1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
|
/*
* Copyright (c) 2001-2021 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "config.h"
# include <cstdlib>
# include <climits>
# include "netlist.h"
# include "netparray.h"
# include "netvector.h"
# include "netmisc.h"
# include "PExpr.h"
# include "pform_types.h"
# include "compiler.h"
# include "ivl_assert.h"
using namespace std;
NetNet* sub_net_from(Design*des, NetScope*scope, long val, NetNet*sig)
{
netvector_t*zero_vec = new netvector_t(sig->data_type(),
sig->vector_width()-1, 0);
NetNet*zero_net = new NetNet(scope, scope->local_symbol(),
NetNet::WIRE, zero_vec);
zero_net->set_line(*sig);
zero_net->local_flag(true);
if (sig->data_type() == IVL_VT_REAL) {
verireal zero (val);
NetLiteral*zero_obj = new NetLiteral(scope, scope->local_symbol(), zero);
zero_obj->set_line(*sig);
des->add_node(zero_obj);
connect(zero_net->pin(0), zero_obj->pin(0));
} else {
verinum zero ((int64_t)val);
zero = cast_to_width(zero, sig->vector_width());
zero.has_sign(sig->get_signed());
NetConst*zero_obj = new NetConst(scope, scope->local_symbol(), zero);
zero_obj->set_line(*sig);
des->add_node(zero_obj);
connect(zero_net->pin(0), zero_obj->pin(0));
}
NetAddSub*adder = new NetAddSub(scope, scope->local_symbol(), sig->vector_width());
adder->set_line(*sig);
des->add_node(adder);
adder->attribute(perm_string::literal("LPM_Direction"), verinum("SUB"));
connect(zero_net->pin(0), adder->pin_DataA());
connect(adder->pin_DataB(), sig->pin(0));
netvector_t*tmp_vec = new netvector_t(sig->data_type(),
sig->vector_width()-1, 0);
NetNet*tmp = new NetNet(scope, scope->local_symbol(),
NetNet::WIRE, tmp_vec);
tmp->set_line(*sig);
tmp->local_flag(true);
connect(adder->pin_Result(), tmp->pin(0));
return tmp;
}
NetNet* cast_to_int2(Design*des, NetScope*scope, NetNet*src, unsigned wid)
{
if (src->data_type() == IVL_VT_BOOL)
return src;
netvector_t*tmp_vec = new netvector_t(IVL_VT_BOOL, wid-1, 0,
src->get_signed());
NetNet*tmp = new NetNet(scope, scope->local_symbol(), NetNet::WIRE, tmp_vec);
tmp->set_line(*src);
tmp->local_flag(true);
NetCastInt2*cast = new NetCastInt2(scope, scope->local_symbol(), wid);
cast->set_line(*src);
des->add_node(cast);
connect(cast->pin(0), tmp->pin(0));
connect(cast->pin(1), src->pin(0));
return tmp;
}
NetNet* cast_to_int4(Design*des, NetScope*scope, NetNet*src, unsigned wid)
{
if (src->data_type() != IVL_VT_REAL)
return src;
netvector_t*tmp_vec = new netvector_t(IVL_VT_LOGIC, wid-1, 0);
NetNet*tmp = new NetNet(scope, scope->local_symbol(), NetNet::WIRE, tmp_vec);
tmp->set_line(*src);
tmp->local_flag(true);
NetCastInt4*cast = new NetCastInt4(scope, scope->local_symbol(), wid);
cast->set_line(*src);
des->add_node(cast);
connect(cast->pin(0), tmp->pin(0));
connect(cast->pin(1), src->pin(0));
return tmp;
}
NetNet* cast_to_real(Design*des, NetScope*scope, NetNet*src)
{
if (src->data_type() == IVL_VT_REAL)
return src;
netvector_t*tmp_vec = new netvector_t(IVL_VT_REAL);
NetNet*tmp = new NetNet(scope, scope->local_symbol(), NetNet::WIRE, tmp_vec);
tmp->set_line(*src);
tmp->local_flag(true);
NetCastReal*cast = new NetCastReal(scope, scope->local_symbol(), src->get_signed());
cast->set_line(*src);
des->add_node(cast);
connect(cast->pin(0), tmp->pin(0));
connect(cast->pin(1), src->pin(0));
return tmp;
}
NetExpr* cast_to_int2(NetExpr*expr, unsigned width)
{
// Special case: The expression is already BOOL
if (expr->expr_type() == IVL_VT_BOOL)
return expr;
if (debug_elaborate)
cerr << expr->get_fileline() << ": debug: "
<< "Cast expression to int2, width=" << width << "." << endl;
NetECast*cast = new NetECast('2', expr, width, expr->has_sign());
cast->set_line(*expr);
return cast;
}
NetExpr* cast_to_int4(NetExpr*expr, unsigned width)
{
// Special case: The expression is already LOGIC or BOOL
if (expr->expr_type() == IVL_VT_LOGIC || expr->expr_type() == IVL_VT_BOOL)
return expr;
if (debug_elaborate)
cerr << expr->get_fileline() << ": debug: "
<< "Cast expression to int4, width=" << width << "." << endl;
NetECast*cast = new NetECast('v', expr, width, expr->has_sign());
cast->set_line(*expr);
return cast;
}
NetExpr* cast_to_real(NetExpr*expr)
{
if (expr->expr_type() == IVL_VT_REAL)
return expr;
if (debug_elaborate)
cerr << expr->get_fileline() << ": debug: "
<< "Cast expression to real." << endl;
NetECast*cast = new NetECast('r', expr, 1, true);
cast->set_line(*expr);
return cast;
}
/*
* Add a signed constant to an existing expression. Generate a new
* NetEBAdd node that has the input expression and an expression made
* from the constant value.
*/
static NetExpr* make_add_expr(NetExpr*expr, long val)
{
if (val == 0)
return expr;
// If the value to be added is <0, then instead generate a
// SUBTRACT node and turn the value positive.
char add_op = '+';
if (val < 0) {
add_op = '-';
val = -val;
}
verinum val_v (val, expr->expr_width());
val_v.has_sign(expr->has_sign());
NetEConst*val_c = new NetEConst(val_v);
val_c->set_line(*expr);
NetEBAdd*res = new NetEBAdd(add_op, expr, val_c, expr->expr_width(),
expr->has_sign());
res->set_line(*expr);
return res;
}
static NetExpr* make_add_expr(const LineInfo*loc, NetExpr*expr1, NetExpr*expr2)
{
bool use_signed = expr1->has_sign() && expr2->has_sign();
unsigned use_wid = expr1->expr_width();
if (expr2->expr_width() > use_wid)
use_wid = expr2->expr_width();
expr1 = pad_to_width(expr1, use_wid, *loc);
expr2 = pad_to_width(expr2, use_wid, *loc);
NetEBAdd*tmp = new NetEBAdd('+', expr1, expr2, use_wid, use_signed);
return tmp;
}
/*
* Subtract an existing expression from a signed constant.
*/
static NetExpr* make_sub_expr(long val, NetExpr*expr)
{
verinum val_v (val, expr->expr_width());
val_v.has_sign(expr->has_sign());
NetEConst*val_c = new NetEConst(val_v);
val_c->set_line(*expr);
NetEBAdd*res = new NetEBAdd('-', val_c, expr, expr->expr_width(),
expr->has_sign());
res->set_line(*expr);
return res;
}
/*
* Subtract a signed constant from an existing expression.
*/
static NetExpr* make_sub_expr(NetExpr*expr, long val)
{
verinum val_v (val, expr->expr_width());
val_v.has_sign(expr->has_sign());
NetEConst*val_c = new NetEConst(val_v);
val_c->set_line(*expr);
NetEBAdd*res = new NetEBAdd('-', expr, val_c, expr->expr_width(),
expr->has_sign());
res->set_line(*expr);
return res;
}
/*
* Multiply an existing expression by a signed positive number.
* This does a lossless multiply, so the arguments will need to be
* sized to match the output size.
*/
static NetExpr* make_mult_expr(NetExpr*expr, unsigned long val)
{
const unsigned val_wid = ceil(log2((double)val)) ;
unsigned use_wid = expr->expr_width() + val_wid;
verinum val_v (val, use_wid);
val_v.has_sign(expr->has_sign());
NetEConst*val_c = new NetEConst(val_v);
val_c->set_line(*expr);
// We know by definitions that the expr argument needs to be
// padded to be the right argument width for this lossless multiply.
expr = pad_to_width(expr, use_wid, *expr);
NetEBMult*res = new NetEBMult('*', expr, val_c, use_wid, expr->has_sign());
res->set_line(*expr);
return res;
}
/*
* This routine is used to calculate the number of bits needed to
* contain the given number.
*/
static unsigned num_bits(long arg)
{
unsigned res = 0;
/* For a negative value we have room for one extra value, but
* we have a signed result so we need an extra bit for this. */
if (arg < 0) {
arg = -arg - 1;
res += 1;
}
/* Calculate the number of bits needed here. */
while (arg) {
res += 1;
arg >>= 1;
}
return res;
}
/*
* This routine generates the normalization expression needed for a variable
* bit select or a variable base expression for an indexed part
* select. This function doesn't actually look at the variable
* dimensions, it just does the final calculation using msb/lsb of the
* last slice, and the off of the slice in the variable.
*/
NetExpr *normalize_variable_base(NetExpr *base, long msb, long lsb,
unsigned long wid, bool is_up, long soff)
{
long offset = lsb;
if (msb < lsb) {
/* Correct the offset if needed. */
if (is_up) offset -= wid - 1;
/* Calculate the space needed for the offset. */
unsigned min_wid = num_bits(offset);
if (num_bits(soff) > min_wid)
min_wid = num_bits(soff);
/* We need enough space for the larger of the offset or the
* base expression. */
if (min_wid < base->expr_width()) min_wid = base->expr_width();
/* Now that we have the minimum needed width increase it by
* one to make room for the normalization calculation. */
min_wid += 2;
/* Pad the base expression to the correct width. */
base = pad_to_width(base, min_wid, *base);
/* If the base expression is unsigned and either the lsb
* is negative or it does not fill the width of the base
* expression then we could generate negative normalized
* values so cast the expression to signed to get the
* math correct. */
if ((lsb < 0 || num_bits(lsb+1) <= base->expr_width()) &&
! base->has_sign()) {
/* We need this extra select to hide the signed
* property from the padding above. It will be
* removed automatically during code generation. */
NetESelect *tmp = new NetESelect(base, 0 , min_wid);
tmp->set_line(*base);
tmp->cast_signed(true);
base = tmp;
}
/* Normalize the expression. */
base = make_sub_expr(offset+soff, base);
} else {
/* Correct the offset if needed. */
if (!is_up) offset += wid - 1;
/* If the offset is zero then just return the base (index)
* expression. */
if ((soff-offset) == 0) return base;
/* Calculate the space needed for the offset. */
unsigned min_wid = num_bits(-offset);
if (num_bits(soff) > min_wid)
min_wid = num_bits(soff);
/* We need enough space for the larger of the offset or the
* base expression. */
if (min_wid < base->expr_width()) min_wid = base->expr_width();
/* Now that we have the minimum needed width increase it by
* one to make room for the normalization calculation. */
min_wid += 2;
/* Pad the base expression to the correct width. */
base = pad_to_width(base, min_wid, *base);
/* If the offset is greater than zero then we need to do
* signed math to get the location value correct. */
if (offset > 0 && ! base->has_sign()) {
/* We need this extra select to hide the signed
* property from the padding above. It will be
* removed automatically during code generation. */
NetESelect *tmp = new NetESelect(base, 0 , min_wid);
tmp->set_line(*base);
tmp->cast_signed(true);
base = tmp;
}
/* Normalize the expression. */
base = make_add_expr(base, soff-offset);
}
return base;
}
/*
* This method is how indices should work except that the base should
* be a vector of expressions that matches the size of the dims list,
* so that we can generate an expression based on the entire packed
* vector. For now, we assert that there is only one set of dimensions.
*/
NetExpr *normalize_variable_base(NetExpr *base,
const list<netrange_t>&dims,
unsigned long wid, bool is_up)
{
ivl_assert(*base, dims.size() == 1);
const netrange_t&rng = dims.back();
return normalize_variable_base(base, rng.get_msb(), rng.get_lsb(), wid, is_up);
}
NetExpr *normalize_variable_bit_base(const list<long>&indices, NetExpr*base,
const NetNet*reg)
{
const vector<netrange_t>&packed_dims = reg->packed_dims();
ivl_assert(*base, indices.size()+1 == packed_dims.size());
// Get the canonical offset of the slice within which we are
// addressing. We need that address as a slice offset to
// calculate the proper complete address
const netrange_t&rng = packed_dims.back();
long slice_off = reg->sb_to_idx(indices, rng.get_lsb());
return normalize_variable_base(base, rng.get_msb(), rng.get_lsb(), 1, true, slice_off);
}
NetExpr *normalize_variable_part_base(const list<long>&indices, NetExpr*base,
const NetNet*reg,
unsigned long wid, bool is_up)
{
const vector<netrange_t>&packed_dims = reg->packed_dims();
ivl_assert(*base, indices.size()+1 == packed_dims.size());
// Get the canonical offset of the slice within which we are
// addressing. We need that address as a slice offset to
// calculate the proper complete address
const netrange_t&rng = packed_dims.back();
long slice_off = reg->sb_to_idx(indices, rng.get_lsb());
return normalize_variable_base(base, rng.get_msb(), rng.get_lsb(), wid, is_up, slice_off);
}
NetExpr *normalize_variable_slice_base(const list<long>&indices, NetExpr*base,
const NetNet*reg, unsigned long&lwid)
{
const vector<netrange_t>&packed_dims = reg->packed_dims();
ivl_assert(*base, indices.size() < packed_dims.size());
vector<netrange_t>::const_iterator pcur = packed_dims.end();
for (size_t idx = indices.size() ; idx < packed_dims.size(); idx += 1) {
-- pcur;
}
long sb = min(pcur->get_lsb(), pcur->get_msb());
long loff;
reg->sb_to_slice(indices, sb, loff, lwid);
unsigned min_wid = base->expr_width();
if ((sb < 0) && !base->has_sign()) min_wid += 1;
if (min_wid < num_bits(pcur->get_lsb())) min_wid = pcur->get_lsb();
if (min_wid < num_bits(pcur->get_msb())) min_wid = pcur->get_msb();
base = pad_to_width(base, min_wid, *base);
if ((sb < 0) && !base->has_sign()) {
NetESelect *tmp = new NetESelect(base, 0 , min_wid);
tmp->set_line(*base);
tmp->cast_signed(true);
base = tmp;
}
if (pcur->get_msb() >= pcur->get_lsb()) {
if (pcur->get_lsb() != 0)
base = make_sub_expr(base, pcur->get_lsb());
base = make_mult_expr(base, lwid);
min_wid = base->expr_width();
if (min_wid < num_bits(loff)) min_wid = num_bits(loff);
if (loff != 0) min_wid += 1;
base = pad_to_width(base, min_wid, *base);
base = make_add_expr(base, loff);
} else {
if (pcur->get_msb() != 0)
base = make_sub_expr(base, pcur->get_msb());
base = make_mult_expr(base, lwid);
min_wid = base->expr_width();
if (min_wid < num_bits(loff)) min_wid = num_bits(loff);
if (loff != 0) min_wid += 1;
base = pad_to_width(base, min_wid, *base);
base = make_sub_expr(loff, base);
}
return base;
}
ostream& operator << (ostream&o, __IndicesManip<long> val)
{
for (list<long>::const_iterator cur = val.val.begin()
; cur != val.val.end() ; ++cur) {
o << "[" << *cur << "]";
}
return o;
}
ostream& operator << (ostream&o, __IndicesManip<NetExpr*> val)
{
for (list<NetExpr*>::const_iterator cur = val.val.begin()
; cur != val.val.end() ; ++cur) {
o << "[" << *(*cur) << "]";
}
return o;
}
/*
* The src is the input index expression list from the expression, and
* the count is the number that are to be elaborated into the indices
* list. At the same time, create a indices_const list that contains
* the evaluated values for the expression, if they can be evaluated.
*/
void indices_to_expressions(Design*des, NetScope*scope,
// loc is for error messages.
const LineInfo*loc,
// src is the index list, and count is
// the number of items in the list to use.
const list<index_component_t>&src, unsigned count,
// True if the expression MUST be constant.
bool need_const,
// These are the outputs.
indices_flags&flags,
list<NetExpr*>&indices, list<long>&indices_const)
{
ivl_assert(*loc, count <= src.size());
flags.invalid = false;
flags.variable = false;
flags.undefined = false;
for (list<index_component_t>::const_iterator cur = src.begin()
; count > 0 ; ++cur, --count) {
ivl_assert(*loc, cur->sel != index_component_t::SEL_NONE);
if (cur->sel != index_component_t::SEL_BIT) {
cerr << loc->get_fileline() << ": error: "
<< "Array cannot be indexed by a range." << endl;
des->errors += 1;
}
ivl_assert(*loc, cur->msb);
NetExpr*word_index = elab_and_eval(des, scope, cur->msb, -1, need_const);
if (word_index == 0)
flags.invalid = true;
// Track if we detect any non-constant expressions
// here. This may allow for a special case.
NetEConst*word_const = dynamic_cast<NetEConst*> (word_index);
if (word_const == 0)
flags.variable = true;
else if (!word_const->value().is_defined())
flags.undefined = true;
else if (!flags.variable && !flags.undefined)
indices_const.push_back(word_const->value().as_long());
indices.push_back(word_index);
}
}
static void make_strides(const vector<netrange_t>&dims,
vector<long>&stride)
{
stride[dims.size()-1] = 1;
for (size_t idx = stride.size()-1 ; idx > 0 ; --idx) {
long tmp = dims[idx].width();
if (idx < stride.size())
tmp *= stride[idx];
stride[idx-1] = tmp;
}
}
/*
* Take in a vector of constant indices and convert them to a single
* number that is the canonical address (zero based, 1-d) of the
* word. If any of the indices are out of bounds, return nil instead
* of an expression.
*/
static NetExpr* normalize_variable_unpacked(const vector<netrange_t>&dims, list<long>&indices)
{
// Make strides for each index. The stride is the distance (in
// words) to the next element in the canonical array.
vector<long> stride (dims.size());
make_strides(dims, stride);
int64_t canonical_addr = 0;
int idx = 0;
for (list<long>::const_iterator cur = indices.begin()
; cur != indices.end() ; ++cur, ++idx) {
long tmp = *cur;
if (dims[idx].get_lsb() <= dims[idx].get_msb())
tmp -= dims[idx].get_lsb();
else
tmp -= dims[idx].get_msb();
// Notice of this index is out of range.
if (tmp < 0 || tmp >= (long)dims[idx].width()) {
return 0;
}
canonical_addr += tmp * stride[idx];
}
NetEConst*canonical_expr = new NetEConst(verinum(canonical_addr));
return canonical_expr;
}
NetExpr* normalize_variable_unpacked(const NetNet*net, list<long>&indices)
{
const vector<netrange_t>&dims = net->unpacked_dims();
return normalize_variable_unpacked(dims, indices);
}
NetExpr* normalize_variable_unpacked(const netsarray_t*stype, list<long>&indices)
{
const vector<netrange_t>&dims = stype->static_dimensions();
return normalize_variable_unpacked(dims, indices);
}
NetExpr* normalize_variable_unpacked(const LineInfo&loc, const vector<netrange_t>&dims, list<NetExpr*>&indices)
{
// Make strides for each index. The stride is the distance (in
// words) to the next element in the canonical array.
vector<long> stride (dims.size());
make_strides(dims, stride);
NetExpr*canonical_expr = 0;
int idx = 0;
for (list<NetExpr*>::const_iterator cur = indices.begin()
; cur != indices.end() ; ++cur, ++idx) {
NetExpr*tmp = *cur;
// If the expression elaboration generated errors, then
// give up. Presumably, the error during expression
// elaboration already generated the error message.
if (tmp == 0)
return 0;
int64_t use_base;
if (! dims[idx].defined())
use_base = 0;
else if (dims[idx].get_lsb() <= dims[idx].get_msb())
use_base = dims[idx].get_lsb();
else
use_base = dims[idx].get_msb();
int64_t use_stride = stride[idx];
// Account for that we are doing arithmetic and should
// have a proper width to make sure there are no
// losses. So calculate a min_wid width.
unsigned tmp_wid;
unsigned min_wid = tmp->expr_width();
if (use_base != 0 && ((tmp_wid = num_bits(use_base)) >= min_wid))
min_wid = tmp_wid + 1;
if ((tmp_wid = num_bits(dims[idx].width()+1)) >= min_wid)
min_wid = tmp_wid + 1;
if (use_stride != 1)
min_wid += num_bits(use_stride);
tmp = pad_to_width(tmp, min_wid, loc);
// Now generate the math to calculate the canonical address.
NetExpr*tmp_scaled = 0;
if (NetEConst*tmp_const = dynamic_cast<NetEConst*> (tmp)) {
// Special case: the index is constant, so this
// iteration can be replaced with a constant
// expression.
int64_t val = tmp_const->value().as_long();
val -= use_base;
val *= use_stride;
// Very special case: the index is zero, so we can
// skip this iteration
if (val == 0)
continue;
tmp_scaled = new NetEConst(verinum(val));
} else {
tmp_scaled = tmp;
if (use_base != 0)
tmp_scaled = make_add_expr(tmp_scaled, -use_base);
if (use_stride != 1)
tmp_scaled = make_mult_expr(tmp_scaled, use_stride);
}
if (canonical_expr == 0) {
canonical_expr = tmp_scaled;
} else {
bool expr_has_sign = canonical_expr->has_sign() &&
tmp_scaled->has_sign();
canonical_expr = new NetEBAdd('+', canonical_expr, tmp_scaled,
canonical_expr->expr_width()+1,
expr_has_sign);
}
}
// If we don't have an expression at this point, all the indices were
// constant zero. But this variant of normalize_variable_unpacked()
// is only used when at least one index is not a constant.
ivl_assert(loc, canonical_expr);
return canonical_expr;
}
NetExpr* normalize_variable_unpacked(const NetNet*net, list<NetExpr*>&indices)
{
const vector<netrange_t>&dims = net->unpacked_dims();
return normalize_variable_unpacked(*net, dims, indices);
}
NetExpr* normalize_variable_unpacked(const LineInfo&loc, const netsarray_t*stype, list<NetExpr*>&indices)
{
const vector<netrange_t>&dims = stype->static_dimensions();
return normalize_variable_unpacked(loc, dims, indices);
}
NetExpr* make_canonical_index(Design*des, NetScope*scope,
const LineInfo*loc,
const std::list<index_component_t>&src,
const netsarray_t*stype,
bool need_const)
{
NetExpr*canon_index = 0;
list<long> indices_const;
list<NetExpr*> indices_expr;
indices_flags flags;
indices_to_expressions(des, scope, loc,
src, src.size(),
need_const,
flags,
indices_expr, indices_const);
if (flags.undefined) {
cerr << loc->get_fileline() << ": warning: "
<< "ignoring undefined value array access." << endl;
} else if (flags.variable) {
canon_index = normalize_variable_unpacked(*loc, stype, indices_expr);
} else {
canon_index = normalize_variable_unpacked(stype, indices_const);
}
return canon_index;
}
NetEConst* make_const_x(unsigned long wid)
{
verinum xxx (verinum::Vx, wid);
NetEConst*resx = new NetEConst(xxx);
return resx;
}
NetEConst* make_const_0(unsigned long wid)
{
verinum xxx (verinum::V0, wid);
NetEConst*resx = new NetEConst(xxx);
return resx;
}
NetEConst* make_const_val(unsigned long value)
{
verinum tmp (value, integer_width);
NetEConst*res = new NetEConst(tmp);
return res;
}
NetEConst* make_const_val_s(long value)
{
verinum tmp (value, integer_width);
tmp.has_sign(true);
NetEConst*res = new NetEConst(tmp);
return res;
}
NetNet* make_const_x(Design*des, NetScope*scope, unsigned long wid)
{
verinum xxx (verinum::Vx, wid);
NetConst*res = new NetConst(scope, scope->local_symbol(), xxx);
des->add_node(res);
netvector_t*sig_vec = new netvector_t(IVL_VT_LOGIC, wid-1, 0);
NetNet*sig = new NetNet(scope, scope->local_symbol(), NetNet::WIRE, sig_vec);
sig->local_flag(true);
connect(sig->pin(0), res->pin(0));
return sig;
}
NetNet* make_const_z(Design*des, NetScope*scope, unsigned long wid)
{
verinum xxx (verinum::Vz, wid);
NetConst*res = new NetConst(scope, scope->local_symbol(), xxx);
des->add_node(res);
netvector_t*sig_vec = new netvector_t(IVL_VT_LOGIC, wid-1, 0);
NetNet*sig = new NetNet(scope, scope->local_symbol(), NetNet::WIRE, sig_vec);
sig->local_flag(true);
connect(sig->pin(0), res->pin(0));
return sig;
}
NetExpr* condition_reduce(NetExpr*expr)
{
if (expr->expr_type() == IVL_VT_REAL) {
if (NetECReal *tmp = dynamic_cast<NetECReal*>(expr)) {
verinum::V res;
if (tmp->value().as_double() == 0.0) res = verinum::V0;
else res = verinum::V1;
verinum vres (res, 1, true);
NetExpr *rtn = new NetEConst(vres);
rtn->set_line(*expr);
delete expr;
return rtn;
}
NetExpr *rtn = new NetEBComp('n', expr,
new NetECReal(verireal(0.0)));
rtn->set_line(*expr);
return rtn;
}
if (expr->expr_width() == 1)
return expr;
verinum zero (verinum::V0, expr->expr_width());
zero.has_sign(expr->has_sign());
NetEConst*ezero = new NetEConst(zero);
ezero->set_line(*expr);
NetEBComp*cmp = new NetEBComp('n', expr, ezero);
cmp->set_line(*expr);
cmp->cast_signed(false);
return cmp;
}
NetExpr* elab_and_eval(Design*des, NetScope*scope, PExpr*pe,
int context_width, bool need_const, bool annotatable,
ivl_variable_type_t cast_type, bool force_unsigned)
{
PExpr::width_mode_t mode = PExpr::SIZED;
if ((context_width == -2) && !gn_strict_expr_width_flag)
mode = PExpr::EXPAND;
pe->test_width(des, scope, mode);
if (pe->expr_type() == IVL_VT_CLASS) {
cerr << pe->get_fileline() << ": Error: "
<< "Class/null r-value not allowed in this context." << endl;
des->errors += 1;
return 0;
}
// Get the final expression width. If the expression is unsized,
// this may be different from the value returned by test_width().
unsigned expr_width = pe->expr_width();
// If context_width is positive, this is the RHS of an assignment,
// so the LHS width must also be included in the width calculation.
unsigned pos_context_width = context_width > 0 ? context_width : 0;
if ((pe->expr_type() != IVL_VT_REAL) && (expr_width < pos_context_width))
expr_width = pos_context_width;
// If this is the RHS of a compressed assignment, the LHS also
// affects the expression type (signed/unsigned).
if (force_unsigned)
pe->cast_signed(false);
if (debug_elaborate) {
cerr << pe->get_fileline() << ": elab_and_eval: test_width of "
<< *pe << endl;
cerr << pe->get_fileline() << ": : "
<< "returns type=" << pe->expr_type()
<< ", context_width=" << context_width
<< ", signed=" << pe->has_sign()
<< ", expr_width=" << expr_width
<< ", mode=" << PExpr::width_mode_name(mode) << endl;
cerr << pe->get_fileline() << ": : "
<< "cast_type=" << cast_type << endl;
}
// If we can get the same result using a smaller expression
// width, do so.
unsigned min_width = pe->min_width();
if ((min_width != UINT_MAX) && (pe->expr_type() != IVL_VT_REAL)
&& (pos_context_width > 0) && (expr_width > pos_context_width)) {
expr_width = max(min_width, pos_context_width);
if (debug_elaborate) {
cerr << pe->get_fileline() << ": : "
<< "pruned to width=" << expr_width << endl;
}
}
if ((mode >= PExpr::LOSSLESS) && (expr_width > width_cap)
&& (expr_width > pos_context_width)) {
cerr << pe->get_fileline() << ": warning: excessive unsized "
<< "expression width detected." << endl;
cerr << pe->get_fileline() << ": : The expression width "
<< "is capped at " << width_cap << " bits." << endl;
expr_width = width_cap;
}
unsigned flags = PExpr::NO_FLAGS;
if (need_const)
flags |= PExpr::NEED_CONST;
if (annotatable)
flags |= PExpr::ANNOTATABLE;
if (debug_elaborate) {
cerr << pe->get_fileline() << ": elab_and_eval: "
<< "Calculated width is " << expr_width << "." << endl;
}
NetExpr*tmp = pe->elaborate_expr(des, scope, expr_width, flags);
if (tmp == 0) return 0;
if ((cast_type != IVL_VT_NO_TYPE) && (cast_type != tmp->expr_type())) {
switch (tmp->expr_type()) {
case IVL_VT_BOOL:
case IVL_VT_LOGIC:
case IVL_VT_REAL:
break;
default:
cerr << tmp->get_fileline() << ": error: "
"The expression '" << *pe << "' cannot be implicitly "
"cast to the target type." << endl;
des->errors += 1;
delete tmp;
return 0;
}
switch (cast_type) {
case IVL_VT_REAL:
tmp = cast_to_real(tmp);
break;
case IVL_VT_BOOL:
tmp = cast_to_int2(tmp, pos_context_width);
break;
case IVL_VT_LOGIC:
tmp = cast_to_int4(tmp, pos_context_width);
break;
default:
break;
}
}
eval_expr(tmp, context_width);
if (NetEConst*ce = dynamic_cast<NetEConst*>(tmp)) {
if ((mode >= PExpr::LOSSLESS) && (context_width < 0))
ce->trim();
}
return tmp;
}
NetExpr* elab_and_eval(Design*des, NetScope*scope, PExpr*pe,
ivl_type_t lv_net_type, bool need_const)
{
if (debug_elaborate) {
cerr << pe->get_fileline() << ": " << __func__ << ": "
<< "pe=" << *pe
<< ", lv_net_type=" << *lv_net_type << endl;
}
// Elaborate the expression using the more general
// elaborate_expr method.
unsigned flags = PExpr::NO_FLAGS;
if (need_const)
flags |= PExpr::NEED_CONST;
NetExpr*tmp = pe->elaborate_expr(des, scope, lv_net_type, flags);
if (tmp == 0) return 0;
ivl_variable_type_t cast_type = ivl_type_base(lv_net_type);
ivl_variable_type_t expr_type = tmp->expr_type();
if ((cast_type != IVL_VT_NO_TYPE) && (cast_type != expr_type)) {
// Catch some special cases.
switch (cast_type) {
case IVL_VT_DARRAY:
case IVL_VT_QUEUE:
if ((expr_type == IVL_VT_DARRAY) || (expr_type == IVL_VT_QUEUE))
return tmp;
// This is needed to handle the special case of `'{}` which
// gets elaborated to NetENull.
if (dynamic_cast<PEAssignPattern*>(pe))
return tmp;
// fall through
case IVL_VT_STRING:
if (dynamic_cast<PEConcat*>(pe))
return tmp;
break;
case IVL_VT_CLASS:
if (dynamic_cast<PENull*>(pe))
return tmp;
break;
default:
break;
}
cerr << tmp->get_fileline() << ": error: "
"The expression '" << *pe << "' cannot be implicitly "
"cast to the target type." << endl;
des->errors += 1;
delete tmp;
return 0;
}
return tmp;
}
NetExpr* elab_sys_task_arg(Design*des, NetScope*scope, perm_string name,
unsigned arg_idx, PExpr*pe, bool need_const)
{
PExpr::width_mode_t mode = PExpr::SIZED;
pe->test_width(des, scope, mode);
if (debug_elaborate) {
cerr << pe->get_fileline() << ": " << __func__ << ": "
<< "test_width of " << name
<< " argument " << (arg_idx+1) << " " << *pe << endl;
cerr << pe->get_fileline() << ": "
<< "returns type=" << pe->expr_type()
<< ", width=" << pe->expr_width()
<< ", signed=" << pe->has_sign()
<< ", mode=" << PExpr::width_mode_name(mode) << endl;
}
unsigned flags = PExpr::SYS_TASK_ARG;
if (need_const)
flags |= PExpr::NEED_CONST;
NetExpr*tmp = pe->elaborate_expr(des, scope, pe->expr_width(), flags);
if (tmp == 0) return 0;
eval_expr(tmp, -1);
if (NetEConst*ce = dynamic_cast<NetEConst*>(tmp)) {
// For lossless/unsized constant expressions, we can now
// determine the exact width required to hold the result.
// But leave literal numbers exactly as the user supplied
// them.
if ((mode >= PExpr::LOSSLESS) && !dynamic_cast<PENumber*>(pe) && tmp->expr_width()>32)
ce->trim();
}
return tmp;
}
bool evaluate_range(Design*des, NetScope*scope, const LineInfo*li,
const pform_range_t&range, long&index_l, long&index_r)
{
bool dimension_ok = true;
// Unsized and queue dimensions should be handled before calling
// this function. If we find them here, we are in a context where
// they are not allowed.
if (range.first == 0) {
cerr << li->get_fileline() << ": error: "
"An unsized dimension is not allowed here." << endl;
dimension_ok = false;
des->errors += 1;
} else if (dynamic_cast<PENull*>(range.first)) {
cerr << li->get_fileline() << ": error: "
"A queue dimension is not allowed here." << endl;
dimension_ok = false;
des->errors += 1;
} else {
NetExpr*texpr = elab_and_eval(des, scope, range.first, -1, true);
if (! eval_as_long(index_l, texpr)) {
cerr << range.first->get_fileline() << ": error: "
"Dimensions must be constant." << endl;
cerr << range.first->get_fileline() << " : "
<< (range.second ? "This MSB" : "This size")
<< " expression violates the rule: "
<< *range.first << endl;
dimension_ok = false;
des->errors += 1;
}
delete texpr;
if (range.second == 0) {
// This is a SystemVerilog [size] dimension. The IEEE
// standard does not allow this in a packed dimension,
// but we do. At least one commercial simulator does too.
if (!dimension_ok) {
// bail out
} else if (index_l > 0) {
index_r = index_l - 1;
index_l = 0;
} else {
cerr << range.first->get_fileline() << ": error: "
"Dimension size must be greater than zero." << endl;
cerr << range.first->get_fileline() << " : "
"This size expression violates the rule: "
<< *range.first << endl;
dimension_ok = false;
des->errors += 1;
}
} else {
texpr = elab_and_eval(des, scope, range.second, -1, true);
if (! eval_as_long(index_r, texpr)) {
cerr << range.second->get_fileline() << ": error: "
"Dimensions must be constant." << endl;
cerr << range.second->get_fileline() << " : "
"This LSB expression violates the rule: "
<< *range.second << endl;
dimension_ok = false;
des->errors += 1;
}
delete texpr;
}
}
/* Error recovery */
if (!dimension_ok) {
index_l = 0;
index_r = 0;
}
return dimension_ok;
}
bool evaluate_ranges(Design*des, NetScope*scope, const LineInfo*li,
vector<netrange_t>&llist,
const list<pform_range_t>&rlist)
{
bool dimensions_ok = true;
for (list<pform_range_t>::const_iterator cur = rlist.begin()
; cur != rlist.end() ; ++cur) {
long index_l, index_r;
dimensions_ok &= evaluate_range(des, scope, li, *cur, index_l, index_r);
llist.push_back(netrange_t(index_l, index_r));
}
return dimensions_ok;
}
void eval_expr(NetExpr*&expr, int context_width)
{
assert(expr);
if (dynamic_cast<NetECReal*>(expr)) return;
NetExpr*tmp = expr->eval_tree();
if (tmp != 0) {
tmp->set_line(*expr);
delete expr;
expr = tmp;
}
if (context_width <= 0) return;
NetEConst *ce = dynamic_cast<NetEConst*>(expr);
if (ce == 0) return;
// The expression is a constant, so resize it if needed.
if (ce->expr_width() < (unsigned)context_width) {
expr = pad_to_width(expr, context_width, *expr);
} else if (ce->expr_width() > (unsigned)context_width) {
verinum value(ce->value(), context_width);
ce = new NetEConst(value);
ce->set_line(*expr);
delete expr;
expr = ce;
}
}
bool eval_as_long(long&value, const NetExpr*expr)
{
if (const NetEConst*tmp = dynamic_cast<const NetEConst*>(expr) ) {
value = tmp->value().as_long();
return true;
}
if (const NetECReal*rtmp = dynamic_cast<const NetECReal*>(expr)) {
value = rtmp->value().as_long();
return true;
}
return false;
}
bool eval_as_double(double&value, NetExpr*expr)
{
if (NetEConst*tmp = dynamic_cast<NetEConst*>(expr) ) {
value = tmp->value().as_double();
return true;
}
if (NetECReal*rtmp = dynamic_cast<NetECReal*>(expr)) {
value = rtmp->value().as_double();
return true;
}
return false;
}
/*
* At the parser level, a name component is a name with a collection
* of expressions. For example foo[N] is the name "foo" and the index
* expression "N". This function takes as input the name component and
* returns the path component name. It will evaluate the index
* expression if it is present.
*/
hname_t eval_path_component(Design*des, NetScope*scope,
const name_component_t&comp,
bool&error_flag)
{
// No index expression, so the path component is an undecorated
// name, for example "foo".
if (comp.index.empty())
return hname_t(comp.name);
vector<int> index_values;
for (list<index_component_t>::const_iterator cur = comp.index.begin()
; cur != comp.index.end() ; ++cur) {
const index_component_t&index = *cur;
if (index.sel != index_component_t::SEL_BIT) {
cerr << index.msb->get_fileline() << ": error: "
<< "Part select is not valid for this kind of object." << endl;
des->errors += 1;
return hname_t(comp.name, 0);
}
// The parser will assure that path components will have only
// bit select index expressions. For example, "foo[n]" is OK,
// but "foo[n:m]" is not.
assert(index.sel == index_component_t::SEL_BIT);
// Evaluate the bit select to get a number.
NetExpr*tmp = elab_and_eval(des, scope, index.msb, -1);
ivl_assert(*index.msb, tmp);
if (NetEConst*ctmp = dynamic_cast<NetEConst*>(tmp)) {
index_values.push_back(ctmp->value().as_long());
delete ctmp;
continue;
}
#if 1
// Darn, the expression doesn't evaluate to a constant. That's
// an error to be reported. And make up a fake index value to
// return to the caller.
cerr << index.msb->get_fileline() << ": error: "
<< "Scope index expression is not constant: "
<< *index.msb << endl;
des->errors += 1;
#endif
error_flag = true;
delete tmp;
}
return hname_t(comp.name, index_values);
}
std::list<hname_t> eval_scope_path(Design*des, NetScope*scope,
const pform_name_t&path)
{
bool path_error_flag = false;
list<hname_t> res;
typedef pform_name_t::const_iterator pform_path_it;
for (pform_path_it cur = path.begin() ; cur != path.end(); ++ cur ) {
const name_component_t&comp = *cur;
res.push_back( eval_path_component(des,scope,comp,path_error_flag) );
}
#if 0
if (path_error_flag) {
cerr << "XXXXX: Errors evaluating path " << path << endl;
}
#endif
return res;
}
/*
* Human readable version of op. Used in elaboration error messages.
*/
const char *human_readable_op(const char op, bool unary)
{
const char *type;
switch (op) {
case '~': type = "~"; break; // Negation
case '+': type = "+"; break;
case '-': type = "-"; break;
case '*': type = "*"; break;
case '/': type = "/"; break;
case '%': type = "%"; break;
case '<': type = "<"; break;
case '>': type = ">"; break;
case 'L': type = "<="; break;
case 'G': type = ">="; break;
case '^': type = "^"; break; // XOR
case 'X': type = "~^"; break; // XNOR
case '&': type = "&"; break; // Bitwise AND
case 'A': type = "~&"; break; // NAND (~&)
case '|': type = "|"; break; // Bitwise OR
case 'O': type = "~|"; break; // NOR
case '!': type = "!"; break; // Logical NOT
case 'a': type = "&&"; break; // Logical AND
case 'o': type = "||"; break; // Logical OR
case 'q': type = "->"; break; // Logical implication
case 'Q': type = "<->"; break; // Logical equivalence
case 'e': type = "=="; break;
case 'n': type = "!="; break;
case 'E': type = "==="; break; // Case equality
case 'N':
if (unary) type = "~|"; // NOR
else type = "!=="; // Case inequality
break;
case 'w': type = "==?"; break; // Wild equality
case 'W': type = "!=?"; break; // Wild inequality
case 'l': type = "<<(<)"; break; // Left shifts
case 'r': type = ">>"; break; // Logical right shift
case 'R': type = ">>>"; break; // Arithmetic right shift
case 'p': type = "**"; break; // Power
case 'i':
case 'I': type = "++"; break; /* increment */
case 'd':
case 'D': type = "--"; break; /* decrement */
default:
type = "???";
assert(0);
}
return type;
}
const_bool const_logical(const NetExpr*expr)
{
switch (expr->expr_type()) {
case IVL_VT_REAL: {
const NetECReal*val = dynamic_cast<const NetECReal*> (expr);
if (val == 0) return C_NON;
if (val->value().as_double() == 0.0) return C_0;
else return C_1;
}
case IVL_VT_BOOL:
case IVL_VT_LOGIC: {
const NetEConst*val = dynamic_cast<const NetEConst*> (expr);
if (val == 0) return C_NON;
verinum cval = val->value();
const_bool res = C_0;
for (unsigned idx = 0; idx < cval.len(); idx += 1) {
switch (cval.get(idx)) {
case verinum::V1:
return C_1;
break;
case verinum::V0:
break;
default:
if (res == C_0) res = C_X;
break;
}
}
return res;
}
default:
break;
}
return C_NON;
}
uint64_t get_scaled_time_from_real(Design*des, NetScope*scope, NetECReal*val)
{
verireal fn = val->value();
int shift = scope->time_unit() - scope->time_precision();
assert(shift >= 0);
int64_t delay = fn.as_long64(shift);
shift = scope->time_precision() - des->get_precision();
assert(shift >= 0);
for (int lp = 0; lp < shift; lp += 1) delay *= 10;
return delay;
}
/*
* This function looks at the NetNet signal to see if there are any
* NetPartSelect::PV nodes driving this signal. If so, See if they can
* be collapsed into a single concatenation.
*/
void collapse_partselect_pv_to_concat(Design*des, NetNet*sig)
{
NetScope*scope = sig->scope();
vector<NetPartSelect*> ps_map (sig->vector_width());
Nexus*nex = sig->pin(0).nexus();
for (Link*cur = nex->first_nlink(); cur ; cur = cur->next_nlink()) {
NetPins*obj;
unsigned obj_pin;
cur->cur_link(obj, obj_pin);
// Look for NetPartSelect devices, where this signal is
// connected to pin 1 of a NetPartSelect::PV.
NetPartSelect*ps_obj = dynamic_cast<NetPartSelect*> (obj);
if (ps_obj == 0)
continue;
if (ps_obj->dir() != NetPartSelect::PV)
continue;
if (obj_pin != 1)
continue;
// Don't support overrun selects here.
if (ps_obj->base()+ps_obj->width() > ps_map.size())
continue;
ivl_assert(*ps_obj, ps_obj->base() < ps_map.size());
ps_map[ps_obj->base()] = ps_obj;
}
// Check the collected NetPartSelect::PV objects to see if
// they cover the vector.
unsigned idx = 0;
unsigned device_count = 0;
while (idx < ps_map.size()) {
NetPartSelect*ps_obj = ps_map[idx];
if (ps_obj == 0)
return;
idx += ps_obj->width();
device_count += 1;
}
ivl_assert(*sig, idx == ps_map.size());
/* The vlog95 and possibly other code generators do not want
* to have a group of part selects turned into a transparent
* concatenation. */
if (disable_concatz_generation) {
// HERE: If the part selects have matching strengths then we can use
// a normal concat with a buf-Z after if the strengths are not
// both strong. We would ideally delete any buf-Z driving the
// concat, but that is not required for the vlog95 generator.
return;
}
// Ah HAH! The NetPartSelect::PV objects exactly cover the
// target signal. We can replace all of them with a single
// concatenation.
if (debug_elaborate) {
cerr << sig->get_fileline() << ": debug: "
<< "Collapse " << device_count
<< " NetPartSelect::PV devices into a concatenation." << endl;
}
NetConcat*cat = new NetConcat(scope, scope->local_symbol(),
ps_map.size(), device_count,
true);
des->add_node(cat);
cat->set_line(*sig);
connect(cat->pin(0), sig->pin(0));
idx = 0;
unsigned concat_position = 1;
while (idx < ps_map.size()) {
assert(ps_map[idx]);
NetPartSelect*ps_obj = ps_map[idx];
connect(cat->pin(concat_position), ps_obj->pin(0));
concat_position += 1;
idx += ps_obj->width();
delete ps_obj;
}
}
/*
* Evaluate the prefix indices. All but the final index in a
* chain of indices must be a single value and must evaluate
* to constants at compile time. For example:
* [x] - OK
* [1][2][x] - OK
* [1][x:y] - OK
* [2:0][x] - BAD
* [y][x] - BAD
* Leave the last index for special handling.
*/
bool evaluate_index_prefix(Design*des, NetScope*scope,
list<long>&prefix_indices,
const list<index_component_t>&indices)
{
list<index_component_t>::const_iterator icur = indices.begin();
for (size_t idx = 0 ; (idx+1) < indices.size() ; idx += 1, ++icur) {
assert(icur != indices.end());
if (icur->sel != index_component_t::SEL_BIT) {
cerr << icur->msb->get_fileline() << ": error: "
"All but the final index in a chain of indices must be "
"a single value, not a range." << endl;
des->errors += 1;
return false;
}
NetExpr*texpr = elab_and_eval(des, scope, icur->msb, -1, true);
long tmp;
if (texpr == 0 || !eval_as_long(tmp, texpr)) {
cerr << icur->msb->get_fileline() << ": error: "
"Array index expressions must be constant here." << endl;
des->errors += 1;
return false;
}
prefix_indices.push_back(tmp);
delete texpr;
}
return true;
}
/*
* Evaluate the indices. The chain of indices are applied to the
* packed indices of a NetNet to generate a canonical expression to
* replace the exprs.
*/
NetExpr*collapse_array_exprs(Design*des, NetScope*scope,
const LineInfo*loc, NetNet*net,
const list<index_component_t>&indices)
{
// First elaborate all the expressions as far as possible.
list<NetExpr*> exprs;
list<long> exprs_const;
indices_flags flags;
indices_to_expressions(des, scope, loc, indices,
net->packed_dimensions(),
false, flags, exprs, exprs_const);
ivl_assert(*loc, exprs.size() == net->packed_dimensions());
// Special Case: there is only 1 packed dimension, so the
// single expression should already be naturally canonical.
if (net->slice_width(1) == 1) {
return *exprs.begin();
}
const std::vector<netrange_t>&pdims = net->packed_dims();
std::vector<netrange_t>::const_iterator pcur = pdims.begin();
list<NetExpr*>::iterator ecur = exprs.begin();
NetExpr* base = 0;
for (size_t idx = 0 ; idx < net->packed_dimensions() ; idx += 1, ++pcur, ++ecur) {
unsigned cur_slice_width = net->slice_width(idx+1);
long lsb = pcur->get_lsb();
long msb = pcur->get_msb();
// This normalizes the expression of this index based on
// the msb/lsb values.
NetExpr*tmp = normalize_variable_base(*ecur, msb, lsb,
cur_slice_width, msb > lsb);
// If this slice has width, then scale it.
if (net->slice_width(idx+1) != 1) {
unsigned min_wid = tmp->expr_width();
if (num_bits(cur_slice_width) >= min_wid) {
min_wid = num_bits(cur_slice_width)+1;
tmp = pad_to_width(tmp, min_wid, *loc);
}
tmp = make_mult_expr(tmp, cur_slice_width);
}
// Now add it to the position we've accumulated so far.
if (base) {
base = make_add_expr(loc, base, tmp);
} else {
base = tmp;
}
}
return base;
}
/*
* Given a list of indices, treat them as packed indices and convert
* them to an expression that normalizes the list to a single index
* expression over a canonical equivalent 1-dimensional array.
*/
NetExpr*collapse_array_indices(Design*des, NetScope*scope, NetNet*net,
const list<index_component_t>&indices)
{
list<long>prefix_indices;
bool rc = evaluate_index_prefix(des, scope, prefix_indices, indices);
assert(rc);
const index_component_t&back_index = indices.back();
assert(back_index.sel == index_component_t::SEL_BIT);
assert(back_index.msb && !back_index.lsb);
NetExpr*base = elab_and_eval(des, scope, back_index.msb, -1, true);
NetExpr*res = normalize_variable_bit_base(prefix_indices, base, net);
eval_expr(res, -1);
return res;
}
void assign_unpacked_with_bufz(Design*des, NetScope*scope,
const LineInfo*loc,
NetNet*lval, NetNet*rval)
{
ivl_assert(*loc, lval->pin_count()==rval->pin_count());
for (unsigned idx = 0 ; idx < lval->pin_count() ; idx += 1) {
NetBUFZ*driver = new NetBUFZ(scope, scope->local_symbol(),
lval->vector_width(), false);
driver->set_line(*loc);
des->add_node(driver);
connect(lval->pin(idx), driver->pin(0));
connect(driver->pin(1), rval->pin(idx));
}
}
/*
* synthesis sometimes needs to unpack assignment to a part
* select. That looks like this:
*
* foo[N] <= <expr> ;
*
* The NetAssignBase::synth_async() method will turn that into a
* netlist like this:
*
* NetAssignBase(PV) --> base()==<N>
* (0) (1)
* | |
* v v
* <expr> foo
*
* This search will return a pointer to the NetAssignBase(PV) object,
* but only if it matches this pattern.
*/
NetPartSelect* detect_partselect_lval(Link&pin)
{
NetPartSelect*found_ps = 0;
Nexus*nex = pin.nexus();
for (Link*cur = nex->first_nlink() ; cur ; cur = cur->next_nlink()) {
NetPins*obj;
unsigned obj_pin;
cur->cur_link(obj, obj_pin);
// Skip NexusSet objects.
if (obj == 0)
continue;
// NetNet pins have no effect on this search.
if (dynamic_cast<NetNet*> (obj))
continue;
if (NetPartSelect*ps = dynamic_cast<NetPartSelect*> (obj)) {
// If this is the input side of a NetPartSelect, skip.
if (ps->pin(obj_pin).get_dir()==Link::INPUT)
continue;
// Oops, driven by the wrong size of a
// NetPartSelect, so this is not going to work out.
if (ps->dir()==NetPartSelect::VP)
return 0;
// So now we know this is a NetPartSelect::PV. It
// is a candidate for our part-select assign. If
// we already have a candidate, then give up.
if (found_ps)
return 0;
// This is our candidate. Carry on.
found_ps = ps;
continue;
}
// If this is a driver to the Nexus that is not a
// NetPartSelect device. This cannot happen to
// part selected lval nets, so quit now.
if (obj->pin(obj_pin).get_dir() == Link::OUTPUT)
return 0;
}
return found_ps;
}
const netclass_t* find_class_containing_scope(const LineInfo&loc, const NetScope*scope)
{
while (scope && scope->type() != NetScope::CLASS)
scope = scope->parent();
if (scope == 0)
return 0;
const netclass_t*found_in = scope->class_def();
ivl_assert(loc, found_in);
return found_in;
}
/*
* Find the scope that contains this scope, that is the method for a
* class scope. Look for the scope whose PARENT is the scope for a
* class. This is going to be a method.
*/
NetScope* find_method_containing_scope(const LineInfo&, NetScope*scope)
{
NetScope*up = scope->parent();
while (up && up->type() != NetScope::CLASS) {
scope = up;
up = up->parent();
}
if (up == 0) return 0;
// Should I check if this scope is a TASK or FUNC?
return scope;
}
/*
* Print a warning if we find a mixture of default and explicit timescale
* based delays in the design, since this is likely an error.
*/
void check_for_inconsistent_delays(NetScope*scope)
{
static bool used_implicit_timescale = false;
static bool used_explicit_timescale = false;
static bool display_ts_dly_warning = true;
if (scope->time_from_timescale())
used_explicit_timescale = true;
else
used_implicit_timescale = true;
if (display_ts_dly_warning &&
used_explicit_timescale &&
used_implicit_timescale) {
if (gn_system_verilog()) {
cerr << "warning: Found both default and explicit "
"timescale based delays. Use" << endl;
cerr << " : -Wtimescale to find the design "
"element(s) with no explicit" << endl;
cerr << " : timescale." << endl;
} else {
cerr << "warning: Found both default and "
"`timescale based delays. Use" << endl;
cerr << " : -Wtimescale to find the "
"module(s) with no `timescale." << endl;
}
display_ts_dly_warning = false;
}
}
/*
* Calculate the bit vector range for a parameter, from the type of the
* parameter. This is expecting that the type is a vector type. The parameter
* is presumably declared something like this:
*
* parameter [4:1] foo = <value>;
*
* In this case, the par_type is a netvector with a single dimension. The
* par_msv gets 4, and par_lsv get 1. The caller uses these values to
* interpret things like bit selects.
*/
bool calculate_param_range(const LineInfo&line, ivl_type_t par_type,
long&par_msv, long&par_lsv, long length)
{
const netvector_t*vector_type = dynamic_cast<const netvector_t*> (par_type);
if (vector_type == 0) {
// If the parameter doesn't have an explicit range, then
// just return range values of [length-1:0].
par_msv = length-1;
par_lsv = 0;
return true;
}
ivl_assert(line, vector_type->packed());
const std::vector<netrange_t>& packed_dims = vector_type->packed_dims();
// This is a netvector_t with 0 dimensions, then the parameter was
// declared with a statement like this:
//
// parameter signed foo = <value>;
//
// The netvector_t is just here to carry the signed-ness, which we don't
// even need here. So act like the type is defined by the r-value
// length.
if (packed_dims.size() == 0) {
par_msv = length-1;
par_lsv = 0;
return true;
}
ivl_assert(line, packed_dims.size() == 1);
netrange_t use_range = packed_dims[0];
par_msv = use_range.get_msb();
par_lsv = use_range.get_lsb();
return true;
}
|