1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
%{
/*
* Copyright (c) 2000-2021 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "config.h"
# include <iostream>
/*
* This file implements synthesis based on matching threads and
* converting them to equivalent devices. The trick here is that the
* proc_match_t functor can be used to scan a process and generate a
* string of tokens. That string of tokens can then be matched by the
* rules to determine what kind of device is to be made.
*/
# include "netlist.h"
# include "netmisc.h"
# include "functor.h"
# include <cassert>
using namespace std;
struct syn_token_t {
int token;
NetAssignBase*assign;
NetProcTop*top;
NetEvWait*evwait;
NetEvent*event;
NetExpr*expr;
syn_token_t*next_;
};
#define YYSTYPE syn_token_t*
static int yylex();
static void yyerror(const char*);
static Design*des_;
static void make_DFF_CE(Design*des, NetProcTop*top,
NetEvent*eclk, NetExpr*cexp, NetAssignBase*asn);
%}
%token S_ALWAYS S_ASSIGN S_ASSIGN_MEM S_ASSIGN_MUX S_ELSE S_EVENT
%token S_EXPR S_IF S_INITIAL
%%
start
/* These rules match simple DFF devices. Clocked assignments are
simply implemented as DFF, and a CE is easily expressed with a
conditional statement. The typical Verilog that get these are:
always @(posedge CLK) Q = D
always @(negedge CLK) Q = D
always @(posedge CLK) if (CE) Q = D;
always @(negedge CLK) if (CE) Q = D;
The width of Q and D cause a wide register to be created. The
code generators generally implement that as an array of
flip-flops. */
: S_ALWAYS '@' '(' S_EVENT ')' S_ASSIGN ';'
{ make_DFF_CE(des_, $1->top, $4->event, 0, $6->assign);
}
| S_ALWAYS '@' '(' S_EVENT ')' S_IF S_EXPR S_ASSIGN ';' ';'
{ make_DFF_CE(des_, $1->top, $4->event, $7->expr, $8->assign);
}
/* Unconditional assignments in initial blocks should be made into
initializers wherever possible. */
;
%%
/* Various actions. */
static void hookup_DFF_CE(NetFF*ff, NetESignal*d, NetEvProbe*pclk,
NetNet*ce, NetAssign_*a, unsigned rval_pinoffset)
{
if (rval_pinoffset != 0) {
cerr << a->get_fileline() << ": sorry: "
<< "unable to hook up an R-value with offset "
<< rval_pinoffset << " to signal " << a->name()
<< "." << endl;
return;
}
// a->sig() is a *NetNet, which doesn't have the loff_ and
// lwid_ context. Add the correction for loff_ ourselves.
// This extra calculation allows for assignments like:
// lval[7:1] <= foo;
// where lval is really a "reg [7:0]". In other words, part
// selects in the l-value are handled by loff and the lwidth().
connect(ff->pin_Data(), d->sig()->pin(0));
connect(ff->pin_Q(), a->sig()->pin(0));
connect(ff->pin_Clock(), pclk->pin(0));
if (ce) connect(ff->pin_Enable(), ce->pin(0));
/* This lval_ represents a reg that is a WIRE in the
synthesized results. This function signals the destructor
to change the REG that this l-value refers to into a
WIRE. It is done then, at the last minute, so that pending
synthesis can continue to work with it as a WIRE. */
a->turn_sig_to_wire_on_release();
}
static void make_DFF_CE(Design*des, NetProcTop*top,
NetEvent*eclk, NetExpr*cexp, NetAssignBase*asn)
{
assert(asn);
NetEvProbe*pclk = eclk->probe(0);
NetESignal*d = dynamic_cast<NetESignal*> (asn->rval());
NetNet*ce = cexp? cexp->synthesize(des, top->scope(), cexp) : 0;
if (d == 0) {
cerr << asn->get_fileline() << ": internal error: "
<< " not a simple signal? " << *asn->rval() << endl;
}
assert(d);
NetAssign_*a;
unsigned rval_pinoffset=0;
for (unsigned i=0; (a=asn->l_val(i)); i++) {
// asn->l_val(i) are the set of *NetAssign_'s that form the list
// of lval expressions. Treat each one independently, keeping
// track of which bits of rval to use for each set of DFF inputs.
// For example, given:
// {carry,data} <= x + y + z;
// run through this loop twice, where a and rval_pinoffset are
// first data and 0, then carry and 1.
// FIXME: ff gets its pin names wrong when loff_ is nonzero.
if (a->sig()) {
// cerr << "new NetFF named " << a->name() << endl;
bool negedge = pclk->edge() == NetEvProbe::NEGEDGE;
NetFF*ff = new NetFF(top->scope(), a->name(), negedge,
a->sig()->vector_width());
hookup_DFF_CE(ff, d, pclk, ce, a, rval_pinoffset);
des->add_node(ff);
}
rval_pinoffset += a->lwidth();
}
des->delete_process(top);
}
static syn_token_t*first_ = 0;
static syn_token_t*last_ = 0;
static syn_token_t*ptr_ = 0;
/*
* The match class is used to take a process and turn it into a stream
* of tokens. This stream is used by the yylex function to feed tokens
* to the parser.
*/
struct tokenize : public proc_match_t {
tokenize() { }
~tokenize() { }
int assign(NetAssign*dev)
{
syn_token_t*cur;
cur = new syn_token_t;
// Bit Muxes can't be synthesized (yet), but it's too much
// work to detect them now.
// cur->token = dev->l_val(0)->bmux() ? S_ASSIGN_MUX : S_ASSIGN;
cur->token = S_ASSIGN;
cur->assign = dev;
cur->next_ = 0;
last_->next_ = cur;
last_ = cur;
return 0;
}
int assign_nb(NetAssignNB*dev)
{
syn_token_t*cur;
cur = new syn_token_t;
// Bit Muxes can't be synthesized (yet), but it's too much
// work to detect them now.
// cur->token = dev->l_val(0)->bmux() ? S_ASSIGN_MUX : S_ASSIGN;
cur->token = S_ASSIGN;
cur->assign = dev;
cur->next_ = 0;
last_->next_ = cur;
last_ = cur;
return 0;
}
int condit(NetCondit*dev)
{
syn_token_t*cur;
cur = new syn_token_t;
cur->token = S_IF;
cur->next_ = 0;
last_->next_ = cur;
last_ = cur;
cur = new syn_token_t;
cur->token = S_EXPR;
cur->expr = dev->expr();
cur->next_ = 0;
last_->next_ = cur;
last_ = cur;
/* Because synthesis is broken this is needed to prevent
* a seg. fault. */
if (!dev->if_clause()) return 0;
dev -> if_clause() -> match_proc(this);
if (dev->else_clause()) {
cur = new syn_token_t;
cur->token = S_ELSE;
cur->next_ = 0;
last_->next_ = cur;
last_ = cur;
dev -> else_clause() -> match_proc(this);
}
cur = new syn_token_t;
cur->token = ';';
cur->next_ = 0;
last_->next_ = cur;
last_ = cur;
return 0;
}
int event_wait(NetEvWait*dev)
{
syn_token_t*cur;
cur = new syn_token_t;
cur->token = '@';
cur->evwait = dev;
cur->next_ = 0;
last_->next_ = cur;
last_ = cur;
cur = new syn_token_t;
cur->token = '(';
cur->next_ = 0;
last_->next_ = cur;
last_ = cur;
for (unsigned idx = 0; idx < dev->nevents(); idx += 1) {
cur = new syn_token_t;
cur->token = S_EVENT;
cur->event = dev->event(idx);
cur->next_ = 0;
last_->next_ = cur;
last_ = cur;
}
cur = new syn_token_t;
cur->token = ')';
cur->next_ = 0;
last_->next_ = cur;
last_ = cur;
dev -> statement() -> match_proc(this);
cur = new syn_token_t;
cur->token = ';';
cur->next_ = 0;
last_->next_ = cur;
last_ = cur;
return 0;
}
};
static void syn_start_process(NetProcTop*t)
{
first_ = new syn_token_t;
last_ = first_;
ptr_ = first_;
// Can the following be converted into S_ALWAYS?
if ((t->type() == IVL_PR_ALWAYS_COMB) ||
(t->type() == IVL_PR_ALWAYS_FF) ||
(t->type() == IVL_PR_ALWAYS_LATCH)) {
cerr << t->get_fileline() << ": internal error: "
<< " Need to check if this can be synthesized." << endl;
assert(0);
}
first_->token = (t->type() == IVL_PR_ALWAYS)? S_ALWAYS : S_INITIAL;
first_->top = t;
first_->next_ = 0;
tokenize go;
t -> statement() -> match_proc(&go);
}
static void syn_done_process()
{
while (first_) {
syn_token_t*cur = first_;
first_ = cur->next_;
delete cur;
}
}
static int yylex()
{
if (ptr_ == 0) {
yylval = 0;
return 0;
}
yylval = ptr_;
ptr_ = ptr_->next_;
return yylval->token;
}
struct syn_rules_f : public functor_t {
~syn_rules_f() { }
void process(class Design*, class NetProcTop*top)
{
/* If the scope that contains this process as a cell
attribute attached to it, then skip synthesis. */
if (top->scope()->attribute(perm_string::literal("ivl_synthesis_cell")).len() > 0)
return;
syn_start_process(top);
yyparse();
syn_done_process();
}
};
void syn_rules(Design*d)
{
des_ = d;
syn_rules_f obj;
des_->functor(&obj);
}
static void yyerror(const char*)
{
}
|