File: netmisc.cc

package info (click to toggle)
iverilog 12.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 30,148 kB
  • sloc: cpp: 109,972; ansic: 62,713; yacc: 10,216; sh: 3,470; vhdl: 3,246; perl: 1,814; makefile: 1,774; python: 78; csh: 2
file content (1828 lines) | stat: -rw-r--r-- 58,081 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
/*
 * Copyright (c) 2001-2021 Stephen Williams (steve@icarus.com)
 *
 *    This source code is free software; you can redistribute it
 *    and/or modify it in source code form under the terms of the GNU
 *    General Public License as published by the Free Software
 *    Foundation; either version 2 of the License, or (at your option)
 *    any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

# include "config.h"

# include  <cstdlib>
# include  <climits>
# include  "netlist.h"
# include  "netparray.h"
# include  "netvector.h"
# include  "netmisc.h"
# include  "PExpr.h"
# include  "pform_types.h"
# include  "compiler.h"
# include  "ivl_assert.h"

using namespace std;

NetNet* sub_net_from(Design*des, NetScope*scope, long val, NetNet*sig)
{
      netvector_t*zero_vec = new netvector_t(sig->data_type(),
					     sig->vector_width()-1, 0);
      NetNet*zero_net = new NetNet(scope, scope->local_symbol(),
				   NetNet::WIRE, zero_vec);
      zero_net->set_line(*sig);
      zero_net->local_flag(true);

      if (sig->data_type() == IVL_VT_REAL) {
	    verireal zero (val);
	    NetLiteral*zero_obj = new NetLiteral(scope, scope->local_symbol(), zero);
	    zero_obj->set_line(*sig);
	    des->add_node(zero_obj);

	    connect(zero_net->pin(0), zero_obj->pin(0));

      } else {
	    verinum zero ((int64_t)val);
	    zero = cast_to_width(zero, sig->vector_width());
	    zero.has_sign(sig->get_signed());
	    NetConst*zero_obj = new NetConst(scope, scope->local_symbol(), zero);
	    zero_obj->set_line(*sig);
	    des->add_node(zero_obj);

	    connect(zero_net->pin(0), zero_obj->pin(0));
      }

      NetAddSub*adder = new NetAddSub(scope, scope->local_symbol(), sig->vector_width());
      adder->set_line(*sig);
      des->add_node(adder);
      adder->attribute(perm_string::literal("LPM_Direction"), verinum("SUB"));

      connect(zero_net->pin(0), adder->pin_DataA());
      connect(adder->pin_DataB(), sig->pin(0));

      netvector_t*tmp_vec = new netvector_t(sig->data_type(),
					    sig->vector_width()-1, 0);
      NetNet*tmp = new NetNet(scope, scope->local_symbol(),
			      NetNet::WIRE, tmp_vec);
      tmp->set_line(*sig);
      tmp->local_flag(true);

      connect(adder->pin_Result(), tmp->pin(0));

      return tmp;
}

NetNet* cast_to_int2(Design*des, NetScope*scope, NetNet*src, unsigned wid)
{
      if (src->data_type() == IVL_VT_BOOL)
	    return src;

      netvector_t*tmp_vec = new netvector_t(IVL_VT_BOOL, wid-1, 0,
					    src->get_signed());
      NetNet*tmp = new NetNet(scope, scope->local_symbol(), NetNet::WIRE, tmp_vec);
      tmp->set_line(*src);
      tmp->local_flag(true);

      NetCastInt2*cast = new NetCastInt2(scope, scope->local_symbol(), wid);
      cast->set_line(*src);
      des->add_node(cast);

      connect(cast->pin(0), tmp->pin(0));
      connect(cast->pin(1), src->pin(0));

      return tmp;
}

NetNet* cast_to_int4(Design*des, NetScope*scope, NetNet*src, unsigned wid)
{
      if (src->data_type() != IVL_VT_REAL)
	    return src;

      netvector_t*tmp_vec = new netvector_t(IVL_VT_LOGIC, wid-1, 0);
      NetNet*tmp = new NetNet(scope, scope->local_symbol(), NetNet::WIRE, tmp_vec);
      tmp->set_line(*src);
      tmp->local_flag(true);

      NetCastInt4*cast = new NetCastInt4(scope, scope->local_symbol(), wid);
      cast->set_line(*src);
      des->add_node(cast);

      connect(cast->pin(0), tmp->pin(0));
      connect(cast->pin(1), src->pin(0));

      return tmp;
}

NetNet* cast_to_real(Design*des, NetScope*scope, NetNet*src)
{
      if (src->data_type() == IVL_VT_REAL)
	    return src;

      netvector_t*tmp_vec = new netvector_t(IVL_VT_REAL);
      NetNet*tmp = new NetNet(scope, scope->local_symbol(), NetNet::WIRE, tmp_vec);
      tmp->set_line(*src);
      tmp->local_flag(true);

      NetCastReal*cast = new NetCastReal(scope, scope->local_symbol(), src->get_signed());
      cast->set_line(*src);
      des->add_node(cast);

      connect(cast->pin(0), tmp->pin(0));
      connect(cast->pin(1), src->pin(0));

      return tmp;
}

NetExpr* cast_to_int2(NetExpr*expr, unsigned width)
{
	// Special case: The expression is already BOOL
      if (expr->expr_type() == IVL_VT_BOOL)
	    return expr;

      if (debug_elaborate)
	    cerr << expr->get_fileline() << ": debug: "
		 << "Cast expression to int2, width=" << width << "." << endl;

      NetECast*cast = new NetECast('2', expr, width, expr->has_sign());
      cast->set_line(*expr);
      return cast;
}

NetExpr* cast_to_int4(NetExpr*expr, unsigned width)
{
	// Special case: The expression is already LOGIC or BOOL
      if (expr->expr_type() == IVL_VT_LOGIC || expr->expr_type() == IVL_VT_BOOL)
	    return expr;

      if (debug_elaborate)
	    cerr << expr->get_fileline() << ": debug: "
		 << "Cast expression to int4, width=" << width << "." << endl;

      NetECast*cast = new NetECast('v', expr, width, expr->has_sign());
      cast->set_line(*expr);
      return cast;
}

NetExpr* cast_to_real(NetExpr*expr)
{
      if (expr->expr_type() == IVL_VT_REAL)
	    return expr;

      if (debug_elaborate)
	    cerr << expr->get_fileline() << ": debug: "
		 << "Cast expression to real." << endl;

      NetECast*cast = new NetECast('r', expr, 1, true);
      cast->set_line(*expr);
      return cast;
}

/*
 * Add a signed constant to an existing expression. Generate a new
 * NetEBAdd node that has the input expression and an expression made
 * from the constant value.
 */
static NetExpr* make_add_expr(NetExpr*expr, long val)
{
      if (val == 0)
	    return expr;

	// If the value to be added is <0, then instead generate a
	// SUBTRACT node and turn the value positive.
      char add_op = '+';
      if (val < 0) {
	    add_op = '-';
	    val = -val;
      }

      verinum val_v (val, expr->expr_width());
      val_v.has_sign(expr->has_sign());

      NetEConst*val_c = new NetEConst(val_v);
      val_c->set_line(*expr);

      NetEBAdd*res = new NetEBAdd(add_op, expr, val_c, expr->expr_width(),
                                  expr->has_sign());
      res->set_line(*expr);

      return res;
}

static NetExpr* make_add_expr(const LineInfo*loc, NetExpr*expr1, NetExpr*expr2)
{
      bool use_signed = expr1->has_sign() && expr2->has_sign();
      unsigned use_wid = expr1->expr_width();

      if (expr2->expr_width() > use_wid)
	    use_wid = expr2->expr_width();

      expr1 = pad_to_width(expr1, use_wid, *loc);
      expr2 = pad_to_width(expr2, use_wid, *loc);

      NetEBAdd*tmp = new NetEBAdd('+', expr1, expr2, use_wid, use_signed);
      return tmp;
}

/*
 * Subtract an existing expression from a signed constant.
 */
static NetExpr* make_sub_expr(long val, NetExpr*expr)
{
      verinum val_v (val, expr->expr_width());
      val_v.has_sign(expr->has_sign());

      NetEConst*val_c = new NetEConst(val_v);
      val_c->set_line(*expr);

      NetEBAdd*res = new NetEBAdd('-', val_c, expr, expr->expr_width(),
                                  expr->has_sign());
      res->set_line(*expr);

      return res;
}

/*
 * Subtract a signed constant from an existing expression.
 */
static NetExpr* make_sub_expr(NetExpr*expr, long val)
{
      verinum val_v (val, expr->expr_width());
      val_v.has_sign(expr->has_sign());

      NetEConst*val_c = new NetEConst(val_v);
      val_c->set_line(*expr);

      NetEBAdd*res = new NetEBAdd('-', expr, val_c, expr->expr_width(),
                                  expr->has_sign());
      res->set_line(*expr);

      return res;
}


/*
 * Multiply an existing expression by a signed positive number.
 * This does a lossless multiply, so the arguments will need to be
 * sized to match the output size.
 */
static NetExpr* make_mult_expr(NetExpr*expr, unsigned long val)
{
      const unsigned val_wid = ceil(log2((double)val)) ;
      unsigned use_wid = expr->expr_width() + val_wid;
      verinum val_v (val, use_wid);
      val_v.has_sign(expr->has_sign());

      NetEConst*val_c = new NetEConst(val_v);
      val_c->set_line(*expr);

	// We know by definitions that the expr argument needs to be
	// padded to be the right argument width for this lossless multiply.
      expr = pad_to_width(expr, use_wid, *expr);

      NetEBMult*res = new NetEBMult('*', expr, val_c, use_wid, expr->has_sign());
      res->set_line(*expr);

      return res;
}

/*
 * This routine is used to calculate the number of bits needed to
 * contain the given number.
 */
static unsigned num_bits(long arg)
{
      unsigned res = 0;

	/* For a negative value we have room for one extra value, but
	 * we have a signed result so we need an extra bit for this. */
      if (arg < 0) {
	    arg = -arg - 1;
	    res += 1;
      }

	/* Calculate the number of bits needed here. */
      while (arg) {
	    res += 1;
	    arg >>= 1;
      }

      return res;
}

/*
 * This routine generates the normalization expression needed for a variable
 * bit select or a variable base expression for an indexed part
 * select. This function doesn't actually look at the variable
 * dimensions, it just does the final calculation using msb/lsb of the
 * last slice, and the off of the slice in the variable.
 */
NetExpr *normalize_variable_base(NetExpr *base, long msb, long lsb,
				 unsigned long wid, bool is_up, long soff)
{
      long offset = lsb;

      if (msb < lsb) {
	      /* Correct the offset if needed. */
	    if (is_up) offset -= wid - 1;
	      /* Calculate the space needed for the offset. */
	    unsigned min_wid = num_bits(offset);
	    if (num_bits(soff) > min_wid)
		  min_wid = num_bits(soff);
	      /* We need enough space for the larger of the offset or the
	       * base expression. */
	    if (min_wid < base->expr_width()) min_wid = base->expr_width();
	      /* Now that we have the minimum needed width increase it by
	       * one to make room for the normalization calculation. */
	    min_wid += 2;
	      /* Pad the base expression to the correct width. */
	    base = pad_to_width(base, min_wid, *base);
	      /* If the base expression is unsigned and either the lsb
	       * is negative or it does not fill the width of the base
	       * expression then we could generate negative normalized
	       * values so cast the expression to signed to get the
	       * math correct. */
	    if ((lsb < 0 || num_bits(lsb+1) <= base->expr_width()) &&
	        ! base->has_sign()) {
		    /* We need this extra select to hide the signed
		     * property from the padding above. It will be
		     * removed automatically during code generation. */
		  NetESelect *tmp = new NetESelect(base, 0 , min_wid);
		  tmp->set_line(*base);
		  tmp->cast_signed(true);
                  base = tmp;
	    }
	      /* Normalize the expression. */
	    base = make_sub_expr(offset+soff, base);
      } else {
	      /* Correct the offset if needed. */
	    if (!is_up) offset += wid - 1;
	      /* If the offset is zero then just return the base (index)
	       * expression. */
	    if ((soff-offset) == 0) return base;
	      /* Calculate the space needed for the offset. */
	    unsigned min_wid = num_bits(-offset);
	    if (num_bits(soff) > min_wid)
		  min_wid = num_bits(soff);
	      /* We need enough space for the larger of the offset or the
	       * base expression. */
	    if (min_wid < base->expr_width()) min_wid = base->expr_width();
	      /* Now that we have the minimum needed width increase it by
	       * one to make room for the normalization calculation. */
	    min_wid += 2;
	      /* Pad the base expression to the correct width. */
	    base = pad_to_width(base, min_wid, *base);
	      /* If the offset is greater than zero then we need to do
	       * signed math to get the location value correct. */
	    if (offset > 0 && ! base->has_sign()) {
		    /* We need this extra select to hide the signed
		     * property from the padding above. It will be
		     * removed automatically during code generation. */
		  NetESelect *tmp = new NetESelect(base, 0 , min_wid);
		  tmp->set_line(*base);
		  tmp->cast_signed(true);
                  base = tmp;
	    }
	      /* Normalize the expression. */
	    base = make_add_expr(base, soff-offset);
      }

      return base;
}

/*
 * This method is how indices should work except that the base should
 * be a vector of expressions that matches the size of the dims list,
 * so that we can generate an expression based on the entire packed
 * vector. For now, we assert that there is only one set of dimensions.
 */
NetExpr *normalize_variable_base(NetExpr *base,
				 const list<netrange_t>&dims,
				 unsigned long wid, bool is_up)
{
      ivl_assert(*base, dims.size() == 1);
      const netrange_t&rng = dims.back();
      return normalize_variable_base(base, rng.get_msb(), rng.get_lsb(), wid, is_up);
}

NetExpr *normalize_variable_bit_base(const list<long>&indices, NetExpr*base,
				     const NetNet*reg)
{
      const vector<netrange_t>&packed_dims = reg->packed_dims();
      ivl_assert(*base, indices.size()+1 == packed_dims.size());

	// Get the canonical offset of the slice within which we are
	// addressing. We need that address as a slice offset to
	// calculate the proper complete address
      const netrange_t&rng = packed_dims.back();
      long slice_off = reg->sb_to_idx(indices, rng.get_lsb());

      return normalize_variable_base(base, rng.get_msb(), rng.get_lsb(), 1, true, slice_off);
}

NetExpr *normalize_variable_part_base(const list<long>&indices, NetExpr*base,
				      const NetNet*reg,
				      unsigned long wid, bool is_up)
{
      const vector<netrange_t>&packed_dims = reg->packed_dims();
      ivl_assert(*base, indices.size()+1 == packed_dims.size());

	// Get the canonical offset of the slice within which we are
	// addressing. We need that address as a slice offset to
	// calculate the proper complete address
      const netrange_t&rng = packed_dims.back();
      long slice_off = reg->sb_to_idx(indices, rng.get_lsb());

      return normalize_variable_base(base, rng.get_msb(), rng.get_lsb(), wid, is_up, slice_off);
}

NetExpr *normalize_variable_slice_base(const list<long>&indices, NetExpr*base,
				       const NetNet*reg, unsigned long&lwid)
{
      const vector<netrange_t>&packed_dims = reg->packed_dims();
      ivl_assert(*base, indices.size() < packed_dims.size());

      vector<netrange_t>::const_iterator pcur = packed_dims.end();
      for (size_t idx = indices.size() ; idx < packed_dims.size(); idx += 1) {
	    -- pcur;
      }

      long sb = min(pcur->get_lsb(), pcur->get_msb());
      long loff;
      reg->sb_to_slice(indices, sb, loff, lwid);

      unsigned min_wid = base->expr_width();
      if ((sb < 0) && !base->has_sign()) min_wid += 1;
      if (min_wid < num_bits(pcur->get_lsb())) min_wid = pcur->get_lsb();
      if (min_wid < num_bits(pcur->get_msb())) min_wid = pcur->get_msb();
      base = pad_to_width(base, min_wid, *base);
      if ((sb < 0) && !base->has_sign()) {
	    NetESelect *tmp = new NetESelect(base, 0 , min_wid);
	    tmp->set_line(*base);
	    tmp->cast_signed(true);
            base = tmp;
      }

      if (pcur->get_msb() >= pcur->get_lsb()) {
	    if (pcur->get_lsb() != 0)
		  base = make_sub_expr(base, pcur->get_lsb());
	    base = make_mult_expr(base, lwid);
	    min_wid = base->expr_width();
	    if (min_wid < num_bits(loff)) min_wid = num_bits(loff);
	    if (loff != 0) min_wid += 1;
	    base = pad_to_width(base, min_wid, *base);
	    base = make_add_expr(base, loff);
      } else {
	    if (pcur->get_msb() != 0)
		  base = make_sub_expr(base, pcur->get_msb());
	    base = make_mult_expr(base, lwid);
	    min_wid = base->expr_width();
	    if (min_wid < num_bits(loff)) min_wid = num_bits(loff);
	    if (loff != 0) min_wid += 1;
	    base = pad_to_width(base, min_wid, *base);
	    base = make_sub_expr(loff, base);
      }
      return base;
}

ostream& operator << (ostream&o, __IndicesManip<long> val)
{
      for (list<long>::const_iterator cur = val.val.begin()
		 ; cur != val.val.end() ; ++cur) {
	    o << "[" << *cur << "]";
      }
      return o;
}

ostream& operator << (ostream&o, __IndicesManip<NetExpr*> val)
{
      for (list<NetExpr*>::const_iterator cur = val.val.begin()
		 ; cur != val.val.end() ; ++cur) {
	    o << "[" << *(*cur) << "]";
      }
      return o;
}

/*
 * The src is the input index expression list from the expression, and
 * the count is the number that are to be elaborated into the indices
 * list. At the same time, create a indices_const list that contains
 * the evaluated values for the expression, if they can be evaluated.
 */
void indices_to_expressions(Design*des, NetScope*scope,
			      // loc is for error messages.
			    const LineInfo*loc,
			      // src is the index list, and count is
			      // the number of items in the list to use.
			    const list<index_component_t>&src, unsigned count,
			      // True if the expression MUST be constant.
			    bool need_const,
			      // These are the outputs.
			    indices_flags&flags,
			    list<NetExpr*>&indices, list<long>&indices_const)
{
      ivl_assert(*loc, count <= src.size());

      flags.invalid   = false;
      flags.variable  = false;
      flags.undefined = false;
      for (list<index_component_t>::const_iterator cur = src.begin()
		 ; count > 0 ;  ++cur, --count) {
	    ivl_assert(*loc, cur->sel != index_component_t::SEL_NONE);

	    if (cur->sel != index_component_t::SEL_BIT) {
		  cerr << loc->get_fileline() << ": error: "
		       << "Array cannot be indexed by a range." << endl;
		  des->errors += 1;
	    }
	    ivl_assert(*loc, cur->msb);

	    NetExpr*word_index = elab_and_eval(des, scope, cur->msb, -1, need_const);

	    if (word_index == 0)
		  flags.invalid = true;

	      // Track if we detect any non-constant expressions
	      // here. This may allow for a special case.
	    NetEConst*word_const = dynamic_cast<NetEConst*> (word_index);
	    if (word_const == 0)
		  flags.variable = true;
	    else if (!word_const->value().is_defined())
		  flags.undefined = true;
	    else if (!flags.variable && !flags.undefined)
		  indices_const.push_back(word_const->value().as_long());

	    indices.push_back(word_index);
      }
}

static void make_strides(const vector<netrange_t>&dims,
			 vector<long>&stride)
{
      stride[dims.size()-1] = 1;
      for (size_t idx = stride.size()-1 ; idx > 0 ; --idx) {
	    long tmp = dims[idx].width();
	    if (idx < stride.size())
		  tmp *= stride[idx];
	    stride[idx-1] = tmp;
      }
}

/*
 * Take in a vector of constant indices and convert them to a single
 * number that is the canonical address (zero based, 1-d) of the
 * word. If any of the indices are out of bounds, return nil instead
 * of an expression.
 */
static NetExpr* normalize_variable_unpacked(const vector<netrange_t>&dims, list<long>&indices)
{
	// Make strides for each index. The stride is the distance (in
	// words) to the next element in the canonical array.
      vector<long> stride (dims.size());
      make_strides(dims, stride);

      int64_t canonical_addr = 0;

      int idx = 0;
      for (list<long>::const_iterator cur = indices.begin()
		 ; cur != indices.end() ; ++cur, ++idx) {
	    long tmp = *cur;

	    if (dims[idx].get_lsb() <= dims[idx].get_msb())
		  tmp -= dims[idx].get_lsb();
	    else
		  tmp -= dims[idx].get_msb();

	      // Notice of this index is out of range.
	    if (tmp < 0 || tmp >= (long)dims[idx].width()) {
		  return 0;
	    }

	    canonical_addr += tmp * stride[idx];
      }

      NetEConst*canonical_expr = new NetEConst(verinum(canonical_addr));
      return canonical_expr;
}

NetExpr* normalize_variable_unpacked(const NetNet*net, list<long>&indices)
{
      const vector<netrange_t>&dims = net->unpacked_dims();
      return normalize_variable_unpacked(dims, indices);
}

NetExpr* normalize_variable_unpacked(const netsarray_t*stype, list<long>&indices)
{
      const vector<netrange_t>&dims = stype->static_dimensions();
      return normalize_variable_unpacked(dims, indices);
}

NetExpr* normalize_variable_unpacked(const LineInfo&loc, const vector<netrange_t>&dims, list<NetExpr*>&indices)
{
	// Make strides for each index. The stride is the distance (in
	// words) to the next element in the canonical array.
      vector<long> stride (dims.size());
      make_strides(dims, stride);

      NetExpr*canonical_expr = 0;

      int idx = 0;
      for (list<NetExpr*>::const_iterator cur = indices.begin()
		 ; cur != indices.end() ; ++cur, ++idx) {
	    NetExpr*tmp = *cur;
	      // If the expression elaboration generated errors, then
	      // give up. Presumably, the error during expression
	      // elaboration already generated the error message.
	    if (tmp == 0)
		  return 0;

	    int64_t use_base;
	    if (! dims[idx].defined())
		  use_base = 0;
	    else if (dims[idx].get_lsb() <= dims[idx].get_msb())
		  use_base = dims[idx].get_lsb();
	    else
		  use_base = dims[idx].get_msb();

	    int64_t use_stride = stride[idx];

	      // Account for that we are doing arithmetic and should
	      // have a proper width to make sure there are no
	      // losses. So calculate a min_wid width.
	    unsigned tmp_wid;
	    unsigned min_wid = tmp->expr_width();
	    if (use_base != 0 && ((tmp_wid = num_bits(use_base)) >= min_wid))
		  min_wid = tmp_wid + 1;
	    if ((tmp_wid = num_bits(dims[idx].width()+1)) >= min_wid)
		  min_wid = tmp_wid + 1;
	    if (use_stride != 1)
		  min_wid += num_bits(use_stride);

	    tmp = pad_to_width(tmp, min_wid, loc);

	      // Now generate the math to calculate the canonical address.
	    NetExpr*tmp_scaled = 0;
	    if (NetEConst*tmp_const = dynamic_cast<NetEConst*> (tmp)) {
		    // Special case: the index is constant, so this
		    // iteration can be replaced with a constant
		    // expression.
		  int64_t val = tmp_const->value().as_long();
		  val -= use_base;
		  val *= use_stride;
		    // Very special case: the index is zero, so we can
		    // skip this iteration
		  if (val == 0)
			continue;
		  tmp_scaled = new NetEConst(verinum(val));

	    } else {
		  tmp_scaled = tmp;
		  if (use_base != 0)
			tmp_scaled = make_add_expr(tmp_scaled, -use_base);
		  if (use_stride != 1)
			tmp_scaled = make_mult_expr(tmp_scaled, use_stride);
	    }

	    if (canonical_expr == 0) {
		  canonical_expr = tmp_scaled;
	    } else {
		  bool expr_has_sign = canonical_expr->has_sign() &&
		                        tmp_scaled->has_sign();
		  canonical_expr = new NetEBAdd('+', canonical_expr, tmp_scaled,
						canonical_expr->expr_width()+1,
		                                expr_has_sign);
	    }
      }

	// If we don't have an expression at this point, all the indices were
	// constant zero. But this variant of normalize_variable_unpacked()
	// is only used when at least one index is not a constant.
	ivl_assert(loc, canonical_expr);

      return canonical_expr;
}

NetExpr* normalize_variable_unpacked(const NetNet*net, list<NetExpr*>&indices)
{
      const vector<netrange_t>&dims = net->unpacked_dims();
      return normalize_variable_unpacked(*net, dims, indices);
}

NetExpr* normalize_variable_unpacked(const LineInfo&loc, const netsarray_t*stype, list<NetExpr*>&indices)
{
      const vector<netrange_t>&dims = stype->static_dimensions();
      return normalize_variable_unpacked(loc, dims, indices);
}

NetExpr* make_canonical_index(Design*des, NetScope*scope,
			      const LineInfo*loc,
			      const std::list<index_component_t>&src,
			      const netsarray_t*stype,
			      bool need_const)
{
      NetExpr*canon_index = 0;

      list<long> indices_const;
      list<NetExpr*> indices_expr;
      indices_flags flags;
      indices_to_expressions(des, scope, loc,
			     src, src.size(),
			     need_const,
			     flags,
			     indices_expr, indices_const);

      if (flags.undefined) {
	    cerr << loc->get_fileline() << ": warning: "
		 << "ignoring undefined value array access." << endl;

      } else if (flags.variable) {
	    canon_index = normalize_variable_unpacked(*loc, stype, indices_expr);

      } else {
	    canon_index = normalize_variable_unpacked(stype, indices_const);
      }

      return canon_index;
}

NetEConst* make_const_x(unsigned long wid)
{
      verinum xxx (verinum::Vx, wid);
      NetEConst*resx = new NetEConst(xxx);
      return resx;
}

NetEConst* make_const_0(unsigned long wid)
{
      verinum xxx (verinum::V0, wid);
      NetEConst*resx = new NetEConst(xxx);
      return resx;
}

NetEConst* make_const_val(unsigned long value)
{
      verinum tmp (value, integer_width);
      NetEConst*res = new NetEConst(tmp);
      return res;
}

NetEConst* make_const_val_s(long value)
{
      verinum tmp (value, integer_width);
      tmp.has_sign(true);
      NetEConst*res = new NetEConst(tmp);
      return res;
}

NetNet* make_const_x(Design*des, NetScope*scope, unsigned long wid)
{
      verinum xxx (verinum::Vx, wid);
      NetConst*res = new NetConst(scope, scope->local_symbol(), xxx);
      des->add_node(res);

      netvector_t*sig_vec = new netvector_t(IVL_VT_LOGIC, wid-1, 0);
      NetNet*sig = new NetNet(scope, scope->local_symbol(), NetNet::WIRE, sig_vec);
      sig->local_flag(true);

      connect(sig->pin(0), res->pin(0));
      return sig;
}

NetNet* make_const_z(Design*des, NetScope*scope, unsigned long wid)
{
      verinum xxx (verinum::Vz, wid);
      NetConst*res = new NetConst(scope, scope->local_symbol(), xxx);
      des->add_node(res);

      netvector_t*sig_vec = new netvector_t(IVL_VT_LOGIC, wid-1, 0);
      NetNet*sig = new NetNet(scope, scope->local_symbol(), NetNet::WIRE, sig_vec);
      sig->local_flag(true);

      connect(sig->pin(0), res->pin(0));
      return sig;
}

NetExpr* condition_reduce(NetExpr*expr)
{
      if (expr->expr_type() == IVL_VT_REAL) {
	    if (NetECReal *tmp = dynamic_cast<NetECReal*>(expr)) {
		  verinum::V res;
		  if (tmp->value().as_double() == 0.0) res = verinum::V0;
		  else res = verinum::V1;
		  verinum vres (res, 1, true);
		  NetExpr *rtn = new NetEConst(vres);
		  rtn->set_line(*expr);
		  delete expr;
		  return rtn;
	    }

	    NetExpr *rtn = new NetEBComp('n', expr,
	                                 new NetECReal(verireal(0.0)));
	    rtn->set_line(*expr);
	    return rtn;
      }

      if (expr->expr_width() == 1)
	    return expr;

      verinum zero (verinum::V0, expr->expr_width());
      zero.has_sign(expr->has_sign());

      NetEConst*ezero = new NetEConst(zero);
      ezero->set_line(*expr);

      NetEBComp*cmp = new NetEBComp('n', expr, ezero);
      cmp->set_line(*expr);
      cmp->cast_signed(false);

      return cmp;
}

NetExpr* elab_and_eval(Design*des, NetScope*scope, PExpr*pe,
		       int context_width, bool need_const, bool annotatable,
		       ivl_variable_type_t cast_type, bool force_unsigned)
{
      PExpr::width_mode_t mode = PExpr::SIZED;
      if ((context_width == -2) && !gn_strict_expr_width_flag)
            mode = PExpr::EXPAND;

      pe->test_width(des, scope, mode);

      if (pe->expr_type() == IVL_VT_CLASS) {
	    cerr << pe->get_fileline() << ": Error: "
	         << "Class/null r-value not allowed in this context." << endl;
	    des->errors += 1;
	    return 0;
      }

        // Get the final expression width. If the expression is unsized,
        // this may be different from the value returned by test_width().
      unsigned expr_width = pe->expr_width();

        // If context_width is positive, this is the RHS of an assignment,
        // so the LHS width must also be included in the width calculation.
      unsigned pos_context_width = context_width > 0 ? context_width : 0;
      if ((pe->expr_type() != IVL_VT_REAL) && (expr_width < pos_context_width))
            expr_width = pos_context_width;

	// If this is the RHS of a compressed assignment, the LHS also
	// affects the expression type (signed/unsigned).
      if (force_unsigned)
	    pe->cast_signed(false);

      if (debug_elaborate) {
            cerr << pe->get_fileline() << ": elab_and_eval: test_width of "
                 << *pe << endl;
            cerr << pe->get_fileline() << ":              : "
                 << "returns type=" << pe->expr_type()
		 << ", context_width=" << context_width
                 << ", signed=" << pe->has_sign()
                 << ", expr_width=" << expr_width
                 << ", mode=" << PExpr::width_mode_name(mode) << endl;
	    cerr << pe->get_fileline() << ":              : "
		 << "cast_type=" << cast_type << endl;
      }

        // If we can get the same result using a smaller expression
        // width, do so.

      unsigned min_width = pe->min_width();
      if ((min_width != UINT_MAX) && (pe->expr_type() != IVL_VT_REAL)
          && (pos_context_width > 0) && (expr_width > pos_context_width)) {
            expr_width = max(min_width, pos_context_width);

            if (debug_elaborate) {
                  cerr << pe->get_fileline() << ":              : "
                       << "pruned to width=" << expr_width << endl;
            }
      }

      if ((mode >= PExpr::LOSSLESS) && (expr_width > width_cap)
          && (expr_width > pos_context_width)) {
            cerr << pe->get_fileline() << ": warning: excessive unsized "
                 << "expression width detected." << endl;
            cerr << pe->get_fileline() << ":        : The expression width "
                 << "is capped at " << width_cap << " bits." << endl;
	    expr_width = width_cap;
      }

      unsigned flags = PExpr::NO_FLAGS;
      if (need_const)
            flags |= PExpr::NEED_CONST;
      if (annotatable)
            flags |= PExpr::ANNOTATABLE;

      if (debug_elaborate) {
	    cerr << pe->get_fileline() << ": elab_and_eval: "
		 << "Calculated width is " << expr_width << "." << endl;
      }

      NetExpr*tmp = pe->elaborate_expr(des, scope, expr_width, flags);
      if (tmp == 0) return 0;

      if ((cast_type != IVL_VT_NO_TYPE) && (cast_type != tmp->expr_type())) {
            switch (tmp->expr_type()) {
                case IVL_VT_BOOL:
                case IVL_VT_LOGIC:
                case IVL_VT_REAL:
                  break;
                default:
                  cerr << tmp->get_fileline() << ": error: "
                          "The expression '" << *pe << "' cannot be implicitly "
                          "cast to the target type." << endl;
                  des->errors += 1;
                  delete tmp;
                  return 0;
            }
            switch (cast_type) {
                case IVL_VT_REAL:
                  tmp = cast_to_real(tmp);
                  break;
                case IVL_VT_BOOL:
                  tmp = cast_to_int2(tmp, pos_context_width);
                  break;
                case IVL_VT_LOGIC:
                  tmp = cast_to_int4(tmp, pos_context_width);
                  break;
                default:
                  break;
            }
      }

      eval_expr(tmp, context_width);

      if (NetEConst*ce = dynamic_cast<NetEConst*>(tmp)) {
            if ((mode >= PExpr::LOSSLESS) && (context_width < 0))
                  ce->trim();
      }

      return tmp;
}

NetExpr* elab_and_eval(Design*des, NetScope*scope, PExpr*pe,
		       ivl_type_t lv_net_type, bool need_const)
{
      if (debug_elaborate) {
	    cerr << pe->get_fileline() << ": " << __func__ << ": "
		 << "pe=" << *pe
		 << ", lv_net_type=" << *lv_net_type << endl;
      }

	// Elaborate the expression using the more general
	// elaborate_expr method.
      unsigned flags = PExpr::NO_FLAGS;
      if (need_const)
            flags |= PExpr::NEED_CONST;

      NetExpr*tmp = pe->elaborate_expr(des, scope, lv_net_type, flags);
      if (tmp == 0) return 0;

      ivl_variable_type_t cast_type = ivl_type_base(lv_net_type);
      ivl_variable_type_t expr_type = tmp->expr_type();
      if ((cast_type != IVL_VT_NO_TYPE) && (cast_type != expr_type)) {
	      // Catch some special cases.
	    switch (cast_type) {
		case IVL_VT_DARRAY:
		case IVL_VT_QUEUE:
		  if ((expr_type == IVL_VT_DARRAY) || (expr_type == IVL_VT_QUEUE))
			return tmp;

		  // This is needed to handle the special case of `'{}` which
		  // gets elaborated to NetENull.
		  if (dynamic_cast<PEAssignPattern*>(pe))
			return tmp;
		  // fall through
		case IVL_VT_STRING:
		  if (dynamic_cast<PEConcat*>(pe))
			return tmp;
		  break;
		case IVL_VT_CLASS:
		  if (dynamic_cast<PENull*>(pe))
			return tmp;
		  break;
		default:
		  break;
	    }

	    cerr << tmp->get_fileline() << ": error: "
		    "The expression '" << *pe << "' cannot be implicitly "
		    "cast to the target type." << endl;
	    des->errors += 1;
	    delete tmp;
	    return 0;
      }

      return tmp;
}

NetExpr* elab_sys_task_arg(Design*des, NetScope*scope, perm_string name,
                           unsigned arg_idx, PExpr*pe, bool need_const)
{
      PExpr::width_mode_t mode = PExpr::SIZED;
      pe->test_width(des, scope, mode);

      if (debug_elaborate) {
	    cerr << pe->get_fileline() << ": " << __func__ << ": "
		 << "test_width of " << name
                 << " argument " << (arg_idx+1) << " " << *pe << endl;
            cerr << pe->get_fileline() << ":        "
                 << "returns type=" << pe->expr_type()
                 << ", width=" << pe->expr_width()
                 << ", signed=" << pe->has_sign()
                 << ", mode=" << PExpr::width_mode_name(mode) << endl;
      }

      unsigned flags = PExpr::SYS_TASK_ARG;
      if (need_const)
            flags |= PExpr::NEED_CONST;

      NetExpr*tmp = pe->elaborate_expr(des, scope, pe->expr_width(), flags);
      if (tmp == 0) return 0;

      eval_expr(tmp, -1);

      if (NetEConst*ce = dynamic_cast<NetEConst*>(tmp)) {
              // For lossless/unsized constant expressions, we can now
              // determine the exact width required to hold the result.
              // But leave literal numbers exactly as the user supplied
              // them.
            if ((mode >= PExpr::LOSSLESS) && !dynamic_cast<PENumber*>(pe) && tmp->expr_width()>32)
                  ce->trim();
      }

      return tmp;
}

bool evaluate_range(Design*des, NetScope*scope, const LineInfo*li,
		    const pform_range_t&range, long&index_l, long&index_r)
{
      bool dimension_ok = true;

        // Unsized and queue dimensions should be handled before calling
        // this function. If we find them here, we are in a context where
        // they are not allowed.
      if (range.first == 0) {
            cerr << li->get_fileline() << ": error: "
                    "An unsized dimension is not allowed here." << endl;
            dimension_ok = false;
            des->errors += 1;
      } else if (dynamic_cast<PENull*>(range.first)) {
            cerr << li->get_fileline() << ": error: "
                    "A queue dimension is not allowed here." << endl;
            dimension_ok = false;
            des->errors += 1;
      } else {
            NetExpr*texpr = elab_and_eval(des, scope, range.first, -1, true);
            if (! eval_as_long(index_l, texpr)) {
                  cerr << range.first->get_fileline() << ": error: "
                          "Dimensions must be constant." << endl;
                  cerr << range.first->get_fileline() << "       : "
                       << (range.second ? "This MSB" : "This size")
                       << " expression violates the rule: "
                       << *range.first << endl;
                  dimension_ok = false;
                  des->errors += 1;
            }
            delete texpr;

            if (range.second == 0) {
                    // This is a SystemVerilog [size] dimension. The IEEE
                    // standard does not allow this in a packed dimension,
                    // but we do. At least one commercial simulator does too.
                  if (!dimension_ok) {
                        // bail out
                  } else if (index_l > 0) {
                        index_r = index_l - 1;
                        index_l = 0;
                  } else {
                        cerr << range.first->get_fileline() << ": error: "
                                "Dimension size must be greater than zero." << endl;
                        cerr << range.first->get_fileline() << "       : "
                                "This size expression violates the rule: "
                             << *range.first << endl;
                        dimension_ok = false;
                        des->errors += 1;
                  }
            } else {
                  texpr = elab_and_eval(des, scope, range.second, -1, true);
                  if (! eval_as_long(index_r, texpr)) {
                        cerr << range.second->get_fileline() << ": error: "
                                "Dimensions must be constant." << endl;
                        cerr << range.second->get_fileline() << "       : "
                                "This LSB expression violates the rule: "
                             << *range.second << endl;
                        dimension_ok = false;
                        des->errors += 1;
                  }
                  delete texpr;
            }
      }

        /* Error recovery */
      if (!dimension_ok) {
            index_l = 0;
            index_r = 0;
      }

      return dimension_ok;
}

bool evaluate_ranges(Design*des, NetScope*scope, const LineInfo*li,
		     vector<netrange_t>&llist,
		     const list<pform_range_t>&rlist)
{
      bool dimensions_ok = true;

      for (list<pform_range_t>::const_iterator cur = rlist.begin()
		 ; cur != rlist.end() ; ++cur) {
            long index_l, index_r;
            dimensions_ok &= evaluate_range(des, scope, li, *cur, index_l, index_r);
            llist.push_back(netrange_t(index_l, index_r));
      }

      return dimensions_ok;
}

void eval_expr(NetExpr*&expr, int context_width)
{
      assert(expr);
      if (dynamic_cast<NetECReal*>(expr)) return;

      NetExpr*tmp = expr->eval_tree();
      if (tmp != 0) {
	    tmp->set_line(*expr);
	    delete expr;
	    expr = tmp;
      }

      if (context_width <= 0) return;

      NetEConst *ce = dynamic_cast<NetEConst*>(expr);
      if (ce == 0) return;

        // The expression is a constant, so resize it if needed.
      if (ce->expr_width() < (unsigned)context_width) {
            expr = pad_to_width(expr, context_width, *expr);
      } else if (ce->expr_width() > (unsigned)context_width) {
            verinum value(ce->value(), context_width);
            ce = new NetEConst(value);
            ce->set_line(*expr);
            delete expr;
            expr = ce;
      }
}

bool eval_as_long(long&value, const NetExpr*expr)
{
      if (const NetEConst*tmp = dynamic_cast<const NetEConst*>(expr) ) {
	    value = tmp->value().as_long();
	    return true;
      }

      if (const NetECReal*rtmp = dynamic_cast<const NetECReal*>(expr)) {
	    value = rtmp->value().as_long();
	    return true;
      }

      return false;
}

bool eval_as_double(double&value, NetExpr*expr)
{
      if (NetEConst*tmp = dynamic_cast<NetEConst*>(expr) ) {
	    value = tmp->value().as_double();
	    return true;
      }

      if (NetECReal*rtmp = dynamic_cast<NetECReal*>(expr)) {
	    value = rtmp->value().as_double();
	    return true;
      }

      return false;
}

/*
 * At the parser level, a name component is a name with a collection
 * of expressions. For example foo[N] is the name "foo" and the index
 * expression "N". This function takes as input the name component and
 * returns the path component name. It will evaluate the index
 * expression if it is present.
 */
hname_t eval_path_component(Design*des, NetScope*scope,
			    const name_component_t&comp,
			    bool&error_flag)
{
	// No index expression, so the path component is an undecorated
	// name, for example "foo".
      if (comp.index.empty())
	    return hname_t(comp.name);

      vector<int> index_values;

      for (list<index_component_t>::const_iterator cur = comp.index.begin()
		 ; cur != comp.index.end() ; ++cur) {
	    const index_component_t&index = *cur;

	    if (index.sel != index_component_t::SEL_BIT) {
		  cerr << index.msb->get_fileline() << ": error: "
		       << "Part select is not valid for this kind of object." << endl;
		  des->errors += 1;
		  return hname_t(comp.name, 0);
	    }

	      // The parser will assure that path components will have only
	      // bit select index expressions. For example, "foo[n]" is OK,
	      // but "foo[n:m]" is not.
	    assert(index.sel == index_component_t::SEL_BIT);

	      // Evaluate the bit select to get a number.
	    NetExpr*tmp = elab_and_eval(des, scope, index.msb, -1);
	    ivl_assert(*index.msb, tmp);

	    if (NetEConst*ctmp = dynamic_cast<NetEConst*>(tmp)) {
		  index_values.push_back(ctmp->value().as_long());
		  delete ctmp;
		  continue;
	    }
#if 1
	      // Darn, the expression doesn't evaluate to a constant. That's
	      // an error to be reported. And make up a fake index value to
	      // return to the caller.
	    cerr << index.msb->get_fileline() << ": error: "
		 << "Scope index expression is not constant: "
		 << *index.msb << endl;
	    des->errors += 1;
#endif
	    error_flag = true;

	    delete tmp;
      }

      return hname_t(comp.name, index_values);
}

std::list<hname_t> eval_scope_path(Design*des, NetScope*scope,
				   const pform_name_t&path)
{
      bool path_error_flag = false;
      list<hname_t> res;

      typedef pform_name_t::const_iterator pform_path_it;

      for (pform_path_it cur = path.begin() ; cur != path.end(); ++ cur ) {
	    const name_component_t&comp = *cur;
	    res.push_back( eval_path_component(des,scope,comp,path_error_flag) );
      }
#if 0
      if (path_error_flag) {
	    cerr << "XXXXX: Errors evaluating path " << path << endl;
      }
#endif
      return res;
}

/*
 * Human readable version of op. Used in elaboration error messages.
 */
const char *human_readable_op(const char op, bool unary)
{
	const char *type;
	switch (op) {
	    case '~': type = "~";  break;  // Negation

	    case '+': type = "+";  break;
	    case '-': type = "-";  break;
	    case '*': type = "*";  break;
	    case '/': type = "/";  break;
	    case '%': type = "%";  break;

	    case '<': type = "<";  break;
	    case '>': type = ">";  break;
	    case 'L': type = "<="; break;
	    case 'G': type = ">="; break;

	    case '^': type = "^";  break;  // XOR
	    case 'X': type = "~^"; break;  // XNOR
	    case '&': type = "&";  break;  // Bitwise AND
	    case 'A': type = "~&"; break;  // NAND (~&)
	    case '|': type = "|";  break;  // Bitwise OR
	    case 'O': type = "~|"; break;  // NOR

	    case '!': type = "!"; break;    // Logical NOT
	    case 'a': type = "&&"; break;   // Logical AND
	    case 'o': type = "||"; break;   // Logical OR
	    case 'q': type = "->"; break;   // Logical implication
	    case 'Q': type = "<->"; break;  // Logical equivalence

	    case 'e': type = "==";  break;
	    case 'n': type = "!=";  break;
	    case 'E': type = "==="; break;  // Case equality
	    case 'N':
		if (unary) type = "~|";     // NOR
		else type = "!==";          // Case inequality
		break;
	    case 'w': type = "==?"; break;  // Wild equality
	    case 'W': type = "!=?"; break;  // Wild inequality

	    case 'l': type = "<<(<)"; break;  // Left shifts
	    case 'r': type = ">>";    break;  // Logical right shift
	    case 'R': type = ">>>";   break;  // Arithmetic right shift

	    case 'p': type = "**"; break; // Power

	    case 'i':
	    case 'I': type = "++"; break; /* increment */
	    case 'd':
	    case 'D': type = "--"; break; /* decrement */

	    default:
	      type = "???";
	      assert(0);
	}
	return type;
}

const_bool const_logical(const NetExpr*expr)
{
      switch (expr->expr_type()) {
	  case IVL_VT_REAL: {
	    const NetECReal*val = dynamic_cast<const NetECReal*> (expr);
	    if (val == 0) return C_NON;
	    if (val->value().as_double() == 0.0) return C_0;
	    else return C_1;
	  }

	  case IVL_VT_BOOL:
	  case IVL_VT_LOGIC: {
	    const NetEConst*val = dynamic_cast<const NetEConst*> (expr);
	    if (val == 0) return C_NON;
	    verinum cval = val->value();
	    const_bool res = C_0;
	    for (unsigned idx = 0; idx < cval.len(); idx += 1) {
		  switch (cval.get(idx)) {
		      case verinum::V1:
			return C_1;
			break;

		      case verinum::V0:
			break;

		      default:
			if (res == C_0) res = C_X;
			break;
		  }
	    }
	    return res;
	  }

	  default:
	    break;
      }

      return C_NON;
}

uint64_t get_scaled_time_from_real(Design*des, NetScope*scope, NetECReal*val)
{
      verireal fn = val->value();

      int shift = scope->time_unit() - scope->time_precision();
      assert(shift >= 0);
      int64_t delay = fn.as_long64(shift);


      shift = scope->time_precision() - des->get_precision();
      assert(shift >= 0);
      for (int lp = 0; lp < shift; lp += 1) delay *= 10;

      return delay;
}

/*
 * This function looks at the NetNet signal to see if there are any
 * NetPartSelect::PV nodes driving this signal. If so, See if they can
 * be collapsed into a single concatenation.
 */
void collapse_partselect_pv_to_concat(Design*des, NetNet*sig)
{
      NetScope*scope = sig->scope();
      vector<NetPartSelect*> ps_map (sig->vector_width());

      Nexus*nex = sig->pin(0).nexus();

      for (Link*cur = nex->first_nlink(); cur ; cur = cur->next_nlink()) {
	    NetPins*obj;
	    unsigned obj_pin;
	    cur->cur_link(obj, obj_pin);

	      // Look for NetPartSelect devices, where this signal is
	      // connected to pin 1 of a NetPartSelect::PV.
	    NetPartSelect*ps_obj = dynamic_cast<NetPartSelect*> (obj);
	    if (ps_obj == 0)
		  continue;
	    if (ps_obj->dir() != NetPartSelect::PV)
		  continue;
	    if (obj_pin != 1)
		  continue;

	      // Don't support overrun selects here.
	    if (ps_obj->base()+ps_obj->width() > ps_map.size())
		  continue;

	    ivl_assert(*ps_obj, ps_obj->base() < ps_map.size());
	    ps_map[ps_obj->base()] = ps_obj;
      }

	// Check the collected NetPartSelect::PV objects to see if
	// they cover the vector.
      unsigned idx = 0;
      unsigned device_count = 0;
      while (idx < ps_map.size()) {
	    NetPartSelect*ps_obj = ps_map[idx];
	    if (ps_obj == 0)
		  return;

	    idx += ps_obj->width();
	    device_count += 1;
      }

      ivl_assert(*sig, idx == ps_map.size());

	/* The vlog95 and possibly other code generators do not want
	 * to have a group of part selects turned into a transparent
	 * concatenation. */
      if (disable_concatz_generation) {
// HERE: If the part selects have matching strengths then we can use
//       a normal concat with a buf-Z after if the strengths are not
//       both strong. We would ideally delete any buf-Z driving the
//       concat, but that is not required for the vlog95 generator.
	    return;
      }

	// Ah HAH! The NetPartSelect::PV objects exactly cover the
	// target signal. We can replace all of them with a single
	// concatenation.

      if (debug_elaborate) {
	    cerr << sig->get_fileline() << ": debug: "
		 << "Collapse " << device_count
		 << " NetPartSelect::PV devices into a concatenation." << endl;
      }

      NetConcat*cat = new NetConcat(scope, scope->local_symbol(),
				    ps_map.size(), device_count,
				    true);
      des->add_node(cat);
      cat->set_line(*sig);

      connect(cat->pin(0), sig->pin(0));

      idx = 0;
      unsigned concat_position = 1;
      while (idx < ps_map.size()) {
	    assert(ps_map[idx]);
	    NetPartSelect*ps_obj = ps_map[idx];
	    connect(cat->pin(concat_position), ps_obj->pin(0));
	    concat_position += 1;
	    idx += ps_obj->width();
	    delete ps_obj;
      }
}

/*
 * Evaluate the prefix indices. All but the final index in a
 * chain of indices must be a single value and must evaluate
 * to constants at compile time. For example:
 *    [x]          - OK
 *    [1][2][x]    - OK
 *    [1][x:y]     - OK
 *    [2:0][x]     - BAD
 *    [y][x]       - BAD
 * Leave the last index for special handling.
 */
bool evaluate_index_prefix(Design*des, NetScope*scope,
			   list<long>&prefix_indices,
			   const list<index_component_t>&indices)
{
      list<index_component_t>::const_iterator icur = indices.begin();
      for (size_t idx = 0 ; (idx+1) < indices.size() ; idx += 1, ++icur) {
	    assert(icur != indices.end());
	    if (icur->sel != index_component_t::SEL_BIT) {
		  cerr << icur->msb->get_fileline() << ": error: "
			"All but the final index in a chain of indices must be "
			"a single value, not a range." << endl;
		  des->errors += 1;
		  return false;
	    }
	    NetExpr*texpr = elab_and_eval(des, scope, icur->msb, -1, true);

	    long tmp;
	    if (texpr == 0 || !eval_as_long(tmp, texpr)) {
		  cerr << icur->msb->get_fileline() << ": error: "
			"Array index expressions must be constant here." << endl;
		  des->errors += 1;
		  return false;
	    }

	    prefix_indices.push_back(tmp);
	    delete texpr;
      }

      return true;
}

/*
 * Evaluate the indices. The chain of indices are applied to the
 * packed indices of a NetNet to generate a canonical expression to
 * replace the exprs.
 */
NetExpr*collapse_array_exprs(Design*des, NetScope*scope,
			     const LineInfo*loc, NetNet*net,
			     const list<index_component_t>&indices)
{
	// First elaborate all the expressions as far as possible.
      list<NetExpr*> exprs;
      list<long> exprs_const;
      indices_flags flags;
      indices_to_expressions(des, scope, loc, indices,
                             net->packed_dimensions(),
                             false, flags, exprs, exprs_const);
      ivl_assert(*loc, exprs.size() == net->packed_dimensions());

	// Special Case: there is only 1 packed dimension, so the
	// single expression should already be naturally canonical.
      if (net->slice_width(1) == 1) {
	    return *exprs.begin();
      }

      const std::vector<netrange_t>&pdims = net->packed_dims();
      std::vector<netrange_t>::const_iterator pcur = pdims.begin();

      list<NetExpr*>::iterator ecur = exprs.begin();
      NetExpr* base = 0;
      for (size_t idx = 0 ; idx < net->packed_dimensions() ; idx += 1, ++pcur, ++ecur) {
	    unsigned cur_slice_width = net->slice_width(idx+1);
	    long lsb = pcur->get_lsb();
	    long msb = pcur->get_msb();
	      // This normalizes the expression of this index based on
	      // the msb/lsb values.
	    NetExpr*tmp = normalize_variable_base(*ecur, msb, lsb,
						  cur_slice_width, msb > lsb);

	      // If this slice has width, then scale it.
	    if (net->slice_width(idx+1) != 1) {
		  unsigned min_wid = tmp->expr_width();
		  if (num_bits(cur_slice_width) >= min_wid) {
			min_wid = num_bits(cur_slice_width)+1;
			tmp = pad_to_width(tmp, min_wid, *loc);
		  }

		  tmp = make_mult_expr(tmp, cur_slice_width);
	    }

	      // Now add it to the position we've accumulated so far.
	    if (base) {
		  base = make_add_expr(loc, base, tmp);
	    } else {
		  base = tmp;
	    }
      }

      return base;
}

/*
 * Given a list of indices, treat them as packed indices and convert
 * them to an expression that normalizes the list to a single index
 * expression over a canonical equivalent 1-dimensional array.
 */
NetExpr*collapse_array_indices(Design*des, NetScope*scope, NetNet*net,
			       const list<index_component_t>&indices)
{
      list<long>prefix_indices;
      bool rc = evaluate_index_prefix(des, scope, prefix_indices, indices);
      assert(rc);

      const index_component_t&back_index = indices.back();
      assert(back_index.sel == index_component_t::SEL_BIT);
      assert(back_index.msb && !back_index.lsb);

      NetExpr*base = elab_and_eval(des, scope, back_index.msb, -1, true);

      NetExpr*res = normalize_variable_bit_base(prefix_indices, base, net);

      eval_expr(res, -1);
      return res;
}

void assign_unpacked_with_bufz(Design*des, NetScope*scope,
			       const LineInfo*loc,
			       NetNet*lval, NetNet*rval)
{
      ivl_assert(*loc, lval->pin_count()==rval->pin_count());

      for (unsigned idx = 0 ; idx < lval->pin_count() ; idx += 1) {
	    NetBUFZ*driver = new NetBUFZ(scope, scope->local_symbol(),
					 lval->vector_width(), false);
	    driver->set_line(*loc);
	    des->add_node(driver);

	    connect(lval->pin(idx), driver->pin(0));
	    connect(driver->pin(1), rval->pin(idx));
      }
}

/*
 * synthesis sometimes needs to unpack assignment to a part
 * select. That looks like this:
 *
 *    foo[N] <= <expr> ;
 *
 * The NetAssignBase::synth_async() method will turn that into a
 * netlist like this:
 *
 *   NetAssignBase(PV) --> base()==<N>
 *    (0)      (1)
 *     |        |
 *     v        v
 *   <expr>    foo
 *
 * This search will return a pointer to the NetAssignBase(PV) object,
 * but only if it matches this pattern.
 */
NetPartSelect* detect_partselect_lval(Link&pin)
{
      NetPartSelect*found_ps = 0;

      Nexus*nex = pin.nexus();
      for (Link*cur = nex->first_nlink() ; cur ; cur = cur->next_nlink()) {
	    NetPins*obj;
	    unsigned obj_pin;
	    cur->cur_link(obj, obj_pin);

	      // Skip NexusSet objects.
	    if (obj == 0)
		  continue;

	      // NetNet pins have no effect on this search.
	    if (dynamic_cast<NetNet*> (obj))
		  continue;

	    if (NetPartSelect*ps = dynamic_cast<NetPartSelect*> (obj)) {

		    // If this is the input side of a NetPartSelect, skip.
		  if (ps->pin(obj_pin).get_dir()==Link::INPUT)
			continue;

		    // Oops, driven by the wrong size of a
		    // NetPartSelect, so this is not going to work out.
		  if (ps->dir()==NetPartSelect::VP)
			return 0;

		    // So now we know this is a NetPartSelect::PV. It
		    // is a candidate for our part-select assign. If
		    // we already have a candidate, then give up.
		  if (found_ps)
			return 0;

		    // This is our candidate. Carry on.
		  found_ps = ps;
		  continue;

	    }

	      // If this is a driver to the Nexus that is not a
	      // NetPartSelect device. This cannot happen to
	      // part selected lval nets, so quit now.
	    if (obj->pin(obj_pin).get_dir() == Link::OUTPUT)
		  return 0;

      }

      return found_ps;
}

const netclass_t* find_class_containing_scope(const LineInfo&loc, const NetScope*scope)
{
      while (scope && scope->type() != NetScope::CLASS)
	    scope = scope->parent();

      if (scope == 0)
	    return 0;

      const netclass_t*found_in = scope->class_def();
      ivl_assert(loc, found_in);
      return found_in;
}
/*
 * Find the scope that contains this scope, that is the method for a
 * class scope. Look for the scope whose PARENT is the scope for a
 * class. This is going to be a method.
 */
NetScope* find_method_containing_scope(const LineInfo&, NetScope*scope)
{
      NetScope*up = scope->parent();

      while (up && up->type() != NetScope::CLASS) {
	    scope = up;
	    up = up->parent();
      }

      if (up == 0) return 0;

	// Should I check if this scope is a TASK or FUNC?

      return scope;
}


/*
 * Print a warning if we find a mixture of default and explicit timescale
 * based delays in the design, since this is likely an error.
 */
void check_for_inconsistent_delays(NetScope*scope)
{
      static bool used_implicit_timescale = false;
      static bool used_explicit_timescale = false;
      static bool display_ts_dly_warning = true;

      if (scope->time_from_timescale())
	    used_explicit_timescale = true;
      else
	    used_implicit_timescale = true;

      if (display_ts_dly_warning &&
	  used_explicit_timescale &&
	  used_implicit_timescale) {
	    if (gn_system_verilog()) {
		  cerr << "warning: Found both default and explicit "
			  "timescale based delays. Use" << endl;
		  cerr << "       : -Wtimescale to find the design "
			  "element(s) with no explicit" << endl;
		  cerr << "       : timescale." << endl;
	    } else {
		  cerr << "warning: Found both default and "
			  "`timescale based delays. Use" << endl;
		  cerr << "       : -Wtimescale to find the "
			  "module(s) with no `timescale." << endl;
	    }
	    display_ts_dly_warning = false;
      }
}


/*
 * Calculate the bit vector range for a parameter, from the type of the
 * parameter. This is expecting that the type is a vector type. The parameter
 * is presumably declared something like this:
 *
 *    parameter [4:1] foo = <value>;
 *
 * In this case, the par_type is a netvector with a single dimension. The
 * par_msv gets 4, and par_lsv get 1. The caller uses these values to
 * interpret things like bit selects.
 */
bool calculate_param_range(const LineInfo&line, ivl_type_t par_type,
			   long&par_msv, long&par_lsv, long length)
{
      const netvector_t*vector_type = dynamic_cast<const netvector_t*> (par_type);
      if (vector_type == 0) {
	    // If the parameter doesn't have an explicit range, then
	    // just return range values of [length-1:0].
	    par_msv = length-1;
	    par_lsv = 0;
	    return true;
      }

      ivl_assert(line, vector_type->packed());
      const std::vector<netrange_t>& packed_dims = vector_type->packed_dims();

      // This is a netvector_t with 0 dimensions, then the parameter was
      // declared with a statement like this:
      //
      //    parameter signed foo = <value>;
      //
      // The netvector_t is just here to carry the signed-ness, which we don't
      // even need here. So act like the type is defined by the r-value
      // length.
      if (packed_dims.size() == 0) {
	    par_msv = length-1;
	    par_lsv = 0;
	    return true;
      }
      ivl_assert(line, packed_dims.size() == 1);

      netrange_t use_range = packed_dims[0];
      par_msv = use_range.get_msb();
      par_lsv = use_range.get_lsb();

      return true;
}