
};
/*
* This type represents the LPM_CLSHIFT device.
*/
class NetCLShift : public NetNode {
public:
NetCLShift(NetScope*s, perm_string n, unsigned width,
unsigned width_dist, bool right_flag, bool signed_flag);
~NetCLShift();
unsigned width() const;
unsigned width_dist() const;
bool right_flag() const;
bool signed_flag() const;
Link& pin_Data();
Link& pin_Result();
Link& pin_Distance();
const Link& pin_Data() const;
const Link& pin_Result() const;
const Link& pin_Distance() const;
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
private:
unsigned width_;
unsigned width_dist_;
bool right_flag_;
bool signed_flag_;
};
/*
* This class supports the LPM_COMPARE device.
*
* The width of the device is the width of the inputs. If one of the
* inputs is narrower than the other, it is up to the generator to
* make sure all the data pins are properly driven.
*
* The signed() property is true if the comparison is to be done to
* signed arguments. The result is always UNsigned.
*
* NOTE: This is not the same as the device used to support case
* compare. Case comparisons handle Vx and Vz values, whereas this
* device need not.
*/
class NetCompare : public NetNode {
public:
NetCompare(NetScope*scope, perm_string n, unsigned width);
~NetCompare();
unsigned width() const;
bool get_signed() const;
void set_signed(bool);
Link& pin_AGB();
Link& pin_AGEB();
Link& pin_AEB();
Link& pin_ANEB();
Link& pin_ALB();
Link& pin_ALEB();
Link& pin_DataA();
Link& pin_DataB();
const Link& pin_AGB() const;
const Link& pin_AGEB() const;
const Link& pin_AEB() const;
const Link& pin_ANEB() const;
const Link& pin_ALB() const;
const Link& pin_ALEB() const;
const Link& pin_DataA() const;
const Link& pin_DataB() const;
virtual void functor_node(Design*, functor_t*);
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
private:
unsigned width_;
bool signed_flag_;
};
/*
* This node is a means to connect net inputs together to form a wider
* vector. The output (pin 0) is a concatenation of the input vectors,
* with pin-1 at the LSB, pin-2 next, and so on. This node is most
* like the NetLogic node, as it has one output at pin 0 and the
* remaining pins are the input that are combined to make the
* output. It is separated out because it it generally a special case
* for the code generators.
*
* When constructing the node, the width is the vector_width of the
* output, and the cnt is the number of pins. (the number of input
* vectors.)
*/
class NetConcat : public NetNode {
public:
NetConcat(NetScope*scope, perm_string n, unsigned wid, unsigned cnt,
bool transparent_flag = false);
~NetConcat();
unsigned width() const;
// This is true if the concatenation is a transparent
// concatenation, meaning strengths are passed through as
// is. In this case, the output strengths of this node will be
// ignored.
bool transparent() const { return transparent_; }
void dump_node(std::ostream&, unsigned ind) const;
bool emit_node(struct target_t*) const;
void functor_node(Design*des, functor_t*fun);
private:
unsigned width_;
bool transparent_;
};
/*
* This class represents a theoretical (though not necessarily
* practical) integer divider gate. This is not to represent any real
* hardware, but to support the / operator in Verilog, when it shows
* up in structural contexts.
*
* The operands of the operation are the DataA<i> and DataB<i> inputs,
* and the Result<i> output reflects the value DataA/DataB.
*/
class NetDivide : public NetNode {
public:
NetDivide(NetScope*scope, perm_string n,
unsigned width, unsigned wa, unsigned wb);
~NetDivide();
unsigned width_r() const;
unsigned width_a() const;
unsigned width_b() const;
void set_signed(bool);
bool get_signed() const;
Link& pin_DataA();
Link& pin_DataB();
Link& pin_Result();
const Link& pin_DataA() const;
const Link& pin_DataB() const;
const Link& pin_Result() const;
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
virtual void functor_node(Design*des, functor_t*fun);
private:
unsigned width_r_;
unsigned width_a_;
unsigned width_b_;
bool signed_flag_;
};
/*
* This class represents a theoretical (though not necessarily
* practical) integer modulo gate. This is not to represent any real
* hardware, but to support the % operator in Verilog, when it shows
* up in structural contexts.
*
* The operands of the operation are the DataA<i> and DataB<i> inputs,
* and the Result<i> output reflects the value DataA%DataB.
*/
class NetModulo : public NetNode {
public:
NetModulo(NetScope*s, perm_string n,
unsigned width, unsigned wa, unsigned wb);
~NetModulo();
unsigned width_r() const;
unsigned width_a() const;
unsigned width_b() const;
void set_signed(bool);
bool get_signed() const;
Link& pin_DataA();
Link& pin_DataB();
Link& pin_Result();
const Link& pin_DataA() const;
const Link& pin_DataB() const;
const Link& pin_Result() const;
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
virtual void functor_node(Design*des, functor_t*fun);
private:
unsigned width_r_;
unsigned width_a_;
unsigned width_b_;
bool signed_flag_;
};
/*
* This class represents an LPM_FF device. There is no literal gate
* type in Verilog that maps, but gates of this type can be inferred.
*/
class NetFF : public NetNode {
public:
NetFF(NetScope*s, perm_string n, bool negedge, unsigned vector_width);
~NetFF();
bool is_negedge() const;
unsigned width() const;
Link& pin_Clock();
Link& pin_Enable();
Link& pin_Aset();
Link& pin_Aclr();
Link& pin_Sset();
Link& pin_Sclr();
Link& pin_Data();
Link& pin_Q();
const Link& pin_Clock() const;
const Link& pin_Enable() const;
const Link& pin_Aset() const;
const Link& pin_Aclr() const;
const Link& pin_Sset() const;
const Link& pin_Sclr() const;
const Link& pin_Data() const;
const Link& pin_Q() const;
void aset_value(const verinum&val);
const verinum& aset_value() const;
void sset_value(const verinum&val);
const verinum& sset_value() const;
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
virtual void functor_node(Design*des, functor_t*fun);
private:
bool negedge_;
unsigned width_;
verinum aset_value_;
verinum sset_value_;
};
/*
* This class represents an LPM_LATCH device. There is no literal gate
* type in Verilog that maps, but gates of this type can be inferred.
*/
class NetLatch : public NetNode {
public:
NetLatch(NetScope*s, perm_string n, unsigned vector_width);
~NetLatch();
unsigned width() const;
Link& pin_Enable();
Link& pin_Data();
Link& pin_Q();
const Link& pin_Enable() const;
const Link& pin_Data() const;
const Link& pin_Q() const;
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
virtual void functor_node(Design*des, functor_t*fun);
private:
unsigned width_;
};
/*
* This class implements a basic LPM_MULT combinational multiplier. It
* is used as a structural representation of the * operator. The
* device has inputs A and B and output Result all with independent
* widths.
*
* NOTE: Check this width thing. I think that the independence of the
* widths is not necessary or even useful.
*/
class NetMult : public NetNode {
public:
NetMult(NetScope*sc, perm_string n, unsigned width,
unsigned wa, unsigned wb);
~NetMult();
bool get_signed() const;
void set_signed(bool);
// Get the width of the device bussed inputs. There are these
// parameterized widths:
unsigned width_r() const; // Result
unsigned width_a() const; // DataA
unsigned width_b() const; // DataB
Link& pin_DataA();
Link& pin_DataB();
Link& pin_Result();
const Link& pin_DataA() const;
const Link& pin_DataB() const;
const Link& pin_Result() const;
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
virtual void functor_node(Design*des, functor_t*fun);
private:
bool signed_;
unsigned width_r_;
unsigned width_a_;
unsigned width_b_;
};
/*
* This class represents an LPM_MUX device. This device has some
* number of Result points (the width of the device) and some number
* of input choices. There is also a selector of some width. The
* parameters are:
*
* width -- Width of the result and each possible Data input
* size -- Number of Data input (each of width)
* selw -- Width in bits of the select input
*
* All the data inputs must have the same type, and are the type of
* the result. The actual type does not matter, as the mux does not
* process data, just selects alternatives.
*
* The select input must be an integral type of some sort. Not real.
*/
class NetMux : public NetNode {
public:
NetMux(NetScope*scope, perm_string n,
unsigned width, unsigned size, unsigned selw);
~NetMux();
unsigned width() const;
unsigned size() const;
unsigned sel_width() const;
Link& pin_Result();
Link& pin_Data(unsigned si);
Link& pin_Sel();
const Link& pin_Result() const;
const Link& pin_Data(unsigned) const;
const Link& pin_Sel() const;
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
virtual void functor_node(Design*des, functor_t*fun);
private:
unsigned width_;
unsigned size_;
unsigned swidth_;
};
/*
* This class implements a basic LPM_POW combinational power. It
* is used as a structural representation of the ** operator. The
* device has inputs A and B and output Result all with independent
* widths.
*
* NOTE: Check this width thing. I think that the independence of the
* widths is not necessary or even useful.
*/
class NetPow : public NetNode {
public:
NetPow(NetScope*sc, perm_string n, unsigned width,
unsigned wa, unsigned wb);
~NetPow();
bool get_signed() const;
void set_signed(bool);
// Get the width of the device bussed inputs. There are these
// parameterized widths:
unsigned width_r() const; // Result
unsigned width_a() const; // DataA
unsigned width_b() const; // DataB
Link& pin_DataA();
Link& pin_DataB();
Link& pin_Result();
const Link& pin_DataA() const;
const Link& pin_DataB() const;
const Link& pin_Result() const;
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
virtual void functor_node(Design*des, functor_t*fun);
private:
bool signed_;
unsigned width_r_;
unsigned width_a_;
unsigned width_b_;
};
/*
* The NetReplicate node takes a vector input and makes it into a larger
* vector by repeating the input vector some number of times. The
* repeat count is a fixed value. This is just like the repeat
* concatenation of Verilog: {<repeat>{<vector>}}.
*
* When constructing this node, the wid is the vector width of the
* output, and the rpt is the repeat count. The wid must be an even
* multiple of the cnt, and wid/cnt is the expected input width.
*
* The device has exactly 2 pins: pin(0) is the output and pin(1) the
* input.
*/
class NetReplicate : public NetNode {
public:
NetReplicate(NetScope*scope, perm_string n, unsigned wid, unsigned rpt);
~NetReplicate();
unsigned width() const;
unsigned repeat() const;
void dump_node(std::ostream&, unsigned ind) const;
bool emit_node(struct target_t*) const;
private:
unsigned width_;
unsigned repeat_;
};
/*
* This node represents the call of a user defined function in a
* structural context. The pin count is the same as the port count,
* with pin0 the return value.
*/
class NetUserFunc : public NetNode {
public:
NetUserFunc(NetScope*s, perm_string n, NetScope*def, NetEvWait*trigger__);
~NetUserFunc();
unsigned port_width(unsigned port) const;
const NetScope* def() const;
const NetEvWait* trigger() const { return trigger_; }
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
private:
NetScope*def_;
NetEvWait*trigger_;
};
/*
* The number of ports includes the return value, so will always be at
* least 1.
*/
class NetSysFunc : public NetNode {
public:
NetSysFunc(NetScope*s, perm_string n,
const struct sfunc_return_type*def,
unsigned ports, NetEvWait*trigger__);
~NetSysFunc();
ivl_variable_type_t data_type() const;
unsigned vector_width() const;
const char* func_name() const;
const NetEvWait* trigger() const { return trigger_; }
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
private:
const struct sfunc_return_type*def_;
NetEvWait*trigger_;
};
class NetTran : public NetNode, public IslandBranch {
public:
// Tran devices other than TRAN_VP
NetTran(NetScope*scope, perm_string n, ivl_switch_type_t type,
unsigned wid);
// Create a TRAN_VP
NetTran(NetScope*scope, perm_string n, unsigned wid,
unsigned part, unsigned off);
~NetTran();
ivl_switch_type_t type() const { return type_; }
// These are only used for IVL_SW_TRAN_PV
unsigned vector_width() const;
unsigned part_width() const;
unsigned part_offset() const;
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
private:
ivl_switch_type_t type_;
unsigned wid_;
unsigned part_;
unsigned off_;
};
/* =========
* There are cases where expressions need to be represented. The
* NetExpr class is the root of a hierarchy that serves that purpose.
*
* The expr_width() is the width of the expression, which is calculated
* before the expression is elaborated.
*/
class NetExpr : public LineInfo {
public:
explicit NetExpr(unsigned w =0);
explicit NetExpr(ivl_type_t t);
virtual ~NetExpr() =0;
virtual void expr_scan(struct expr_scan_t*) const =0;
virtual void dump(std::ostream&) const;
// This is the advanced description of the type. I think I
// want to replace the other type description members with
// this single method. The default for this method returns
// nil.
ivl_type_t net_type() const;
// Expressions have type.
virtual ivl_variable_type_t expr_type() const;
// How wide am I?
unsigned expr_width() const { return width_; }
// This method returns true if the expression is
// signed. Unsigned expressions return false.
bool has_sign() const { return signed_flag_; }
virtual void cast_signed(bool flag);
// This returns true if the expression has a definite
// width. This is generally true, but in some cases the
// expression is amorphous and desires a width from its
// environment. For example, 'd5 has indefinite width, but
// 5'd5 has a definite width.
// This method is only really used within concatenation
// expressions to check validity.
virtual bool has_width() const;
// Return the enumeration set that defines this expressions
// enumeration type, or return nil if the expression is not
// part of the enumeration.
virtual const netenum_t*enumeration() const;
// This method evaluates the expression and returns an
// equivalent expression that is reduced as far as compile
// time knows how. Essentially, this is designed to fold
// constants.
virtual NetExpr*eval_tree();
// Make a duplicate of myself, and subexpressions if I have
// any. This is a deep copy operation.
virtual NetExpr*dup_expr() const =0;
// Evaluate the expression at compile time, a la within a
// constant function. This is used by the constant function
// evaluation function code, and the return value is an
// allocated constant, or nil if the expression cannot be
// evaluated for any reason.
virtual NetExpr*evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
// Get the Nexus that are the input to this
// expression. Normally this descends down to the reference to
// a signal that reads from its input.
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const =0;
// Return a version of myself that is structural. This is used
// for converting expressions to gates. The arguments are:
//
// des, scope: The context where this work is done
//
// root: The root expression of which this expression is a part.
//
// rise/fall/decay: Attach these delays to the driver for the
// expression output.
//
// drive0/drive1: Attach these strengths to the driver for
// the expression output.
virtual NetNet*synthesize(Design*des, NetScope*scope, NetExpr*root);
protected:
void expr_width(unsigned wid) { width_ = wid; }
void cast_signed_base_(bool flag) { signed_flag_ = flag; }
private:
ivl_type_t net_type_;
unsigned width_;
bool signed_flag_;
private: // not implemented
NetExpr(const NetExpr&);
NetExpr& operator=(const NetExpr&);
};
class NetEArrayPattern : public NetExpr {
public:
NetEArrayPattern(ivl_type_t lv_type, std::vector<NetExpr*>&items);
~NetEArrayPattern();
inline size_t item_size() const { return items_.size(); }
const NetExpr* item(size_t idx) const { return items_[idx]; }
void expr_scan(struct expr_scan_t*) const;
void dump(std::ostream&) const;
NetEArrayPattern* dup_expr() const;
NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
private:
std::vector<NetExpr*> items_;
};
/*
* The expression constant is slightly special, and is sometimes
* returned from other classes that can be evaluated at compile
* time. This class represents constant values in expressions.
*/
class NetEConst : public NetExpr {
public:
explicit NetEConst(const verinum&val);
~NetEConst();
const verinum&value() const;
virtual void cast_signed(bool flag);
virtual bool has_width() const;
virtual ivl_variable_type_t expr_type() const;
/* This method allows the constant value to be converted
to an unsized value. This is used after evaluating a
unsized constant expression. */
void trim();
virtual void expr_scan(struct expr_scan_t*) const;
virtual void dump(std::ostream&) const;
virtual NetEConst* dup_expr() const;
virtual NetNet*synthesize(Design*, NetScope*scope, NetExpr*);
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual NetExpr*evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
private:
verinum value_;
};
class NetEConstEnum : public NetEConst {
public:
explicit NetEConstEnum(perm_string name, const netenum_t*enum_set,
const verinum&val);
~NetEConstEnum();
perm_string name() const;
const netenum_t*enumeration() const;
virtual void expr_scan(struct expr_scan_t*) const;
virtual void dump(std::ostream&) const;
virtual NetEConstEnum* dup_expr() const;
private:
const netenum_t*enum_set_;
perm_string name_;
};
class NetEConstParam : public NetEConst {
public:
explicit NetEConstParam(const NetScope*scope, perm_string name,
const verinum&val);
~NetEConstParam();
perm_string name() const;
const NetScope*scope() const;
virtual void expr_scan(struct expr_scan_t*) const;
virtual void dump(std::ostream&) const;
virtual NetEConstParam* dup_expr() const;
private:
const NetScope*scope_;
perm_string name_;
};
/*
* This class represents a constant real value.
*/
class NetECReal : public NetExpr {
public:
explicit NetECReal(const verireal&val);
~NetECReal();
const verireal&value() const;
// The type of this expression is ET_REAL
ivl_variable_type_t expr_type() const;
virtual void expr_scan(struct expr_scan_t*) const;
virtual void dump(std::ostream&) const;
virtual NetECReal* dup_expr() const;
virtual NetNet*synthesize(Design*, NetScope*scope, NetExpr*);
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual NetExpr*evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
private:
verireal value_;
};
class NetECString : public NetEConst {
public:
explicit NetECString(const std::string& val);
~NetECString();
// The type of a string is IVL_VT_STRING
ivl_variable_type_t expr_type() const;
};
class NetECRealParam : public NetECReal {
public:
explicit NetECRealParam(const NetScope*scope, perm_string name,
const verireal&val);
~NetECRealParam();
perm_string name() const;
const NetScope*scope() const;
virtual void expr_scan(struct expr_scan_t*) const;
virtual void dump(std::ostream&) const;
virtual NetECRealParam* dup_expr() const;
private:
const NetScope*scope_;
perm_string name_;
};
/*
* The NetPartSelect device represents a netlist part select of a
* signal vector. Pin 0 is a vector that is a part select of pin 1,
* which connected to the NetNet of the signal being selected from.
*
* The part to be selected is the canonical (0-based) offset and the
* specified number of bits (wid).
*
* If the offset is non-constant, then pin(2) is the input vector for
* the selector. If this pin is present, then use the non-constant
* selector as the input.
*
* The NetPartSelect can be output from the signal (i.e. reading a
* part) or input into the signal. The DIR method gives the type of
* the node.
*
* VP (Vector-to-Part)
* Output pin 0 is the part select, and input pin 1 is connected to
* the NetNet object.
*
* PV (Part-to-Vector)
* Output pin 1 is connected to the NetNet, and input pin 0 is the
* part select. In this case, the node is driving the NetNet.
*
* Note that whatever the direction that data is intended to flow,
* pin-0 is the part select and pin-1 is connected to the NetNet.
*/
class NetPartSelect : public NetNode {
public:
// enum for the device direction
enum dir_t { VP, PV};
explicit NetPartSelect(NetNet*sig,
unsigned off, unsigned wid, dir_t dir,
bool signed_flag__ = false);
explicit NetPartSelect(NetNet*sig, NetNet*sel,
unsigned wid, bool signed_flag__ = false);
~NetPartSelect();
unsigned base() const;
unsigned width() const;
inline dir_t dir() const { return dir_; }
/* Is the select signal signed? */
inline bool signed_flag() const { return signed_flag_; }
virtual void dump_node(std::ostream&, unsigned ind) const;
bool emit_node(struct target_t*tgt) const;
virtual void functor_node(Design*des, functor_t*fun);
private:
unsigned off_;
unsigned wid_;
dir_t dir_;
bool signed_flag_;
};
/*
* This device supports simple substitution of a part within a wider
* vector. For example, this:
*
* wire [7:0] foo = NetSubstitute(bar, bat, off);
*
* means that bar is a vector the same width as foo, bat is a narrower
* vector. The off is a constant offset into the bar vector. This
* looks something like this:
*
* foo = bar;
* foo[off +: <width_of_bat>] = bat;
*
* There is no direct way in Verilog to express this (as a single
* device), it instead turns up in certain synthesis situation,
* i.e. the example above.
*/
class NetSubstitute : public NetNode {
public:
NetSubstitute(NetNet*sig, NetNet*sub, unsigned wid, unsigned off);
~NetSubstitute();
inline unsigned width() const { return wid_; }
inline unsigned base() const { return off_; }
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*tgt) const;
virtual void functor_node(Design*des, functor_t*fun);
private:
unsigned wid_;
unsigned off_;
};
/*
* The NetBUFZ is a magic device that represents the continuous
* assign, with the output being the target register and the input
* the logic that feeds it. The netlist preserves the directional
* nature of that assignment with the BUFZ. The target may elide it if
* that makes sense for the technology.
*
* A NetBUFZ is transparent if strengths are passed through it without
* change. A NetBUFZ is non-transparent if values other than HiZ are
* converted to the strength of the output.
*/
class NetBUFZ : public NetNode {
public:
explicit NetBUFZ(NetScope*s, perm_string n, unsigned wid, bool transp);
~NetBUFZ();
unsigned width() const;
bool transparent() const { return transparent_; }
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
private:
unsigned width_;
bool transparent_;
};
/*
* This node is used to represent case equality in combinational
* logic. Although this is not normally synthesizable, it makes sense
* to support an abstract gate that can compare x and z. This node
* always generates a single bit result, no matter the width of the
* input. The elaboration, btw, needs to make sure the input widths
* match.
*
* The case compare can be generated to handle ===/!==, or also
* to test guards in the case/casez/casex statements.
*
* This pins are assigned as:
*
* 0 -- Output (always returns 0 or 1)
* 1 -- Input
* 2 -- Input (wildcard input for EQX and EQZ variants)
*/
class NetCaseCmp : public NetNode {
public:
enum kind_t {
EEQ, // ===
NEQ, // !==
WEQ, // ==?
WNE, // !=?
XEQ, // casex guard tests
ZEQ // casez guard tests
};
public:
explicit NetCaseCmp(NetScope*s, perm_string n, unsigned wid, kind_t eeq);
~NetCaseCmp();
unsigned width() const;
// What kind of case compare?
inline kind_t kind() const { return kind_; }
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
private:
unsigned width_;
const kind_t kind_;
};
extern std::ostream& operator << (std::ostream&fd, NetCaseCmp::kind_t that);
/* NOTE: This class should be replaced with the NetLiteral class
* below, that is more general in that it supports different types of
* values.
*
* This class represents instances of the LPM_CONSTANT device. The
* node has only outputs and a constant value. The width is available
* by getting the pin_count(), and the value bits are available one at
* a time. There is no meaning to the aggregation of bits to form a
* wide NetConst object, although some targets may have an easier time
* detecting interesting constructs if they are combined.
*/
class NetConst : public NetNode {
public:
explicit NetConst(NetScope*s, perm_string n, verinum::V v);
explicit NetConst(NetScope*s, perm_string n, const verinum&val);
~NetConst();
inline const verinum&value(void) const { return value_; }
verinum::V value(unsigned idx) const;
inline unsigned width() const { return value_.len(); }
inline bool is_string() const { return value_.is_string(); }
virtual bool emit_node(struct target_t*) const;
virtual void functor_node(Design*, functor_t*);
virtual void dump_node(std::ostream&, unsigned ind) const;
private:
verinum value_;
};
/*
* This class represents instances of the LPM_CONSTANT device. The
* node has only outputs and a constant value. The width is available
* by getting the pin_count(), and the value bits are available one at
* a time. There is no meaning to the aggregation of bits to form a
* wide NetConst object, although some targets may have an easier time
* detecting interesting constructs if they are combined.
*/
class NetLiteral : public NetNode {
public:
// A read-valued literal.
explicit NetLiteral(NetScope*s, perm_string n, const verireal&val);
~NetLiteral();
ivl_variable_type_t data_type() const;
const verireal& value_real() const;
virtual bool emit_node(struct target_t*) const;
virtual void functor_node(Design*, functor_t*);
virtual void dump_node(std::ostream&, unsigned ind) const;
private:
verireal real_;
};
/*
* This class represents all manner of logic gates. Pin 0 is OUTPUT and
* all the remaining pins are INPUT. The BUFIF[01] gates have the
* more specific pinout as follows:
*
* bufif<N>
* 0 -- output
* 1 -- input data
* 2 -- enable
*
* The pullup and pulldown gates have no inputs at all, and pin0 is
* the output 1 or 0, depending on the gate type. It is the strength
* of that value that is important.
*
* All these devices process vectors bitwise, so each bit can be
* logically separated. The exception is the CONCAT gate, which is
* really an abstract gate that takes the inputs and turns it into a
* vector of bits.
*/
class NetLogic : public NetNode {
public:
enum TYPE { AND, BUF, BUFIF0, BUFIF1, CMOS, EQUIV, IMPL, NAND, NMOS,
NOR, NOT, NOTIF0, NOTIF1, OR, PULLDOWN, PULLUP, RCMOS,
RNMOS, RPMOS, PMOS, XNOR, XOR };
explicit NetLogic(NetScope*s, perm_string n, unsigned pins,
TYPE t, unsigned wid, bool is_cassign__=false);
TYPE type() const;
unsigned width() const;
bool is_cassign() const;
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
virtual void functor_node(Design*, functor_t*);
private:
TYPE type_;
unsigned width_;
bool is_cassign_;
};
/*
* This class represents a structural sign extension. The pin-0 is a
* vector of the input pin-1 sign-extended. The input is taken to be
* signed. This generally matches a hardware implementation of
* replicating the top bit enough times to create the desired output
* width.
*/
class NetSignExtend : public NetNode {
public:
explicit NetSignExtend(NetScope*s, perm_string n, unsigned wid);
~NetSignExtend();
unsigned width() const;
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
virtual void functor_node(Design*, functor_t*);
private:
unsigned width_;
};
/*
* This class represents *reduction* logic operators. Certain boolean
* logic operators have reduction forms which take in a vector and
* return a single bit that is calculated by applying the logic
* operation through the width of the input vector. These correspond
* to reduction unary operators in Verilog.
*/
class NetUReduce : public NetNode {
public:
enum TYPE {NONE, AND, OR, XOR, NAND, NOR, XNOR};
NetUReduce(NetScope*s, perm_string n, TYPE t, unsigned wid);
TYPE type() const;
unsigned width() const;
virtual void dump_node(std::ostream&, unsigned ind) const;
virtual bool emit_node(struct target_t*) const;
virtual void functor_node(Design*, functor_t*);
private:
TYPE type_;
unsigned width_;
};
/*
* The UDP is a User Defined Primitive from the Verilog source. Do not
* expand it out any further than this in the netlist, as this can be
* used to represent target device primitives.
*
* The UDP can be combinational or sequential. The sequential UDP
* includes the current output in the truth table, and supports edges,
* whereas the combinational does not and is entirely level sensitive.
* In any case, pin 0 is an output, and all the remaining pins are
* inputs.
*
* Set_table takes as input a string with one letter per pin. The
* parser translates the written sequences to one of these. The
* valid characters are:
*
* 0, 1, x -- The levels
* r -- (01)
* R -- (x1)
* f -- (10)
* F -- (x0)
* P -- (0x)
* N -- (1x)
*
* It also takes one of the following glob letters to represent more
* than one item.
*
* p -- 01, 0x or x1 // check this with the lexer
* n -- 10, 1x or x0 // check this with the lexer
* ? -- 0, 1, or x
* * -- any edge
* + -- 01 or x1
* _ -- 10 or x0 (Note that this is not the output '-'.)
* % -- 0x or 1x
*
* SEQUENTIAL
* These objects have a single bit of memory. The logic table includes
* an entry for the current value, and allows edges on the inputs. In
* canonical form, only the entries that generate 0, 1 or - (no change)
* are listed.
*
* COMBINATIONAL
* The logic table is a map between the input levels and the
* output. Each input pin can have the value 0, 1 or x and the output
* can have the values 0 or 1. If the input matches nothing, the
* output is x. In canonical form, only the entries that generate 0 or
* 1 are listed.
*
*/
class NetUDP : public NetNode {
public:
explicit NetUDP(NetScope*s, perm_string n, unsigned pins, PUdp*u);
virtual bool emit_node(struct target_t*) const;
virtual void dump_node(std::ostream&, unsigned ind) const;
/* Use these methods to scan the truth table of the
device. "first" returns the first item in the table, and
"next" returns the next item in the table. The method will
return false when the scan is done. */
bool first(std::string&inp, char&out) const;
bool next(std::string&inp, char&out) const;
unsigned rows() const { return udp->tinput.size(); }
unsigned nin() const { return pin_count()-1; }
bool is_sequential() const { return udp->sequential; }
perm_string udp_name() const { return udp->name_; }
perm_string udp_file() const { return udp->get_file(); }
unsigned udp_lineno() const { return udp->get_lineno(); }
char get_initial() const;
unsigned port_count() const;
std::string port_name(unsigned idx) const;
private:
mutable unsigned table_idx;
PUdp *udp;
};
enum DelayType { NO_DELAY, ZERO_DELAY, POSSIBLE_DELAY, DEFINITE_DELAY };
/* =========
* A process is a behavioral-model description. A process is a
* statement that may be compound. The various statement types may
* refer to places in a netlist (by pointing to nodes) but is not
* linked into the netlist. However, elaborating a process may cause
* special nodes to be created to handle things like events.
*/
class NetProc : public virtual LineInfo {
public:
explicit NetProc();
virtual ~NetProc();
// Find the nexa that are input by the statement. This is used
// for example by @* to find the inputs to the process for the
// sensitivity list.
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
// Find the nexa that are set by the statement. Add the output
// values to the set passed as a parameter.
virtual void nex_output(NexusSet&);
// This method is called to emit the statement to the
// target. The target returns true if OK, false for errors.
virtual bool emit_proc(struct target_t*) const;
// This method is used by the NetFuncDef object to evaluate a
// constant function at compile time. The loc is the location
// of the function call, and is used for error messages. The
// ctx is a map of name to expression. This is for mapping
// identifiers to values. The function returns true if the
// processing succeeds, or false otherwise.
virtual bool evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
// This method is called by functors that want to scan a
// process in search of matchable patterns.
virtual int match_proc(struct proc_match_t*);
// Return true if this represents the root of a combinational
// process. Most process types are not.
virtual bool is_asynchronous();
// Return true if this represents the root of a synchronous
// process. Most process types are not.
virtual bool is_synchronous();
// Synthesize as asynchronous logic, and return true on success.
//
// nex_map holds the set of nexuses that are driven by this
// process, nex_out holds the accumulated outputs from this and
// preceding sequential processes (i.e statements in the same
// block), enables holds the accumulated clock/gate enables,
// and bitmasks holds the accumulated masks that flag which bits
// are unconditionally driven (i.e. driven by every clause in
// every statement). On output, the values passed in to nex_out,
// enables, and bitmasks may either be merged with or replaced
// by the values originating from this process, depending on the
// type of statement this process represents.
//
// The clock/gate enables generated by synthesis operate at a
// vector level (i.e. they are asserted if any bit(s) in the
// vector are driven).
typedef std::vector<bool> mask_t;
virtual bool synth_async(Design*des, NetScope*scope,
NexusSet&nex_map, NetBus&nex_out,
NetBus&enables, std::vector<mask_t>&bitmasks);
// Synthesize as synchronous logic, and return true on success.
// That means binding the outputs to the data port of a FF, and
// the event inputs to a FF clock. Only some key NetProc sub-types
// that have specific meaning in synchronous statements. The
// remainder reduce to a call to synth_async that connects the
// output to the Data input of the FF.
//
// The nex_map, nex_out, ff_ce, and bitmasks arguments serve
// the same purpose as in the synth_async method (where ff_ce
// is equivalent to enables). The events argument is filled
// in by the NetEvWait implementation of this method with the
// probes that it does not itself pick off as a clock. These
// events should be picked off by e.g. condit statements as
// asynchronous set/reset inputs to the flipflop being generated.
virtual bool synth_sync(Design*des, NetScope*scope,
bool&ff_negedge,
NetNet*ff_clock, NetBus&ff_ce,
NetBus&ff_aclr, NetBus&ff_aset,
std::vector<verinum>&ff_aset_value,
NexusSet&nex_map, NetBus&nex_out,
std::vector<mask_t>&bitmasks,
const std::vector<NetEvProbe*>&events);
virtual void dump(std::ostream&, unsigned ind) const;
// Recursively checks to see if there is delay in this element.
virtual DelayType delay_type(bool print_delay=false) const;
// Check to see if the item is synthesizable.
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
protected:
bool synth_async_block_substatement_(Design*des, NetScope*scope,
NexusSet&nex_map,
NetBus&nex_out,
NetBus&enables,
std::vector<mask_t>&bitmasks,
NetProc*substmt);
private:
friend class NetBlock;
NetProc*next_;
private: // not implemented
NetProc(const NetProc&);
NetProc& operator= (const NetProc&);
};
class NetAlloc : public NetProc {
public:
explicit NetAlloc(NetScope*);
~NetAlloc();
const std::string name() const;
const NetScope* scope() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void nex_output(NexusSet&);
virtual bool emit_proc(struct target_t*) const;
virtual void dump(std::ostream&, unsigned ind) const;
private:
NetScope*scope_;
};
/*
* Procedural assignment is broken into a suite of classes. These
* classes represent the various aspects of the assignment statement
* in behavioral code. (The continuous assignment is *not*
* represented here.)
*
* The NetAssignBase carries the common aspects of an assignment,
* including the r-value. This class has no cares of blocking vs
* non-blocking, however it carries nearly all the other properties
* of the assignment statement. It is abstract because it does not
* differentiate the virtual behaviors.
*
* The NetAssign and NetAssignNB classes are the concrete classes that
* give the assignment its final, precise meaning. These classes fill
* in the NetProc behaviors.
*
* The l-value of the assignment is a collection of NetAssign_
* objects that are connected to the structural netlist where the
* assignment has its effect. The NetAssign_ class is not to be
* derived from.
*
* The collection is arranged from lsb up to msb, and represents the
* concatenation of l-values. The elaborator may collapse some
* concatenations into a single NetAssign_. The "more" member of the
* NetAssign_ object points to the next most significant bits of l-value.
*
* NOTE: The elaborator will make an effort to match the width of the
* r-value to the width of the l-value, but targets and functions
* should know that this is not a guarantee.
*/
class NetAssign_ {
public:
explicit NetAssign_(NetAssign_*nest);
explicit NetAssign_(NetNet*sig);
~NetAssign_();
// This is so NetAssign_ objects can be passed to ivl_assert
// and other macros that call this method.
std::string get_fileline() const;
// If this expression exists, then it is used to select a word
// from an array/memory.
NetExpr*word();
const NetExpr*word() const;
NetScope*scope()const;
// Get the base index of the part select, or 0 if there is no
// part select.
const NetExpr* get_base() const;
ivl_select_type_t select_type() const;
void set_word(NetExpr*);
// Set a part select expression for the l-value vector. Note
// that the expression calculates a CANONICAL bit address.
void set_part(NetExpr* loff, unsigned wid,
ivl_select_type_t = IVL_SEL_OTHER);
// Set the member or property name if the signal type is a
// class.
void set_property(const perm_string&name, unsigned int idx);
inline int get_property_idx(void) const { return member_idx_; }
// Determine if the assigned object is signed or unsigned.
// This is used when determining the expression type for
// a compressed assignment statement.
bool get_signed() const { return signed_; }
void set_signed(bool flag) { signed_ = flag; }
// Get the width of the r-value that this node expects. This
// method accounts for the presence of the mux, so it is not
// necessarily the same as the pin_count().
unsigned lwidth() const;
ivl_variable_type_t expr_type() const;
// Get the expression type of the l-value. This may be
// different from the type of the contained signal if for
// example a darray is indexed.
const ivl_type_s* net_type() const;
// Return the enumeration type of this l-value, or nil if it's
// not an enumeration.
const netenum_t*enumeration() const;
// Get the name of the underlying object.
perm_string name() const;
NetNet* sig() const;
inline const NetAssign_* nest() const { return nest_; }
// Mark that the synthesizer has worked with this l-value, so
// when it is released, the l-value signal should be turned
// into a wire.
void turn_sig_to_wire_on_release();
// It is possible that l-values can have *inputs*, as well as
// being outputs. For example foo[idx] = ... is the l-value
// (NetAssign_ object) with a foo l-value and the input
// expression idx.
NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
// Figuring out nex_output to process ultimately comes down to
// this method.
void nex_output(NexusSet&);
// This pointer is for keeping simple lists.
NetAssign_* more;
void dump_lval(std::ostream&o) const;
private:
// Nested l-value. If this is set, sig_ must NOT be set!
NetAssign_*nest_;
NetNet *sig_;
// Memory word index
NetExpr*word_;
// member/property if signal is a class.
perm_string member_;
int member_idx_ = -1;
bool signed_;
bool turn_sig_to_wire_on_release_;
// indexed part select base
NetExpr*base_;
unsigned lwid_;
ivl_select_type_t sel_type_;
};
class NetAssignBase : public NetProc {
public:
NetAssignBase(NetAssign_*lv, NetExpr*rv);
virtual ~NetAssignBase() =0;
// This is the (procedural) value that is to be assigned when
// the assignment is executed.
NetExpr*rval();
const NetExpr*rval() const;
void set_rval(NetExpr*);
NetAssign_* l_val(unsigned);
const NetAssign_* l_val(unsigned) const;
unsigned l_val_count() const;
void set_delay(NetExpr*);
const NetExpr* get_delay() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void nex_output(NexusSet&o);
// This returns the total width of the accumulated l-value. It
// accounts for any grouping of NetAssign_ objects that might happen.
unsigned lwidth() const;
bool synth_async(Design*des, NetScope*scope,
NexusSet&nex_map, NetBus&nex_out,
NetBus&enables, std::vector<mask_t>&bitmasks);
// This dumps all the lval structures.
void dump_lval(std::ostream&) const;
virtual void dump(std::ostream&, unsigned ind) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
private:
NetAssign_*lval_;
NetExpr *rval_;
NetExpr *delay_;
};
class NetAssign : public NetAssignBase {
public:
explicit NetAssign(NetAssign_*lv, NetExpr*rv);
explicit NetAssign(NetAssign_*lv, char op, NetExpr*rv);
~NetAssign();
bool is_asynchronous();
inline char assign_operator(void) const { return op_; }
virtual bool emit_proc(struct target_t*) const;
virtual int match_proc(struct proc_match_t*);
virtual void dump(std::ostream&, unsigned ind) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
virtual bool evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
private:
void eval_func_lval_op_real_(const LineInfo&loc, verireal&lv, const verireal&rv) const;
void eval_func_lval_op_(const LineInfo&loc, verinum&lv, verinum&rv) const;
bool eval_func_lval_(const LineInfo&loc, std::map<perm_string,LocalVar>&ctx,
const NetAssign_*lval, NetExpr*rval_result) const;
char op_;
};
class NetAssignNB : public NetAssignBase {
public:
explicit NetAssignNB(NetAssign_*lv, NetExpr*rv, NetEvWait*ev,
NetExpr*cnt);
~NetAssignNB();
virtual bool emit_proc(struct target_t*) const;
virtual int match_proc(struct proc_match_t*);
virtual void dump(std::ostream&, unsigned ind) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
unsigned nevents() const;
const NetEvent*event(unsigned) const;
const NetExpr* get_count() const;
private:
NetEvWait*event_;
NetExpr*count_;
};
/*
* A block is stuff like begin-end blocks, that contain an ordered
* list of NetProc statements.
*
* NOTE: The emit method calls the target->proc_block function but
* does not recurse. It is up to the target-supplied proc_block
* function to call emit_recurse.
*/
class NetBlock : public NetProc {
public:
enum Type { SEQU, PARA, PARA_JOIN_ANY, PARA_JOIN_NONE };
NetBlock(Type t, NetScope*subscope);
~NetBlock();
Type type() const { return type_; }
NetScope* subscope() const { return subscope_; }
void append(NetProc*);
void prepend(NetProc*);
const NetProc*proc_first() const;
const NetProc*proc_next(const NetProc*cur) const;
bool evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
// synthesize as asynchronous logic, and return true.
bool synth_async(Design*des, NetScope*scope,
NexusSet&nex_map, NetBus&nex_out,
NetBus&enables, std::vector<mask_t>&bitmasks);
bool synth_sync(Design*des, NetScope*scope,
bool&ff_negedge,
NetNet*ff_clk, NetBus&ff_ce,
NetBus&ff_aclr,NetBus&ff_aset,
std::vector<verinum>&ff_aset_value,
NexusSet&nex_map, NetBus&nex_out,
std::vector<mask_t>&bitmasks,
const std::vector<NetEvProbe*>&events);
// This version of emit_recurse scans all the statements of
// the begin-end block sequentially. It is typically of use
// for sequential blocks.
void emit_recurse(struct target_t*) const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void nex_output(NexusSet&);
virtual bool emit_proc(struct target_t*) const;
virtual int match_proc(struct proc_match_t*);
virtual void dump(std::ostream&, unsigned ind) const;
virtual DelayType delay_type(bool print_delay=false) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
private:
const Type type_;
NetScope*subscope_;
NetProc*last_;
};
/*
* A CASE statement in the Verilog source leads, eventually, to one of
* these. This is different from a simple conditional because of the
* way the comparisons are performed. Also, it is likely that the
* target may be able to optimize differently.
*
* Case statements can have unique, unique0, or priority attached to
* them. If not otherwise adorned, it is QBASIC.
*
* Case can be one of three types:
* EQ -- All bits must exactly match
* EQZ -- z bits are don't care
* EQX -- x and z bits are don't care.
*/
class NetCase : public NetProc {
public:
enum TYPE { EQ, EQX, EQZ };
NetCase(ivl_case_quality_t q, TYPE c, NetExpr*ex, unsigned cnt);
~NetCase();
void set_case(unsigned idx, NetExpr*ex, NetProc*st);
void prune();
inline ivl_case_quality_t case_quality() const { return quality_; }
TYPE type() const;
const NetExpr*expr() const { return expr_; }
inline unsigned nitems() const { return items_.size(); }
inline const NetExpr*expr(unsigned idx) const { return items_[idx].guard;}
inline const NetProc*stat(unsigned idx) const { return items_[idx].statement; }
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void nex_output(NexusSet&out);
bool synth_async(Design*des, NetScope*scope,
NexusSet&nex_map, NetBus&nex_out,
NetBus&enables, std::vector<mask_t>&bitmasks);
virtual bool emit_proc(struct target_t*) const;
virtual void dump(std::ostream&, unsigned ind) const;
virtual DelayType delay_type(bool print_delay=false) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
virtual bool evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
private:
bool evaluate_function_vect_(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
bool evaluate_function_real_(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
bool synth_async_casez_(Design*des, NetScope*scope,
NexusSet&nex_map, NetBus&nex_out,
NetBus&enables, std::vector<mask_t>&bitmasks);
ivl_case_quality_t quality_;
TYPE type_;
struct Item {
inline Item() : guard(0), statement(0) { }
NetExpr*guard;
NetProc*statement;
};
NetExpr* expr_;
std::vector<Item>items_;
};
/*
* The cassign statement causes the r-val net to be forced onto the
* l-val reg when it is executed. The code generator is expected to
* know what that means.
*/
class NetCAssign : public NetAssignBase {
public:
explicit NetCAssign(NetAssign_*lv, NetExpr*rv);
~NetCAssign();
virtual void dump(std::ostream&, unsigned ind) const;
virtual bool emit_proc(struct target_t*) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
private: // not implemented
NetCAssign(const NetCAssign&);
NetCAssign& operator= (const NetCAssign&);
};
/*
* A condit represents a conditional. It has an expression to test,
* and a pair of statements to select from. If the original statement
* has empty clauses, then the NetProc for it will be a null pointer.
*/
class NetCondit : public NetProc {
public:
explicit NetCondit(NetExpr*ex, NetProc*i, NetProc*e);
~NetCondit();
const NetExpr*expr() const;
NetExpr*expr();
NetProc* if_clause();
NetProc* else_clause();
// Replace the condition expression.
void set_expr(NetExpr*ex);
bool emit_recurse_if(struct target_t*) const;
bool emit_recurse_else(struct target_t*) const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void nex_output(NexusSet&o);
bool is_asynchronous();
bool synth_async(Design*des, NetScope*scope,
NexusSet&nex_map, NetBus&nex_out,
NetBus&enables, std::vector<mask_t>&bitmasks);
bool synth_sync(Design*des, NetScope*scope,
bool&ff_negedge,
NetNet*ff_clk, NetBus&ff_ce,
NetBus&ff_aclr,NetBus&ff_aset,
std::vector<verinum>&ff_aset_value,
NexusSet&nex_map, NetBus&nex_out,
std::vector<mask_t>&bitmasks,
const std::vector<NetEvProbe*>&events);
virtual bool emit_proc(struct target_t*) const;
virtual int match_proc(struct proc_match_t*);
virtual void dump(std::ostream&, unsigned ind) const;
virtual DelayType delay_type(bool print_delay=false) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
virtual bool evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
private:
NetExpr* expr_;
NetProc*if_;
NetProc*else_;
};
/*
* This represents the analog contribution statement. The l-val is a
* branch expression, and the r-value is an arbitrary expression that
* may include branches and real values.
*/
class NetContribution : public NetProc {
public:
explicit NetContribution(NetEAccess*lval, NetExpr*rval);
~NetContribution();
const NetEAccess* lval() const;
const NetExpr* rval() const;
virtual bool emit_proc(struct target_t*) const;
virtual void dump(std::ostream&, unsigned ind) const;
private:
NetEAccess*lval_;
NetExpr*rval_;
};
/*
* The procedural deassign statement (the opposite of assign) releases
* any assign expressions attached to the bits of the reg. The
* lval is the expression of the "deassign <expr>;" statement with the
* expr elaborated to a net.
*/
class NetDeassign : public NetAssignBase {
public:
explicit NetDeassign(NetAssign_*l);
~NetDeassign();
virtual bool emit_proc(struct target_t*) const;
virtual void dump(std::ostream&, unsigned ind) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
private: // not implemented
NetDeassign(const NetDeassign&);
NetDeassign& operator= (const NetDeassign&);
};
/*
* This node represents the behavioral disable statement. The Verilog
* source that produces it looks like:
*
* disable <scope>;
*
* Where the scope is a named block or a task. It cannot be a module
* instance scope because module instances cannot be disabled.
*/
class NetDisable : public NetProc {
public:
explicit NetDisable(NetScope*tgt, bool flow_control = false);
~NetDisable();
const NetScope*target() const;
bool flow_control() const { return flow_control_; }
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void nex_output(NexusSet&);
virtual bool emit_proc(struct target_t*) const;
virtual void dump(std::ostream&, unsigned ind) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
virtual bool evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
private:
NetScope*target_;
// If false all threads in the target_ scope are disabled. If true only
// the closest thread in thread hierachy of the target_ scope is
// disabled. The latter is used to implement flow control statements like
// `return`.
bool flow_control_;
private: // not implemented
NetDisable(const NetDisable&);
NetDisable& operator= (const NetDisable&);
};
/*
* The do/while statement is a condition that is tested at the end of
* each iteration, and a statement (a NetProc) that is executed once and
* then again as long as the condition is true.
*/
class NetDoWhile : public NetProc {
public:
NetDoWhile(NetExpr*c, NetProc*p)
: cond_(c), proc_(p) { }
const NetExpr*expr() const { return cond_; }
void emit_proc_recurse(struct target_t*) const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void nex_output(NexusSet&);
virtual bool emit_proc(struct target_t*) const;
virtual void dump(std::ostream&, unsigned ind) const;
virtual DelayType delay_type(bool print_delay=false) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
virtual bool evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
private:
NetExpr* cond_;
NetProc*proc_;
};
/*
* A NetEvent is an object that represents an event object, that is
* objects declared like so in Verilog:
*
* event foo;
*
* Once an object of this type exists, behavioral code can wait on the
* event or trigger the event. Event waits refer to this object, as do
* the event trigger statements. The NetEvent class may have a name and
* a scope. The name is a simple name (no hierarchy) and the scope is
* the NetScope that contains the object. The scope member is written
* by the NetScope object when the NetEvent is stored.
*
* The NetEvWait class represents a thread wait for an event. When
* this statement is executed, it starts waiting on the
* event. Conceptually, it puts itself on the event list for the
* referenced event. When the event is triggered, the wait ends its
* block and starts the associated statement.
*
* The NetEvTrig class represents trigger statements. Executing this
* statement causes the referenced event to be triggered, which in
* turn awakens the waiting threads. Each NetEvTrig object references
* exactly one event object.
*
* The NetEvNBTrig class represents non-blocking trigger statements.
* Executing this statement causes the referenced event to be triggered
* at some time in the future, which in turn awakens the waiting threads.
* Each NetEvNBTrig object references exactly one event object.
*
* The NetEvProbe class is the structural equivalent of the NetEvTrig,
* in that it is a node and watches bit values that it receives. It
* checks for edges then if appropriate triggers the associated
* NetEvent. Each NetEvProbe references exactly one event object, and
* the NetEvent objects have a list of NetEvProbe objects that
* reference it.
*/
class NetEvent : public LineInfo {
friend class NetScope;
friend class NetEvProbe;
friend class NetEvTrig;
friend class NetEvNBTrig;
friend class NetEvWait;
friend class NetEEvent;
public:
// The name of the event is the basename, and should not
// include the scope. Also, the name passed here should be
// perm-allocated.
explicit NetEvent (perm_string n);
~NetEvent();
perm_string name() const;
bool local_flag() const { return local_flag_; }
void local_flag(bool f) { local_flag_ = f; }
// Get information about probes connected to me.
unsigned nprobe() const;
NetEvProbe* probe(unsigned);
const NetEvProbe* probe(unsigned) const;
// Return the number of NetEvWait nodes that reference me.
unsigned nwait() const;
unsigned ntrig() const;
unsigned nexpr() const;
NetScope* scope();
const NetScope* scope() const;
void nex_output(NexusSet&);
// Locate the first event that matches my behavior and
// monitors the same signals.
void find_similar_event(std::list<NetEvent*>&);
// This method replaces pointers to me with pointers to
// that. It is typically used to replace similar events
// located by the find_similar_event method.
void replace_event(NetEvent*that);
private:
// This returns a nexus set if it represents possibly
// asynchronous inputs, otherwise 0.
NexusSet*nex_async_();
private:
perm_string name_;
bool local_flag_;
// The NetScope class uses these to list the events.
NetScope*scope_;
NetEvent*snext_;
// Use these methods to list the probes attached to me.
NetEvProbe*probes_;
// Use these methods to list the triggers attached to me.
NetEvTrig* trig_;
// Use these methods to list the non-blocking triggers attached to me.
NetEvNBTrig* nb_trig_;
// Use This member to count references by NetEvWait objects.
unsigned waitref_;
struct wcell_ {
NetEvWait*obj;
struct wcell_*next;
};
struct wcell_ *wlist_;
// expression references, ala. task/funcs
unsigned exprref_;
private: // not implemented
NetEvent(const NetEvent&);
NetEvent& operator= (const NetEvent&);
};
class NetEvTrig : public NetProc {
friend class NetEvent;
public:
explicit NetEvTrig(NetEvent*tgt);
~NetEvTrig();
const NetEvent*event() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void nex_output(NexusSet&);
virtual bool emit_proc(struct target_t*) const;
virtual void dump(std::ostream&, unsigned ind) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
private:
NetEvent*event_;
// This is used to place me in the NetEvents lists of triggers.
NetEvTrig*enext_;
};
class NetEvNBTrig : public NetProc {
friend class NetEvent;
public:
explicit NetEvNBTrig(NetEvent*tgt, NetExpr*dly);
~NetEvNBTrig();
const NetExpr*delay() const;
const NetEvent*event() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void nex_output(NexusSet&);
virtual bool emit_proc(struct target_t*) const;
virtual void dump(std::ostream&, unsigned ind) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
private:
NetEvent*event_;
NetExpr*dly_;
// This is used to place me in the NetEvents lists of triggers.
NetEvNBTrig*enext_;
};
class NetEvWait : public NetProc {
public:
explicit NetEvWait(NetProc*st);
~NetEvWait();
void add_event(NetEvent*tgt);
void replace_event(NetEvent*orig, NetEvent*repl);
inline void set_t0_trigger() { has_t0_trigger_ = true; };
inline unsigned nevents() const { return events_.size(); }
inline const NetEvent*event(unsigned idx) const { return events_[idx]; }
inline NetEvent*event(unsigned idx) { return events_[idx]; }
inline bool has_t0_trigger() const { return has_t0_trigger_; };
NetProc*statement();
const NetProc*statement() const;
virtual bool emit_proc(struct target_t*) const;
bool emit_recurse(struct target_t*) const;
virtual int match_proc(struct proc_match_t*);
// It is possible that this is the root of a combinational
// process. This method checks.
virtual bool is_asynchronous();
// It is possible that this is the root of a synchronous
// process? This method checks.
virtual bool is_synchronous();
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void nex_output(NexusSet&out);
virtual bool synth_async(Design*des, NetScope*scope,
NexusSet&nex_map, NetBus&nex_out,
NetBus&enables, std::vector<mask_t>&bitmasks);
virtual bool synth_sync(Design*des, NetScope*scope,
bool&ff_negedge,
NetNet*ff_clk, NetBus&ff_ce,
NetBus&ff_aclr,NetBus&ff_aset,
std::vector<verinum>&ff_aset_value,
NexusSet&nex_map, NetBus&nex_out,
std::vector<mask_t>&bitmasks,
const std::vector<NetEvProbe*>&events);
virtual void dump(std::ostream&, unsigned ind) const;
// This will ignore any statement.
virtual void dump_inline(std::ostream&) const;
virtual DelayType delay_type(bool print_delay=false) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
private:
NetProc*statement_;
// Events that I might wait for.
std::vector<NetEvent*>events_;
bool has_t0_trigger_;
};
std::ostream& operator << (std::ostream&out, const NetEvWait&obj);
class NetEvProbe : public NetNode {
friend class NetEvent;
public:
enum edge_t { ANYEDGE, POSEDGE, NEGEDGE, EDGE };
explicit NetEvProbe(NetScope*s, perm_string n,
NetEvent*tgt, edge_t t, unsigned p);
~NetEvProbe();
edge_t edge() const;
NetEvent* event();
const NetEvent* event() const;
void find_similar_probes(std::list<NetEvProbe*>&);
virtual bool emit_node(struct target_t*) const;
virtual void dump_node(std::ostream&, unsigned ind) const;
private:
NetEvent*event_;
edge_t edge_;
// The NetEvent class uses this to list me.
NetEvProbe*enext_;
};
/*
* The force statement causes the r-val net to be forced onto the
* l-val net when it is executed. The code generator is expected to
* know what that means.
*/
class NetForce : public NetAssignBase {
public:
explicit NetForce(NetAssign_*l, NetExpr*r);
~NetForce();
virtual void dump(std::ostream&, unsigned ind) const;
virtual bool emit_proc(struct target_t*) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
};
/*
* A forever statement is executed over and over again forever. Or
* until its block is disabled.
*/
class NetForever : public NetProc {
public:
explicit NetForever(NetProc*s);
~NetForever();
void emit_recurse(struct target_t*) const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void nex_output(NexusSet&);
virtual bool emit_proc(struct target_t*) const;
virtual void dump(std::ostream&, unsigned ind) const;
virtual DelayType delay_type(bool print_delay=false) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
virtual bool evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
private:
NetProc*statement_;
};
class NetForLoop : public NetProc {
public:
explicit NetForLoop(NetNet*index, NetExpr*initial_expr, NetExpr*cond,
NetProc*sub, NetProc*step);
~NetForLoop();
void wrap_up();
void emit_recurse(struct target_t*) const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void nex_output(NexusSet&);
virtual bool emit_proc(struct target_t*) const;
virtual void dump(std::ostream&, unsigned ind) const;
virtual DelayType delay_type(bool print_delay=false) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
virtual bool evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
// synthesize as asynchronous logic, and return true.
bool synth_async(Design*des, NetScope*scope,
NexusSet&nex_map, NetBus&nex_out,
NetBus&enables, std::vector<mask_t>&bitmasks);
private:
NetNet*index_;
NetExpr*init_expr_;
NetExpr*condition_;
NetProc*statement_;
NetProc*step_statement_;
// The code generator needs to see this rewritten as a while
// loop with synthetic statements. This is a hack that I
// should probably take out later as the ivl_target learns
// about for loops.
NetBlock*as_block_;
};
class NetFree : public NetProc {
public:
explicit NetFree(NetScope*);
~NetFree();
const std::string name() const;
const NetScope* scope() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void nex_output(NexusSet&);
virtual bool emit_proc(struct target_t*) const;
virtual void dump(std::ostream&, unsigned ind) const;
private:
NetScope*scope_;
};
/*
* A function definition is elaborated just like a task, though by now
* it is certain that the first parameter (a phantom parameter) is the
* output and all the remaining parameters are the inputs. This makes
* for easy code generation in targets that support behavioral
* descriptions.
*
* The NetNet array that is passed in as a parameter is the set of
* signals that make up its parameter list. These are all internal to
* the scope of the function.
*/
class NetFuncDef : public NetBaseDef {
public:
NetFuncDef(NetScope*, NetNet*result, const std::vector<NetNet*>&po,
const std::vector<NetExpr*>&pd);
~NetFuncDef();
// Return true if the function returns "void". We still treat
// it as a function since we need to check that the contents
// meet the requirements of a function, but we need to know
// that it is void because it can be evaluated differently.
inline bool is_void() const { return result_sig_ == 0; }
// Non-void functions have a return value as a signal.
const NetNet*return_sig() const;
// When we want to evaluate the function during compile time,
// use this method to pass in the argument and get out a
// result. The result should be a constant. If the function
// cannot evaluate to a constant, this returns nil.
NetExpr* evaluate_function(const LineInfo&loc, const std::vector<NetExpr*>&args) const;
void dump(std::ostream&, unsigned ind) const;
private:
NetNet*result_sig_;
};
/*
* This class represents delay statements of the form:
*
* #<expr> <statement>
*
* Where the statement may be null. The delay is evaluated at
* elaboration time to make a constant unsigned long that is the delay
* in simulation ticks.
*
* If the delay expression is non-constant, construct the NetPDelay
* object with a NetExpr* instead of the d value, and use the expr()
* method to get the expression. If expr() returns 0, use the delay()
* method to get the constant delay.
*/
class NetPDelay : public NetProc {
public:
NetPDelay(uint64_t d, NetProc*st);
NetPDelay(NetExpr* d, NetProc*st);
~NetPDelay();
uint64_t delay() const;
const NetExpr*expr() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void nex_output(NexusSet&);
virtual bool emit_proc(struct target_t*) const;
virtual void dump(std::ostream&, unsigned ind) const;
virtual DelayType delay_type(bool print_delay=false) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
bool emit_proc_recurse(struct target_t*) const;
private:
uint64_t delay_;
NetExpr*expr_;
NetProc*statement_;
};
/*
* A repeat statement is executed some fixed number of times.
*/
class NetRepeat : public NetProc {
public:
explicit NetRepeat(NetExpr*e, NetProc*s);
~NetRepeat();
const NetExpr*expr() const;
void emit_recurse(struct target_t*) const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void nex_output(NexusSet&);
virtual bool emit_proc(struct target_t*) const;
virtual void dump(std::ostream&, unsigned ind) const;
virtual DelayType delay_type(bool print_delay=false) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
virtual bool evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
private:
NetExpr*expr_;
NetProc*statement_;
};
/*
* The procedural release statement (the opposite of force) releases
* any force expressions attached to the bits of the wire or reg. The
* lval is the expression of the "release <expr>;" statement with the
* expr elaborated to a net.
*/
class NetRelease : public NetAssignBase {
public:
explicit NetRelease(NetAssign_*l);
~NetRelease();
virtual bool emit_proc(struct target_t*) const;
virtual void dump(std::ostream&, unsigned ind) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
private:
};
/*
* The NetSTask class is a call to a system task. These kinds of tasks
* are generally handled very simply in the target. They certainly are
* handled differently from user defined tasks because ivl knows all
* about the user defined tasks.
*/
class NetSTask : public NetProc {
public:
NetSTask(const char*na, ivl_sfunc_as_task_t sfat,
const std::vector<NetExpr*>&);
~NetSTask();
const char* name() const;
ivl_sfunc_as_task_t sfunc_as_task() const;
unsigned nparms() const;
const NetExpr* parm(unsigned idx) const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void nex_output(NexusSet&);
virtual bool emit_proc(struct target_t*) const;
virtual void dump(std::ostream&, unsigned ind) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
virtual bool evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
private:
const char* name_;
ivl_sfunc_as_task_t sfunc_as_task_;
std::vector<NetExpr*>parms_;
};
/*
* This class represents an elaborated class definition. NetUTask
* classes may refer to objects of this type to get the meaning of the
* defined task.
*
* The task also introduces a scope, and the parameters are actually
* reg objects in the new scope. The task is called by the calling
* thread assigning (blocking assignment) to the in and inout
* parameters, then invoking the thread, and finally assigning out the
* output and inout variables. The variables accessible as ports are
* also elaborated and accessible as ordinary reg objects.
*/
class NetTaskDef : public NetBaseDef {
public:
NetTaskDef(NetScope*n, const std::vector<NetNet*>&po,
const std::vector<NetExpr*>&pd);
~NetTaskDef();
void dump(std::ostream&, unsigned) const;
DelayType delay_type(bool print_delay=false) const;
private: // not implemented
NetTaskDef(const NetTaskDef&);
NetTaskDef& operator= (const NetTaskDef&);
};
/*
* The NetELast expression node takes as an argument a net, that is
* intended to be a queue or dynamic array object. The return value is
* the index of the last item in the node. This is intended to
* implement the '$' is the expression "foo[$]".
*/
class NetELast : public NetExpr {
public:
explicit NetELast(NetNet*sig);
~NetELast();
inline const NetNet*sig() const { return sig_; }
virtual ivl_variable_type_t expr_type() const;
virtual void dump(std::ostream&) const;
virtual void expr_scan(struct expr_scan_t*) const;
virtual NetELast*dup_expr() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
private:
NetNet*sig_;
};
/*
* This node represents a function call in an expression. The object
* contains a pointer to the function definition, which is used to
* locate the value register and input expressions.
*/
class NetEUFunc : public NetExpr {
public:
NetEUFunc(NetScope*, NetScope*, NetESignal*, std::vector<NetExpr*>&, bool);
~NetEUFunc();
const NetESignal*result_sig() const;
unsigned parm_count() const;
const NetExpr* parm(unsigned idx) const;
const NetScope* func() const;
virtual ivl_variable_type_t expr_type() const;
virtual const netenum_t* enumeration() const;
virtual void dump(std::ostream&) const;
virtual void expr_scan(struct expr_scan_t*) const;
virtual NetEUFunc*dup_expr() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual NetExpr* eval_tree();
virtual NetExpr*evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
virtual NetNet* synthesize(Design*des, NetScope*scope, NetExpr*root);
private:
NetScope*scope_;
NetScope*func_;
NetESignal*result_sig_;
std::vector<NetExpr*> parms_;
bool need_const_;
private: // not implemented
NetEUFunc(const NetEUFunc&);
NetEUFunc& operator= (const NetEUFunc&);
};
/*
* A call to a nature access function for a branch.
*/
class NetEAccess : public NetExpr {
public:
explicit NetEAccess(NetBranch*br, ivl_nature_t nat);
~NetEAccess();
ivl_nature_t get_nature() const { return nature_; }
NetBranch* get_branch() const { return branch_; }
virtual ivl_variable_type_t expr_type() const;
virtual void dump(std::ostream&) const;
virtual void expr_scan(struct expr_scan_t*) const;
virtual NetEAccess*dup_expr() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
private:
NetBranch*branch_;
ivl_nature_t nature_;
};
/*
* A call to a user defined task is elaborated into this object. This
* contains a pointer to the elaborated task definition, but is a
* NetProc object so that it can be linked into statements.
*/
class NetUTask : public NetProc {
public:
explicit NetUTask(NetScope*);
~NetUTask();
const std::string name() const;
const NetScope* task() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void nex_output(NexusSet&);
virtual bool emit_proc(struct target_t*) const;
virtual void dump(std::ostream&, unsigned ind) const;
virtual DelayType delay_type(bool print_delay=false) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
private:
NetScope*task_;
};
/*
* The while statement is a condition that is tested in the front of
* each iteration, and a statement (a NetProc) that is executed as
* long as the condition is true.
*/
class NetWhile : public NetProc {
public:
NetWhile(NetExpr*c, NetProc*p)
: cond_(c), proc_(p) { }
const NetExpr*expr() const { return cond_; }
void emit_proc_recurse(struct target_t*) const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void nex_output(NexusSet&);
virtual bool emit_proc(struct target_t*) const;
virtual void dump(std::ostream&, unsigned ind) const;
virtual DelayType delay_type(bool print_delay=false) const;
virtual bool check_synth(ivl_process_type_t pr_type, const NetScope*scope) const;
virtual bool evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
private:
NetExpr*cond_;
NetProc*proc_;
};
/*
* The is the top of any process. It carries the type (initial or
* always) and a pointer to the statement, probably a block, that
* makes up the process.
*/
class NetProcTop : public LineInfo, public Attrib {
public:
NetProcTop(NetScope*s, ivl_process_type_t t, class NetProc*st);
~NetProcTop();
ivl_process_type_t type() const { return type_; }
NetProc*statement();
const NetProc*statement() const;
NetScope*scope();
const NetScope*scope() const;
/* Return true if this process represents combinational logic. */
bool is_asynchronous() const;
/* Create asynchronous logic from this thread and return true,
or return false if that cannot be done. */
bool synth_async(Design*des);
/* Return true if this process represents synchronous logic. */
bool is_synchronous();
/* Create synchronous logic from this thread and return true,
or return false if that cannot be done. */
bool synth_sync(Design*des);
void dump(std::ostream&, unsigned ind) const;
bool emit(struct target_t*tgt) const;
private:
bool tie_off_floating_inputs_(Design*des,
NexusSet&nex_map, NetBus&nex_in,
std::vector<NetProc::mask_t>&bitmasks,
bool is_ff_input);
const ivl_process_type_t type_;
NetProc*const statement_;
Design*synthesized_design_;
NetScope*scope_;
friend class Design;
NetProcTop*next_;
};
class NetAnalogTop : public LineInfo, public Attrib {
public:
NetAnalogTop(NetScope*scope, ivl_process_type_t t, NetProc*st);
~NetAnalogTop();
ivl_process_type_t type() const { return type_; }
NetProc*statement();
const NetProc*statement() const;
NetScope*scope();
const NetScope*scope() const;
void dump(std::ostream&, unsigned ind) const;
bool emit(struct target_t*tgt) const;
private:
const ivl_process_type_t type_;
NetProc* statement_;
NetScope*scope_;
friend class Design;
NetAnalogTop*next_;
};
/*
* This class represents a binary operator, with the left and right
* operands and a single character for the operator. The operator
* values are:
*
* ^ -- Bit-wise exclusive OR
* + -- Arithmetic add
* - -- Arithmetic minus
* * -- Arithmetic multiply
* / -- Arithmetic divide
* % -- Arithmetic modulus
* p -- Arithmetic power (**)
* & -- Bit-wise AND
* | -- Bit-wise OR
* < -- Less than
* > -- Greater than
* e -- Logical equality (==)
* E -- Case equality (===)
* L -- Less or equal
* G -- Greater or equal
* n -- Logical inequality (!=)
* N -- Case inequality (!==)
* a -- Logical AND (&&)
* A -- Bitwise NAND (~&)
* o -- Logical OR (||)
* O -- Bit-wise NOR (~|)
* l -- Left shift (<<)
* r -- Right shift (>>)
* R -- signed right shift (>>>)
* X -- Bitwise exclusive NOR (~^)
* m -- min(a,b)
* M -- max(a,b)
*/
class NetEBinary : public NetExpr {
public:
NetEBinary(char op, NetExpr*l, NetExpr*r, unsigned wid, bool signed_flag);
~NetEBinary();
const NetExpr*left() const { return left_; }
const NetExpr*right() const { return right_; }
char op() const { return op_; }
// A binary expression node only has a definite
// self-determinable width if the operands both have definite
// widths.
virtual bool has_width() const;
virtual NetEBinary* dup_expr() const;
virtual NetExpr* eval_tree();
virtual NetExpr* evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void expr_scan(struct expr_scan_t*) const;
virtual void dump(std::ostream&) const;
protected:
char op_;
NetExpr* left_;
NetExpr* right_;
virtual NetExpr* eval_arguments_(const NetExpr*l, const NetExpr*r) const;
};
/*
* The addition operators have slightly more complex width
* calculations because there is the optional carry bit that can be
* used. The operators covered by this class are:
* + -- Arithmetic add
* - -- Arithmetic minus
*/
class NetEBAdd : public NetEBinary {
public:
NetEBAdd(char op, NetExpr*l, NetExpr*r, unsigned wid, bool signed_flag);
~NetEBAdd();
virtual ivl_variable_type_t expr_type() const;
virtual NetEBAdd* dup_expr() const;
virtual NetExpr* eval_tree();
virtual NetNet* synthesize(Design*, NetScope*scope, NetExpr*root);
private:
NetExpr * eval_arguments_(const NetExpr*l, const NetExpr*r) const;
NetECReal* eval_tree_real_(const NetExpr*l, const NetExpr*r) const;
};
/*
* This class represents the integer division operators.
* / -- Divide
* % -- Modulus
*/
class NetEBDiv : public NetEBinary {
public:
NetEBDiv(char op, NetExpr*l, NetExpr*r, unsigned wid, bool signed_flag);
~NetEBDiv();
virtual ivl_variable_type_t expr_type() const;
virtual NetEBDiv* dup_expr() const;
virtual NetNet* synthesize(Design*, NetScope*scope, NetExpr*root);
private:
NetExpr* eval_arguments_(const NetExpr*l, const NetExpr*r) const;
NetExpr* eval_tree_real_(const NetExpr*l, const NetExpr*r) const;
};
/*
* The bitwise binary operators are represented by this class. This is
* a specialization of the binary operator, so is derived from
* NetEBinary. The particular constraints on these operators are that
* operand and result widths match exactly, and each bit slice of the
* operation can be represented by a simple gate. The operators
* covered by this class are:
*
* ^ -- Bit-wise exclusive OR
* & -- Bit-wise AND
* | -- Bit-wise OR
* O -- Bit-wise NOR
* X -- Bit-wise XNOR (~^)
*/
class NetEBBits : public NetEBinary {
public:
NetEBBits(char op, NetExpr*l, NetExpr*r, unsigned wid, bool signed_flag);
~NetEBBits();
virtual NetEBBits* dup_expr() const;
virtual NetNet* synthesize(Design*, NetScope*scope, NetExpr*root);
private:
NetEConst* eval_arguments_(const NetExpr*l, const NetExpr*r) const;
};
/*
* The binary comparison operators are handled by this class. This
* this case the bit width of the expression is 1 bit, and the
* operands take their natural widths. The supported operators are:
*
* < -- Less than
* > -- Greater than
* e -- Logical equality (==)
* E -- Case equality (===)
* L -- Less or equal (<=)
* G -- Greater or equal (>=)
* n -- Logical inequality (!=)
* N -- Case inequality (!==)
*/
class NetEBComp : public NetEBinary {
public:
NetEBComp(char op, NetExpr*l, NetExpr*r);
~NetEBComp();
/* A compare expression has a definite width. */
virtual bool has_width() const;
virtual ivl_variable_type_t expr_type() const;
virtual NetEBComp* dup_expr() const;
virtual NetNet* synthesize(Design*, NetScope*scope, NetExpr*root);
private:
NetEConst* must_be_leeq_(const NetExpr*le, const verinum&rv, bool eq_flag) const;
NetEConst*eval_arguments_(const NetExpr*le, const NetExpr*re) const;
NetEConst*eval_eqeq_(bool ne_flag, const NetExpr*le, const NetExpr*re) const;
NetEConst*eval_eqeq_real_(bool ne_flag, const NetExpr*le, const NetExpr*re) const;
NetEConst*eval_less_(const NetExpr*le, const NetExpr*re) const;
NetEConst*eval_leeq_(const NetExpr*le, const NetExpr*re) const;
NetEConst*eval_leeq_real_(const NetExpr*le, const NetExpr*ri, bool eq_flag) const;
NetEConst*eval_gt_(const NetExpr*le, const NetExpr*re) const;
NetEConst*eval_gteq_(const NetExpr*le, const NetExpr*re) const;
NetEConst*eval_eqeqeq_(bool ne_flag, const NetExpr*le, const NetExpr*re) const;
NetEConst*eval_weqeq_(bool ne_flag, const NetExpr*le, const NetExpr*re) const;
};
/*
* The binary logical operators are those that return boolean
* results. The supported operators are:
*
* a -- Logical AND (&&)
* o -- Logical OR (||)
*/
class NetEBLogic : public NetEBinary {
public:
NetEBLogic(char op, NetExpr*l, NetExpr*r);
~NetEBLogic();
virtual NetEBLogic* dup_expr() const;
virtual NetNet* synthesize(Design*, NetScope*scope, NetExpr*root);
private:
NetEConst* eval_arguments_(const NetExpr*l, const NetExpr*r) const;
};
/*
* Support the binary min(l,r) and max(l,r) operators. The opcodes
* supported are:
*
* m -- min
* M -- max
*/
class NetEBMinMax : public NetEBinary {
public:
NetEBMinMax(char op, NetExpr*l, NetExpr*r, unsigned wid, bool signed_flag);
~NetEBMinMax();
virtual ivl_variable_type_t expr_type() const;
private:
NetExpr* eval_arguments_(const NetExpr*l, const NetExpr*r) const;
NetExpr* eval_tree_real_(const NetExpr*l, const NetExpr*r) const;
};
/*
* Support the binary multiplication (*) operator.
*/
class NetEBMult : public NetEBinary {
public:
NetEBMult(char op, NetExpr*l, NetExpr*r, unsigned wid, bool signed_flag);
~NetEBMult();
virtual ivl_variable_type_t expr_type() const;
virtual NetEBMult* dup_expr() const;
virtual NetNet* synthesize(Design*, NetScope*scope, NetExpr*root);
private:
NetExpr* eval_arguments_(const NetExpr*l, const NetExpr*r) const;
NetExpr* eval_tree_real_(const NetExpr*l, const NetExpr*r) const;
};
/*
* Support the binary power (**) operator.
*/
class NetEBPow : public NetEBinary {
public:
NetEBPow(char op, NetExpr*l, NetExpr*r, unsigned wid, bool signed_flag);
~NetEBPow();
virtual ivl_variable_type_t expr_type() const;
virtual NetEBPow* dup_expr() const;
virtual NetNet* synthesize(Design*, NetScope*scope, NetExpr*root);
private:
NetExpr* eval_arguments_(const NetExpr*l, const NetExpr*r) const;
NetExpr* eval_tree_real_(const NetExpr*l, const NetExpr*r) const;
};
/*
* Support the binary shift operators. The supported operators are:
*
* l -- left shift (<<)
* r -- right shift (>>)
* R -- right shift arithmetic (>>>)
*/
class NetEBShift : public NetEBinary {
public:
NetEBShift(char op, NetExpr*l, NetExpr*r, unsigned wid, bool signed_flag);
~NetEBShift();
// A shift expression only needs the left expression to have a
// definite width to give the expression a definite width.
virtual bool has_width() const;
virtual NetEBShift* dup_expr() const;
virtual NetNet* synthesize(Design*, NetScope*scope, NetExpr*root);
private:
NetEConst* eval_arguments_(const NetExpr*l, const NetExpr*r) const;
};
/*
* This expression node supports the concat expression. This is an
* operator that just glues the results of many expressions into a
* single value.
*
* Note that the class stores the parameter expressions in source code
* order. That is, the parm(0) is placed in the most significant
* position of the result.
*/
class NetEConcat : public NetExpr {
public:
NetEConcat(unsigned cnt, unsigned repeat, ivl_variable_type_t vt);
~NetEConcat();
// Manipulate the parameters.
void set(unsigned idx, NetExpr*e);
unsigned repeat() const { return repeat_; }
unsigned nparms() const { return parms_.size() ; }
NetExpr* parm(unsigned idx) const { return parms_[idx]; }
virtual ivl_variable_type_t expr_type() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual NetEConcat* dup_expr() const;
virtual NetEConst* eval_tree();
virtual NetExpr* evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
virtual NetNet*synthesize(Design*, NetScope*scope, NetExpr*root);
virtual void expr_scan(struct expr_scan_t*) const;
virtual void dump(std::ostream&) const;
private:
std::vector<NetExpr*>parms_;
unsigned repeat_;
ivl_variable_type_t expr_type_;
NetEConst* eval_arguments_(const std::vector<NetExpr*>&vals, unsigned gap) const;
};
/*
* This expression node supports bit/part selects from general
* expressions. The sub-expression is self-sized, and has bits
* selected from it. The base is the expression that identifies the
* lsb of the expression, and the wid is the width of the part select,
* or 1 for a bit select. No matter what the subexpression is, the
* base is translated in canonical bits. It is up to the elaborator
* to figure this out and adjust the expression if the subexpression
* has a non-canonical base or direction.
*
* If the base expression is null, then this expression node can be
* used to express width expansion, signed or unsigned depending on
* the has_sign() flag.
*
* An alternative form of this expression node is used for dynamic
* array word selects and for packed struct member selects. In this
* case use_type indicates the type of the selected element/member.
*/
class NetESelect : public NetExpr {
public:
NetESelect(NetExpr*exp, NetExpr*base, unsigned wid,
ivl_select_type_t sel_type = IVL_SEL_OTHER);
NetESelect(NetExpr*exp, NetExpr*base, unsigned wid,
ivl_type_t use_type);
~NetESelect();
const NetExpr*sub_expr() const;
const NetExpr*select() const;
ivl_select_type_t select_type() const;
// The type of a bit/part select is the base type of the
// sub-expression. The type of an array/member select is
// the base type of the element/member.
virtual ivl_variable_type_t expr_type() const;
virtual const netenum_t* enumeration() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void expr_scan(struct expr_scan_t*) const;
virtual NetEConst* eval_tree();
virtual NetExpr*evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
virtual NetESelect* dup_expr() const;
virtual NetNet*synthesize(Design*des, NetScope*scope, NetExpr*root);
virtual void dump(std::ostream&) const;
private:
NetExpr*expr_;
NetExpr*base_;
ivl_type_t use_type_;
ivl_select_type_t sel_type_;
};
/*
* This node is for representation of named events.
*/
class NetEEvent : public NetExpr {
public:
explicit NetEEvent(NetEvent*);
~NetEEvent();
const NetEvent* event() const;
virtual void expr_scan(struct expr_scan_t*) const;
virtual NetEEvent* dup_expr() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void dump(std::ostream&os) const;
private:
NetEvent*event_;
};
/*
* This class is a special (and magical) expression node type that
* represents enumeration types. These can only be found as parameters
* to NetSTask objects.
*/
class NetENetenum : public NetExpr {
public:
explicit NetENetenum(const netenum_t*);
~NetENetenum();
const netenum_t* netenum() const;
virtual void expr_scan(struct expr_scan_t*) const;
virtual NetENetenum* dup_expr() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void dump(std::ostream&os) const;
private:
const netenum_t*netenum_;
};
class NetENew : public NetExpr {
public:
// Make class object
explicit NetENew(ivl_type_t);
// dynamic array of objects.
explicit NetENew(ivl_type_t, NetExpr*size, NetExpr* init_val=0);
~NetENew();
inline ivl_type_t get_type() const { return obj_type_; }
inline const NetExpr*size_expr() const { return size_; }
inline const NetExpr*init_expr() const { return init_val_; }
virtual ivl_variable_type_t expr_type() const;
virtual void expr_scan(struct expr_scan_t*) const;
virtual NetENew* dup_expr() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void dump(std::ostream&os) const;
private:
ivl_type_t obj_type_;
NetExpr*size_;
NetExpr*init_val_;
};
/*
* The NetENull node represents the SystemVerilog (null)
* expression. This is always a null class handle.
*/
class NetENull : public NetExpr {
public:
NetENull();
~NetENull();
virtual void expr_scan(struct expr_scan_t*) const;
virtual NetENull* dup_expr() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void dump(std::ostream&os) const;
};
/*
* The NetEProperty represents a SystemVerilog property select of a
* class object. In SV, the expression would look like "a.b", where
* the "a" is the signal (the NetNet) and "b" is the property name.
*
* The canon_index is an optional expression to address an element for
* parameters that are arrays.
*/
class NetEProperty : public NetExpr {
public:
NetEProperty(NetNet*n, size_t pidx_, NetExpr*canon_index =0);
~NetEProperty();
inline const NetNet* get_sig() const { return net_; }
inline size_t property_idx() const { return pidx_; }
inline const NetExpr*get_index() const { return index_; }
public: // Overridden methods
ivl_variable_type_t expr_type() const;
virtual void expr_scan(struct expr_scan_t*) const;
virtual NetEProperty* dup_expr() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void dump(std::ostream&os) const;
private:
NetNet*net_;
size_t pidx_;
NetExpr*index_;
};
/*
* This class is a special (and magical) expression node type that
* represents scope names. These can only be found as parameters to
* NetSTask objects.
*/
class NetEScope : public NetExpr {
public:
explicit NetEScope(NetScope*);
~NetEScope();
const NetScope* scope() const;
virtual void expr_scan(struct expr_scan_t*) const;
virtual NetEScope* dup_expr() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void dump(std::ostream&os) const;
private:
NetScope*scope_;
};
/*
* This node represents a system function call in an expression. The
* object contains the name of the system function, which the backend
* uses to do VPI matching.
*/
class NetESFunc : public NetExpr {
public:
NetESFunc(const char*name, ivl_variable_type_t t,
unsigned width, unsigned nprms, bool is_overridden =false);
NetESFunc(const char*name, ivl_type_t rtype, unsigned nprms);
~NetESFunc();
const char* name() const;
unsigned nparms() const;
void parm(unsigned idx, NetExpr*expr);
NetExpr* parm(unsigned idx);
const NetExpr* parm(unsigned idx) const;
virtual NetExpr* eval_tree();
virtual NetExpr* evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
virtual ivl_variable_type_t expr_type() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual const netenum_t* enumeration() const;
virtual void dump(std::ostream&) const;
virtual void expr_scan(struct expr_scan_t*) const;
virtual NetESFunc*dup_expr() const;
virtual NetNet*synthesize(Design*, NetScope*scope, NetExpr*root);
private:
/* Use the 32 bit ID as follows:
* The lower sixteen bits are used to identify the individual
* functions.
*
* The top sixteen bits are used to indicate the number of
* arguments the function can take by bit position. If more
* than one bit is set the argument can take a different number
* of arguments. This varies from 0 to 14 with the MSB indicating
* fifteen or more (an unbounded value). For example all bit set
* except for the LSB indicate 1 or more arguments are allowed.
*/
enum ID { NOT_BUILT_IN = 0x0,
/* Available in all version of Verilog/SystemVerilog. */
ITOR = 0x00020001, /* $itor takes one argument. */
RTOI = 0x00020002, /* $rtoi takes one argument. */
/* Available in Verilog 2005 and later. */
ACOS = 0x00020003, /* $acos takes one argument. */
ACOSH = 0x00020004, /* $acosh takes one argument. */
ASIN = 0x00020005, /* $asin takes one argument. */
ASINH = 0x00020006, /* $asinh takes one argument. */
ATAN = 0x00020007, /* $atan takes one argument. */
ATANH = 0x00020008, /* $atanh takes one argument. */
ATAN2 = 0x00040009, /* $atan2 takes two argument. */
CEIL = 0x0002000a, /* $ceil takes one argument. */
CLOG2 = 0x0002000b, /* $clog2 takes one argument. */
COS = 0x0002000c, /* $cos takes one argument. */
COSH = 0x0002000d, /* $cosh takes one argument. */
EXP = 0x0002000e, /* $exp takes one argument. */
FLOOR = 0x0002000f, /* $floor takes one argument. */
HYPOT = 0x00040010, /* $hypot takes two argument. */
LN = 0x00020011, /* $ln takes one argument. */
LOG10 = 0x00020012, /* $log10 takes one argument. */
POW = 0x00040013, /* $pow takes two argument. */
SIN = 0x00020014, /* $sin takes one argument. */
SINH = 0x00020015, /* $sinh takes one argument. */
SQRT = 0x00020016, /* $sqrt takes one argument. */
TAN = 0x00020017, /* $tan takes one argument. */
TANH = 0x00020018, /* $tanh takes one argument. */
/* Added in SystemVerilog 2005 and later. */
DIMS = 0x00020019, /* $dimensions takes one argument. */
HIGH = 0x0006001a, /* $high takes one or two arguments. */
INCR = 0x0006001b, /* $increment takes one or two arguments. */
LEFT = 0x0006001c, /* $left takes one or two arguments. */
LOW = 0x0006001d, /* $low takes one or two arguments. */
RIGHT = 0x0006001e, /* $right takes one or two arguments. */
SIZE = 0x0006001f, /* $size takes one or two arguments. */
UPDIMS = 0x00020020, /* $unpacked_dimensions takes one argument. */
ISUNKN = 0x00020021, /* $isunknown takes one argument. */
ONEHT = 0x00020022, /* $onehot takes one argument. */
ONEHT0 = 0x00020023, /* $onehot0 takes one argument. */
/* Added in SystemVerilog 2009 and later. */
CTONES = 0x00020024, /* $countones takes one argument. */
/* Added in SystemVerilog 2012 and later. */
CTBITS = 0xfffc0025, /* $countbits takes two or more arguments. */
/* Added as Icarus extensions to Verilog-A. */
ABS = 0x00020026, /* $abs takes one argument. */
MAX = 0x00040027, /* $max takes two argument. */
MIN = 0x00040028, /* $min takes two argument. */
/* A dummy value to properly close the enum. */
DUMMY = 0xffffffff };
bool takes_nargs_(ID func, unsigned nargs) {
if (nargs > 15) nargs = 15;
return func & (1U << (nargs + 16));
}
const char* name_;
ivl_variable_type_t type_;
const netenum_t*enum_type_;
std::vector<NetExpr*>parms_;
bool is_overridden_;
ID built_in_id_() const;
NetExpr* evaluate_one_arg_(ID id, const NetExpr*arg) const;
NetExpr* evaluate_two_arg_(ID id, const NetExpr*arg0,
const NetExpr*arg1) const;
NetEConst* evaluate_rtoi_(const NetExpr*arg) const;
NetECReal* evaluate_itor_(const NetExpr*arg) const;
NetEConst* evaluate_clog2_(const NetExpr*arg) const;
NetECReal* evaluate_math_one_arg_(ID id, const NetExpr*arg) const;
NetECReal* evaluate_math_two_arg_(ID id, const NetExpr*arg0,
const NetExpr*arg1) const;
NetExpr* evaluate_abs_(const NetExpr*arg) const;
NetExpr* evaluate_min_max_(ID id, const NetExpr*arg0,
const NetExpr*arg1) const;
/* Constant SystemVerilog functions. */
NetEConst* evaluate_countones_(const NetExpr*arg) const;
NetEConst* evaluate_dimensions_(const NetExpr*arg) const;
NetEConst* evaluate_isunknown_(const NetExpr*arg) const;
NetEConst* evaluate_onehot_(const NetExpr*arg) const;
NetEConst* evaluate_onehot0_(const NetExpr*arg) const;
NetEConst* evaluate_unpacked_dimensions_(const NetExpr*arg) const;
/* This value is used as a default when the array functions are
* called with a single argument. */
static const NetEConst*const_one_;
NetEConst* evaluate_array_funcs_(ID id,
const NetExpr*arg0,
const NetExpr*arg1) const;
NetEConst* evaluate_countbits_(void) const;
public:
bool is_built_in() const { return built_in_id_() != NOT_BUILT_IN; };
private: // not implemented
NetESFunc(const NetESFunc&);
NetESFunc& operator= (const NetESFunc&);
};
class NetEShallowCopy : public NetExpr {
public:
// Make a shallow copy from arg2 into arg1.
explicit NetEShallowCopy(NetExpr*arg1, NetExpr*arg2);
~NetEShallowCopy();
virtual ivl_variable_type_t expr_type() const;
virtual void expr_scan(struct expr_scan_t*) const;
virtual NetEShallowCopy* dup_expr() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void dump(std::ostream&os) const;
void expr_scan_oper1(struct expr_scan_t*) const;
void expr_scan_oper2(struct expr_scan_t*) const;
private:
NetExpr*arg1_;
NetExpr*arg2_;
};
/*
* This class represents the ternary (?:) operator. It has 3
* expressions, one of which is a condition used to select which of
* the other two expressions is the result.
*/
class NetETernary : public NetExpr {
public:
NetETernary(NetExpr*c, NetExpr*t, NetExpr*f, unsigned wid, bool signed_flag);
~NetETernary();
const netenum_t* enumeration() const;
const NetExpr*cond_expr() const;
const NetExpr*true_expr() const;
const NetExpr*false_expr() const;
virtual NetETernary* dup_expr() const;
virtual NetExpr* eval_tree();
virtual NetExpr*evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
virtual ivl_variable_type_t expr_type() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void expr_scan(struct expr_scan_t*) const;
virtual void dump(std::ostream&) const;
virtual NetNet*synthesize(Design*, NetScope*scope, NetExpr*root);
public:
static bool test_operand_compat(ivl_variable_type_t tru, ivl_variable_type_t fal);
private:
NetExpr* blended_arguments_(const NetExpr*t, const NetExpr*f) const;
NetExpr*cond_;
NetExpr*true_val_;
NetExpr*false_val_;
};
/*
* This class represents a unary operator, with the single operand
* and a single character for the operator. The operator values are:
*
* ~ -- Bit-wise negation
* ! -- Logical negation
* & -- Reduction AND
* | -- Reduction OR
* ^ -- Reduction XOR
* + --
* - --
* A -- Reduction NAND (~&)
* N -- Reduction NOR (~|)
* X -- Reduction NXOR (~^ or ^~)
* m -- abs(x) (i.e. "magnitude")
* v -- Cast from real to integer (vector)
* 2 -- Cast from real or logic (vector) to bool (vector)
* r -- Cast from integer (vector) to real
* i -- post-increment
* I -- pre-increment
* d -- post-decrement
* D -- pre-decrement
*/
class NetEUnary : public NetExpr {
public:
NetEUnary(char op, NetExpr*ex, unsigned wid, bool signed_flag);
~NetEUnary();
char op() const { return op_; }
const NetExpr* expr() const { return expr_; }
virtual NetEUnary* dup_expr() const;
virtual NetExpr* eval_tree();
virtual NetExpr* evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
virtual NetNet* synthesize(Design*, NetScope*scope, NetExpr*root);
virtual ivl_variable_type_t expr_type() const;
virtual NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
virtual void expr_scan(struct expr_scan_t*) const;
virtual void dump(std::ostream&) const;
protected:
char op_;
NetExpr* expr_;
private:
virtual NetExpr* eval_arguments_(const NetExpr*ex) const;
virtual NetExpr* eval_tree_real_(const NetExpr*ex) const;
};
class NetEUBits : public NetEUnary {
public:
NetEUBits(char op, NetExpr*ex, unsigned wid, bool signed_flag);
~NetEUBits();
virtual NetNet* synthesize(Design*, NetScope*scope, NetExpr*root);
virtual NetEUBits* dup_expr() const;
virtual ivl_variable_type_t expr_type() const;
};
class NetEUReduce : public NetEUnary {
public:
NetEUReduce(char op, NetExpr*ex);
~NetEUReduce();
virtual NetNet* synthesize(Design*, NetScope*scope, NetExpr*root);
virtual NetEUReduce* dup_expr() const;
virtual ivl_variable_type_t expr_type() const;
private:
virtual NetEConst* eval_arguments_(const NetExpr*ex) const;
virtual NetEConst* eval_tree_real_(const NetExpr*ex) const;
};
class NetECast : public NetEUnary {
public:
NetECast(char op, NetExpr*ex, unsigned wid, bool signed_flag);
~NetECast();
virtual NetNet* synthesize(Design*, NetScope*scope, NetExpr*root);
virtual NetECast* dup_expr() const;
virtual ivl_variable_type_t expr_type() const;
virtual void dump(std::ostream&) const;
private:
virtual NetExpr* eval_arguments_(const NetExpr*ex) const;
};
/*
* When a signal shows up in an expression, this type represents
* it. From this the expression can get any kind of access to the
* structural signal, including arrays.
*
* The NetESignal may refer to an array, if the word_index is
* included. This expression calculates the index of the word in the
* array. It may only be nil if the expression refers to the whole
* array, and that is legal only in limited situation.
*/
class NetESignal : public NetExpr {
public:
explicit NetESignal(NetNet*n);
NetESignal(NetNet*n, NetExpr*word_index);
~NetESignal();
perm_string name() const;
virtual NetESignal* dup_expr() const;
NetNet* synthesize(Design*des, NetScope*scope, NetExpr*root);
NexusSet* nex_input(bool rem_out = true, bool always_sens = false,
bool nested_func = false) const;
NexusSet* nex_input_base(bool rem_out, bool always_sens, bool nested_func,
unsigned base, unsigned width) const;
const netenum_t*enumeration() const;
virtual NetExpr*evaluate_function(const LineInfo&loc,
std::map<perm_string,LocalVar>&ctx) const;
// This is the expression for selecting an array word, if this
// signal refers to an array.
const NetExpr* word_index() const;
// This is the width of the vector that this signal refers to.
unsigned vector_width() const;
// Point back to the signal that this expression node references.
const NetNet* sig() const;
NetNet* sig();
// Declared vector dimensions for the signal.
long msi() const;
long lsi() const;
virtual ivl_variable_type_t expr_type() const;
virtual void expr_scan(struct expr_scan_t*) const;
virtual void dump(std::ostream&) const;
private:
NetNet*net_;
const netenum_t*enum_type_;
// Expression to select a word from the net.
NetExpr*word_;
};
/*
* The Design object keeps a list of work items for processing
* elaboration. This is the type of those work items.
*/
struct elaborator_work_item_t {
explicit elaborator_work_item_t(Design*d)
: des(d) { }
virtual ~elaborator_work_item_t() { }
virtual void elaborate_runrun() =0;
protected:
Design*des;
};
/*
* This class contains an entire design. It includes processes and a
* netlist, and can be passed around from function to function.
*/
class Design {
public:
Design();
~Design();
/* We need to pass the tool delay selection for $sdf_annotate. */
enum delay_sel_t { MIN, TYP, MAX };
void set_delay_sel(delay_sel_t sel);
const char* get_delay_sel() const;
/* The flags are a generic way of accepting command line
parameters/flags and passing them to the processing steps
that deal with the design. The compilation driver sets the
entire flags map after elaboration is done. Subsequent
steps can then use the get_flag() function to get the value
of an interesting key. */
void set_flags(const std::map<std::string,const char*>&f) { flags_ = f; }
const char* get_flag(const std::string&key) const;
NetScope* make_root_scope(perm_string name, NetScope*unit_scope,
bool program_block, bool is_interface);
NetScope* find_root_scope();
std::list<NetScope*> find_root_scopes() const;
NetScope* make_package_scope(perm_string name, NetScope*unit_scope,
bool is_unit);
std::list<NetScope*> find_package_scopes() const;
/* Attempt to set the precision to the specified value. If the
precision is already more precise, the keep the precise
setting. This is intended to hold the simulation precision
for use throughout the entire design. */
void set_precision(int val);
int get_precision() const;
/* This function takes a delay value and a scope, and returns
the delay value scaled to the precision of the design. */
uint64_t scale_to_precision(uint64_t, const NetScope*)const;
/* Look up a scope. If no starting scope is passed, then the
path is taken as an absolute scope name. Otherwise, the
scope is located starting at the passed scope and working
up if needed. */
NetScope* find_scope(const hname_t&path) const;
NetScope* find_scope(NetScope*, const hname_t&name,
NetScope::TYPE type = NetScope::MODULE) const;
NetScope* find_package(perm_string name) const;
// Note: Try to remove these versions of find_scope. Avoid
// using these in new code, use the above forms (or
// symbol_search) instead.
NetScope* find_scope(const std::list<hname_t>&path) const;
NetScope* find_scope(NetScope*, const std::list<hname_t>&path,
NetScope::TYPE type = NetScope::MODULE) const;
/* These members help manage elaboration of scopes. When we
get to a point in scope elaboration where we want to put
off a scope elaboration, an object of scope_elaboration_t
is pushed onto the scope_elaborations list. The scope
elaborator will go through this list elaborating scopes
until the list is empty. */
std::list<elaborator_work_item_t*>elaboration_work_list;
void run_elaboration_work(void);
std::set<NetScope*> defparams_later;
// PARAMETERS
void run_defparams();
void evaluate_parameters();
// Look for defparams that never matched, and print warnings.
void residual_defparams();
/* This method locates a signal, starting at a given
scope. The name parameter may be partially hierarchical, so
this method, unlike the NetScope::find_signal method,
handles global name binding. */
NetNet*find_signal(NetScope*scope, pform_name_t path);
// Functions
NetFuncDef* find_function(NetScope*scope, const pform_name_t&key);
// Tasks
NetScope* find_task(NetScope*scope, const pform_name_t&name);
// NODES
void add_node(NetNode*);
void del_node(NetNode*);
// BRANCHES
void add_branch(NetBranch*);
// PROCESSES
void add_process(NetProcTop*);
void add_process(NetAnalogTop*);
void delete_process(NetProcTop*);
bool check_proc_delay() const;
bool check_proc_synth() const;
NetNet* find_discipline_reference(ivl_discipline_t dis, NetScope*scope);
// Iterate over the design...
void dump(std::ostream&) const;
void functor(struct functor_t*);
void join_islands(void);
int emit(struct target_t*) const;
// This is incremented by elaboration when an error is
// detected. It prevents code being emitted.
unsigned errors;
private:
NetScope* find_scope_(NetScope*, const hname_t&name,
NetScope::TYPE type = NetScope::MODULE) const;
NetScope* find_scope_(NetScope*, const std::list<hname_t>&path,
NetScope::TYPE type = NetScope::MODULE) const;
// Keep a tree of scopes. The NetScope class handles the wide
// tree and per-hop searches for me.
std::list<NetScope*>root_scopes_;
// Keep a map of all the elaborated packages. Note that
// packages do not nest.
std::map<perm_string,NetScope*>packages_;
// List the nodes in the design.
NetNode*nodes_;
// These are in support of the node functor iterator.
NetNode*nodes_functor_cur_;
NetNode*nodes_functor_nxt_;
// List the branches in the design.
NetBranch*branches_;
// List the processes in the design.
NetProcTop*procs_;
NetProcTop*procs_idx_;
// List the ANALOG processes in the design.
NetAnalogTop*aprocs_;
// Map of discipline take to NetNet for the reference node.
std::map<perm_string,NetNet*>discipline_references_;
// Map the design arguments to values.
std::map<std::string,const char*> flags_;
int des_precision_;
delay_sel_t des_delay_sel_;
private: // not implemented
Design(const Design&);
Design& operator= (const Design&);
};
/* =======
*/
inline bool operator == (const Link&l, const Link&r)
{ return l.is_equal(r); }
inline bool operator != (const Link&l, const Link&r)
{ return ! l.is_equal(r); }
/* Connect the pins of two nodes together. Either may already be
connected to other things, connect is transitive. */
extern void connect(Link&, Link&);
/* Return true if l and r are connected. */
inline bool connected(const Link&l, const Link&r)
{ return l.is_linked(r); }
/* Return the number of signals in the nexus. */
extern unsigned count_signals(const Link&pin);
/* Find the next link that is an output into the nexus. */
extern Link* find_next_output(Link*lnk);
/* Find the signal connected to the given node pin. There should
always be exactly one signal. The bidx parameter gets filled with
the signal index of the Net, in case it is a vector. */
const NetNet* find_link_signal(const NetObj*net, unsigned pin,
unsigned&bidx);
inline std::ostream& operator << (std::ostream&o, const NetExpr&exp)
{ exp.dump(o); return o; }
extern std::ostream& operator << (std::ostream&, NetNet::Type);
/*
* Manipulator to dump a scope complete path to the output. The
* manipulator is "scope_path" and works like this:
*
* out << .... << scope_path(sc) << ... ;
*/
struct __ScopePathManip { const NetScope*scope; };
inline __ScopePathManip scope_path(const NetScope*scope)
{ __ScopePathManip tmp; tmp.scope = scope; return tmp; }
extern std::ostream& operator << (std::ostream&o, __ScopePathManip);
struct __ObjectPathManip { const NetObj*obj; };
inline __ObjectPathManip scope_path(const NetObj*obj)
{ __ObjectPathManip tmp; tmp.obj = obj; return tmp; }
extern std::ostream& operator << (std::ostream&o, __ObjectPathManip);
/*
* If this link has a nexus_ pointer, then it is the last Link in the
* list. next_nlink() returns 0 for the last Link.
*/
inline Link* Link::next_nlink()
{
if (nexus_) return 0;
else return next_;
}
inline const Link* Link::next_nlink() const
{
if (nexus_) return 0;
else return next_;
}
inline NetPins*Link::get_obj()
{
if (pin_zero_)
return node_;
Link*tmp = this - pin_;
assert(tmp->pin_zero_);
return tmp->node_;
}
inline const NetPins*Link::get_obj() const
{
if (pin_zero_)
return node_;
const Link*tmp = this - pin_;
assert(tmp->pin_zero_);
return tmp->node_;
}
inline unsigned Link::get_pin() const
{
if (pin_zero_)
return 0;
else
return pin_;
}
#undef ENUM_UNSIGNED_INT
#endif /* IVL_netlist_H */
|