File: sys_queue.c

package info (click to toggle)
iverilog 12.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 30,148 kB
  • sloc: cpp: 109,972; ansic: 62,713; yacc: 10,216; sh: 3,470; vhdl: 3,246; perl: 1,814; makefile: 1,774; python: 78; csh: 2
file content (1489 lines) | stat: -rw-r--r-- 44,629 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
/*
 *  Copyright (C) 2011-2021  Cary R. (cygcary@yahoo.com)
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include "sys_priv.h"
#include <assert.h>
#include <inttypes.h>
#include <stdlib.h>
#include "ivl_alloc.h"

/*
 * The two queue types.
 */
#define IVL_QUEUE_FIFO 1
#define IVL_QUEUE_LIFO 2

/*
 * The statistical codes that can be passed to $q_exam().
 */
#define IVL_QUEUE_LENGTH 1
#define IVL_QUEUE_MEAN 2
#define IVL_QUEUE_MAX_LENGTH 3
#define IVL_QUEUE_SHORTEST 4
#define IVL_QUEUE_LONGEST 5
#define IVL_QUEUE_AVERAGE 6

/*
 * All the values that can be returned by the queue tasks/function.
 */
#define IVL_QUEUE_OK 0
#define IVL_QUEUE_FULL 1
#define IVL_QUEUE_UNDEFINED_ID 2
#define IVL_QUEUE_EMPTY 3
#define IVL_QUEUE_UNSUPPORTED_TYPE 4
#define IVL_QUEUE_INVALID_LENGTH 5
#define IVL_QUEUE_DUPLICATE_ID 6
#define IVL_QUEUE_OUT_OF_MEMORY 7
/* Icarus specific status codes. */
#define IVL_QUEUE_UNDEFINED_STAT_CODE 8
#define IVL_QUEUE_VALUE_OVERFLOWED 9
#define IVL_QUEUE_NO_STATISTICS 10

/*
 * Routine to add the given time to the the total time (high/low).
 */
static void add_to_wait_time(uint64_t *high, uint64_t *low, uint64_t c_time)
{
      uint64_t carry = 0U;

      if ((UINT64_MAX - *low) < c_time) carry = 1U;
      *low += c_time;
      assert((carry == 0U) || (*high < UINT64_MAX));
      *high += carry;
}

/*
 * Routine to divide the given total time (high/low) by the number of
 * items to get the average.
 */
static uint64_t calc_average_wait_time(uint64_t high, uint64_t low, uint64_t total)
{
      int bit = 64;
      uint64_t result = 0U;
      assert(total != 0U);
      if (high == 0U) return (low/total);

	/* This is true by design, but since we can only return 64 bits
	 * make sure nothing went wrong. */
      assert(high < total);

	/* It's a big value so calculate the average the long way. */
      do {
	    unsigned carry = 0U;
	      /* Copy bits from low to high until we have a bit to place
	       * in the result or there are no bits left. */
	    while ((bit >= 0) && (high < total) && !carry) {
		    /* If the MSB is set then we will have a carry. */
		  if (high > (UINT64_MAX >> 1)) carry = 1U;
		  high <<= 1;
		  high |= (low & 0x8000000000000000) != 0;
		  low <<= 1;
		  bit -= 1;
	    }

	      /* If this is a valid bit, set the appropriate bit in the
	       * result and subtract the total from the current value. */
	    if (bit >= 0) {
		  result |=  UINT64_C(1) << bit;
		  high = high - total;
	    }
	/* Loop until there are no bits left. */
      } while (bit > 0);

      return result;
}

/*
 * The data structure used for an individual queue element. It hold four
 * state result for the jobs and inform fields along with the time that
 * the element was added in base time units.
 */
typedef struct t_ivl_queue_elem {
      uint64_t time;
      s_vpi_vecval job;
      s_vpi_vecval inform;
} s_ivl_queue_elem, *p_ivl_queue_elem;

/*
 * This structure is used to represent a specific queue. The time
 * information is in base simulation units.
 */
typedef struct t_ivl_queue_base {
      uint64_t shortest_wait_time;
      uint64_t first_add_time;
      uint64_t latest_add_time;
      uint64_t wait_time_high;
      uint64_t wait_time_low;
      uint64_t number_of_adds;
      p_ivl_queue_elem queue;
      PLI_INT32 id;
      PLI_INT32 length;
      PLI_INT32 type;
      PLI_INT32 head;
      PLI_INT32 elems;
      PLI_INT32 max_len;
      PLI_INT32 have_shortest_statistic;
} s_ivl_queue_base, *p_ivl_queue_base;

/*
 * For now we keep the queues in a vector since there are likely not too many
 * of them. We may need something more efficient later.
 */
static p_ivl_queue_base base = NULL;
static int64_t base_len = 0;

/*
 * This routine is called at the end of simulation to free the queue memory.
 */
static PLI_INT32 cleanup_queue(p_cb_data cause)
{
      PLI_INT32 idx;
      (void) cause;  /* Unused argument. */
      for (idx = 0; idx < base_len; idx += 1) free(base[idx].queue);
      free(base);
      base = NULL;
      base_len = 0;
      return 0;
}

/*
 * Add a new queue to the list, return 1 if there is not enough memory,
 * otherwise return 0.
 */
static unsigned create_queue(PLI_INT32 id, PLI_INT32 type, PLI_INT32 length)
{
      p_ivl_queue_base new_base;
      p_ivl_queue_elem queue;

	/* Allocate space for the new queue base. */
      base_len += 1;
      new_base = (p_ivl_queue_base) realloc(base,
                                            base_len*sizeof(s_ivl_queue_base));

	/* If we ran out of memory then fix the length and return a fail. */
      if (new_base == NULL) {
	    base_len -= 1;
	    return 1;
      }
      base = new_base;

	/* Allocate space for the queue elements. */
      queue = (p_ivl_queue_elem) malloc(length*sizeof(s_ivl_queue_elem));

	/* If we ran out of memory then fix the length and return a fail. */
      if (queue == NULL) {
	    base_len -= 1;
	    return 1;
      }

	/* The memory was allocated so configure it. */
      base[base_len-1].queue = queue;
      base[base_len-1].id = id;
      base[base_len-1].length = length;
      base[base_len-1].type = type;
      base[base_len-1].head = 0;
      base[base_len-1].elems = 0;
      base[base_len-1].max_len = 0;
      base[base_len-1].shortest_wait_time = UINT64_MAX;
      base[base_len-1].first_add_time = 0U;
      base[base_len-1].latest_add_time = 0U;
      base[base_len-1].wait_time_high = 0U;
      base[base_len-1].wait_time_low = 0U;
      base[base_len-1].number_of_adds = 0U;
      base[base_len-1].have_shortest_statistic = 0;
      return 0;
}

/*
 * Check to see if the given queue is full.
 */
static unsigned is_queue_full(int64_t idx)
{
      if (base[idx].elems >= base[idx].length) return 1;

      return 0;
}

/*
 * Add the job and inform to the queue. Return 1 if the queue is full,
 * otherwise return 0.
 */
static unsigned add_to_queue(int64_t idx, p_vpi_vecval job,
                             p_vpi_vecval inform)
{
      PLI_INT32 length = base[idx].length;
      PLI_INT32 type = base[idx].type;
      PLI_INT32 head = base[idx].head;
      PLI_INT32 elems = base[idx].elems;
      PLI_INT32 loc;
      s_vpi_time cur_time;
      uint64_t c_time;

      assert(elems <= length);

	/* If the queue is full we can't add anything. */
      if (elems == length) return 1;

	/* Increment the number of element since one will be added.*/
      base[idx].elems += 1;

	/* Save the job and inform to the queue. */
      if (type == IVL_QUEUE_LIFO) {
	    assert(head == 0);  /* For a LIFO head must always be zero. */
	    loc = elems;
      } else {
	    assert(type == IVL_QUEUE_FIFO);
	    loc = head + elems;
	    if (loc >= length) loc -= length;
      }
      base[idx].queue[loc].job.aval = job->aval;
      base[idx].queue[loc].job.bval = job->bval;
      base[idx].queue[loc].inform.aval = inform->aval;
      base[idx].queue[loc].inform.bval = inform->bval;

	/* Save the current time with this entry for the statistics. */
      cur_time.type = vpiSimTime;
      vpi_get_time(NULL, &cur_time);
      c_time = cur_time.high;
      c_time <<= 32;
      c_time |= cur_time.low;
      base[idx].queue[loc].time = c_time;

	/* Increment the maximum length if needed. */
      if (base[idx].max_len == elems) base[idx].max_len += 1;

	/* Update the inter-arrival statistics. */
      assert(base[idx].number_of_adds < UINT64_MAX);
      base[idx].number_of_adds += 1;
      if (base[idx].number_of_adds == 1) base[idx].first_add_time = c_time;
      base[idx].latest_add_time = c_time;

      return 0;
}

/*
 * Get the job and inform values from the queue. Return 1 if the queue is
 * empty, otherwise return 0.
 */
static unsigned remove_from_queue(int64_t idx, p_vpi_vecval job,
                                  p_vpi_vecval inform)
{
      PLI_INT32 type = base[idx].type;
      PLI_INT32 head = base[idx].head;
      PLI_INT32 elems = base[idx].elems - 1;
      PLI_INT32 loc;
      s_vpi_time cur_time;
      uint64_t c_time;

      assert(elems >= -1);

	/* If the queue is empty we can't remove anything. */
      if (elems < 0) return 1;

	/* Decrement the number of element in the queue structure since one
	 * will be removed.*/
      base[idx].elems -= 1;

	/* Remove the job and inform from the queue. */
      if (type == IVL_QUEUE_LIFO) {
	    assert(head == 0);  /* For a LIFO head must always be zero. */
	    loc = elems;
      } else {
	    assert(type == IVL_QUEUE_FIFO);
	    loc = head;
	    if (head + 1 == base[idx].length) base[idx].head = 0;
	    else base[idx].head += 1;
      }
      job->aval = base[idx].queue[loc].job.aval;
      job->bval = base[idx].queue[loc].job.bval;
      inform->aval = base[idx].queue[loc].inform.aval;
      inform->bval = base[idx].queue[loc].inform.bval;

	/* Get the current simulation time. */
      cur_time.type = vpiSimTime;
      vpi_get_time(NULL, &cur_time);
      c_time = cur_time.high;
      c_time <<= 32;
      c_time |= cur_time.low;

	/* Set the shortest wait time if needed. */
      assert(c_time >= base[idx].queue[loc].time);
      c_time -= base[idx].queue[loc].time;
      if (c_time < base[idx].shortest_wait_time) {
	    base[idx].shortest_wait_time = c_time;
      }
      base[idx].have_shortest_statistic = 1;

	/* Add the current element wait time to the total wait time. */
      add_to_wait_time(&(base[idx].wait_time_high), &(base[idx].wait_time_low),
                       c_time);

      return 0;
}

/*
 * Return the current queue length.
 */
static PLI_INT32 get_current_queue_length(int64_t idx)
{
      return base[idx].elems;
}

/*
 * Return the maximum queue length.
 */
static PLI_INT32 get_maximum_queue_length(int64_t idx)
{
      return base[idx].max_len;
}

/*
 * Return the longest wait time in the queue in base simulation units.
 * Make sure to check that there are elements in the queue before calling
 * this routine. The caller will need to scale the time as appropriate.
 */
static uint64_t get_longest_queue_time(int64_t idx)
{
      s_vpi_time cur_time;
      uint64_t c_time;

	/* Get the current simulation time. */
      cur_time.type = vpiSimTime;
      vpi_get_time(NULL, &cur_time);
      c_time = cur_time.high;
      c_time <<= 32;
      c_time |= cur_time.low;

	/* Subtract the element with the longest time (the head) from the
	 * current time. */
      assert(c_time >= base[idx].queue[base[idx].head].time);
      c_time -= base[idx].queue[base[idx].head].time;

      return c_time;
}

/*
 * Check to see if there are inter-arrival time statistics.
 */
static unsigned have_interarrival_statistic(int64_t idx)
{
      return (base[idx].number_of_adds >= 2U);
}

/*
 * Return the mean inter-arrival time for the queue. This is just the
 * latest add time minus the first add time divided be the number of time
 * deltas (the number of adds - 1).
 */
static uint64_t get_mean_interarrival_time(int64_t idx)
{
      return ((base[idx].latest_add_time - base[idx].first_add_time) /
               (base[idx].number_of_adds - 1U));
}

/*
 * Check to see if there are shortest wait time statistics.
 */
static unsigned have_shortest_wait_statistic(int64_t idx)
{
      return (base[idx].have_shortest_statistic != 0);
}

/*
 * Return the shortest amount of time an element has waited in the queue.
 */
static uint64_t get_shortest_wait_time(int64_t idx)
{
      return base[idx].shortest_wait_time;
}

/*
 * Check to see if we have an average wait time statistics.
 */
static unsigned have_average_wait_statistic(int64_t idx)
{
      return (base[idx].number_of_adds >= 1U);
}

/*
 * Return the average wait time in the queue.
 */
static uint64_t get_average_wait_time(int64_t idx)
{
      PLI_INT32 length = base[idx].length;
      PLI_INT32 loc = base[idx].head;
      PLI_INT32 elems = base[idx].elems;
      PLI_INT32 count;
	/* Initialize the high and low time with the current total time. */
      uint64_t high = base[idx].wait_time_high;
      uint64_t low = base[idx].wait_time_low;
      s_vpi_time cur_time;
      uint64_t c_time;

	/* Get the current simulation time. */
      cur_time.type = vpiSimTime;
      vpi_get_time(NULL, &cur_time);
      c_time = cur_time.high;
      c_time <<= 32;
      c_time |= cur_time.low;

	/* For each element still in the queue, add its wait time to the
	 * total wait time. */
      for (count = 0; count < elems; count += 1) {
	    uint64_t add_time = base[idx].queue[loc].time;
	    assert(c_time >= add_time);
	    add_to_wait_time(&high, &low, c_time-add_time);

	      /* Move to the next element. */
	    loc += 1;
	    if (loc == length) loc = 0;
      }

	/* Return the average wait time. */
      return calc_average_wait_time(high, low, base[idx].number_of_adds);
}

/*
 * Check to see if the given id already exists. Return the index for the
 * queue if it exists, otherwise return -1.
 */
static int64_t get_id_index(PLI_INT32 id)
{
      int64_t idx;

      for (idx = 0; idx < base_len; idx += 1) {
	    if (id == base[idx].id) return idx;
      }

      return -1;
}

/*
 * Check to see if the given value is bit based and has 32 or fewer bits.
 */
static unsigned is_32_or_smaller_obj(vpiHandle obj)
{
      PLI_INT32 const_type;
      unsigned rtn = 0;

      assert(obj);

      switch(vpi_get(vpiType, obj)) {
	case vpiConstant:
	case vpiParameter:
	    const_type = vpi_get(vpiConstType, obj);
	    if ((const_type != vpiRealConst) &&
	        (const_type != vpiStringConst)) rtn = 1;
	    break;

	  /* These can have valid 32 bit or smaller numeric values. */
	case vpiIntegerVar:
	case vpiBitVar:
	case vpiByteVar:
	case vpiShortIntVar:
	case vpiIntVar:
	case vpiMemoryWord:
	case vpiNet:
	case vpiPartSelect:
	case vpiReg:
	    rtn = 1;
	    break;
      }

	/* The object must be 32 bits or smaller. */
      if (vpi_get(vpiSize, obj) > 32) rtn = 0;

      return rtn;
}

/*
 * Check to see if the argument is a variable that is exactly 32 bits in size.
 */
static void check_var_arg_32(vpiHandle arg, vpiHandle callh,
                             const char *name, const char *desc)
{
      assert(arg);

      switch (vpi_get(vpiType, arg)) {
	case vpiMemoryWord:
	case vpiPartSelect:
	case vpiBitVar:
	case vpiReg: // Check that we have exactly 32 bits.
	    if (vpi_get(vpiSize, arg) != 32) {
		  vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
		             (int)vpi_get(vpiLineNo, callh));
		  vpi_printf("%s's %s (variable) argument must be 32 bits.\n",
		             name, desc);
		  vpip_set_return_value(1);
		  vpi_control(vpiFinish, 1);
	    }
	case vpiIntegerVar:
	case vpiIntVar:
	    break;
	default:
	    vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
	               (int)vpi_get(vpiLineNo, callh));
	    vpi_printf("%s's %s argument must be a 32 bit variable.\n",
	               name, desc);
	    vpip_set_return_value(1);
	    vpi_control(vpiFinish, 1);
      }
}

/*
 * Check to see if the argument is a variable of at least 32 bits.
 */
static void check_var_arg_large(vpiHandle arg, vpiHandle callh,
                                const char *name, const char *desc)
{
      assert(arg);

      switch (vpi_get(vpiType, arg)) {
	case vpiMemoryWord:
	case vpiPartSelect:
	case vpiBitVar:
	case vpiReg: // Check that we have at least 32 bits.
	    if (vpi_get(vpiSize, arg) < 32) {
		  vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
		             (int)vpi_get(vpiLineNo, callh));
		  vpi_printf("%s's %s (variable) argument must have at least "
		             "32 bits.\n", name, desc);
		  vpip_set_return_value(1);
		  vpi_control(vpiFinish, 1);
	    }
	case vpiIntegerVar:
	case vpiIntVar:
	case vpiLongIntVar:
	case vpiTimeVar:
	    break;
	default:
	    vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
	               (int)vpi_get(vpiLineNo, callh));
	    vpi_printf("%s's %s argument must be a variable.\n", name, desc);
	    vpip_set_return_value(1);
	    vpi_control(vpiFinish, 1);
      }
}

/*
 * Check that the given number of arguments are numeric.
 */
static unsigned check_numeric_args(vpiHandle argv, unsigned count,
                                   vpiHandle callh, const char *name)
{
      unsigned idx;

	/* Check that the first count arguments are numeric. Currently
	 * only three are needed/supported. */
      for (idx = 0; idx < count; idx += 1) {
	    const char *loc = NULL;
	    vpiHandle arg = vpi_scan(argv);

	      /* Get the name for this argument. */
	    switch (idx) {
	      case 0: loc = "first"; break;
	      case 1: loc = "second"; break;
	      case 2: loc = "third"; break;
	      default: assert(0);
	    }

	      /* Check that there actually is an argument. */
	    if (! arg) {
		  vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
		             (int)vpi_get(vpiLineNo, callh));
		  vpi_printf("%s requires a %s (<= 32 bit numeric) argument.\n",
		             name, loc);
		  vpip_set_return_value(1);
		  vpi_control(vpiFinish, 1);
		  return 1;
	    }

	      /* Check that it is no more than 32 bits. */
	    if (! is_32_or_smaller_obj(arg)) {
		  vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
		             (int)vpi_get(vpiLineNo, callh));
		  vpi_printf("%s's %s argument must be numeric (<= 32 bits).\n",
		             name, loc);
		  vpip_set_return_value(1);
		  vpi_control(vpiFinish, 1);
	    }
      }

      return 0;
}

/*
 * Check to see if the given argument is valid (does not have any X/Z bits).
 * Return zero if it is valid and a positive value if it is invalid.
 */
static unsigned get_valid_32(vpiHandle arg, PLI_INT32 *value)
{
      PLI_INT32 size, mask;
      s_vpi_value val;

      size = vpi_get(vpiSize, arg);
	/* The compiletf routine should have already verified that this is
	 * <= 32 bits. */
      assert((size <= 32) && (size > 0));

	/* Create a mask so that we only check the appropriate bits. */
      mask = UINT32_MAX >> (32 - size);

	/* Get the value and return the possible integer value in the value
	 * variable. Return the b-value bits to indicate if the value is
	 * undefined (has X/Z bit). */
      val.format = vpiVectorVal;
      vpi_get_value(arg, &val);

      *value = val.value.vector->aval & mask;
	/* If the argument is signed and less than 32 bit we need to sign
	 * extend the value. */
      if (vpi_get(vpiSigned, arg) && (size < 32)) {
	    if ((*value) & (1 << (size - 1))) *value |= ~mask;
      }
      return (val.value.vector->bval & mask);
}

static void get_four_state(vpiHandle arg, p_vpi_vecval vec)
{
      PLI_INT32 size, mask;
      s_vpi_value val;

      size = vpi_get(vpiSize, arg);
	/* The compiletf routine should have already verified that this is
	 * <= 32 bits. */
      assert((size <= 32) && (size > 0));

	/* Create a mask so that we only use the appropriate bits. */
      mask = UINT32_MAX >> (32 - size);

	/* Get the bits for the argument and save them in the return value. */
      val.format = vpiVectorVal;
      vpi_get_value(arg, &val);
      vec->aval = val.value.vector->aval & mask;
      vec->bval = val.value.vector->bval & mask;

	/* If the argument is signed and less than 32 bit we need to sign
	 * extend the value. */
      if (vpi_get(vpiSigned, arg) && (size < 32)) {
	    if (vec->aval & (1 << (size - 1))) vec->aval |= ~mask;
	    if (vec->bval & (1 << (size - 1))) vec->bval |= ~mask;
      }
}

/*
 * Fill the passed variable with x.
 */
static void fill_variable_with_x(vpiHandle var)
{
      s_vpi_value val;
      PLI_INT32 words = ((vpi_get(vpiSize, var) - 1) / 32) + 1;
      PLI_INT32 idx;
      p_vpi_vecval val_ptr = (p_vpi_vecval) malloc(words*sizeof(s_vpi_vecval));

      assert(val_ptr);

	/* Fill the vector with X. */
      for (idx = 0; idx < words; idx += 1) {
	    val_ptr[idx].aval = 0xffffffff;
	    val_ptr[idx].bval = 0xffffffff;
      }

	/* Put the vector to the variable. */
      val.format = vpiVectorVal;
      val.value.vector = val_ptr;
      vpi_put_value(var, &val, 0, vpiNoDelay);
      free(val_ptr);
}

/*
 * Fill the passed variable with the passed value if it fits. If it doesn't
 * fit then set all bits to one and return that the value is too big instead
 * of the normal OK. The value is a time and needs to be scaled to the
 * calling module's timescale.
 */
static PLI_INT32 fill_variable_with_scaled_time(vpiHandle var, uint64_t c_time)
{
      s_vpi_value val;
      PLI_INT32 size = vpi_get(vpiSize, var);
      PLI_INT32 is_signed = vpi_get(vpiSigned, var);
      PLI_INT32 words = ((size - 1) / 32) + 1;
      uint64_t max_val = 0;
      uint64_t scale = 1;
      uint64_t frac;
      PLI_INT32 rtn, units, prec;
      p_vpi_vecval val_ptr = (p_vpi_vecval) malloc(words*sizeof(s_vpi_vecval));

      assert(val_ptr);
      assert(size >= 32);
      assert(words > 0);

	/* Scale the variable to match the calling module's timescale. */
      prec = vpi_get(vpiTimePrecision, 0);
      units = vpi_get(vpiTimeUnit, vpi_handle(vpiModule, var));
      assert(units >= prec);
      while (units > prec) {
	    scale *= 10;
	    units -= 1;
      }
      frac = c_time % scale;
      c_time /= scale;
      if ((scale > 1) && (frac >= scale/2)) c_time += 1;

	/* Find the maximum value + 1 that can be put into the variable. */
      if (size < 64) {
	    max_val = 1;
	    max_val <<= (size - is_signed);
      }

	/* If the time is too big to fit then return the maximum positive
	 * value and that the value overflowed. Otherwise, return the time
	 * and OK. */
      if (max_val && (c_time >= max_val)) {
	      /* For a single word only the MSB is cleared if signed. */
	    if (words == 1) {
		  if (is_signed) {
			val_ptr[0].aval = 0x7fffffff;
		  } else {
			val_ptr[0].aval = 0xffffffff;
		  }
		  val_ptr[0].bval = 0x00000000;
	      /* For two words the lower word is filled with 1 and the top
	       * word has a size dependent fill if signed. */
	    } else {
		  assert(words == 2);
		  val_ptr[0].aval = 0xffffffff;
		  val_ptr[0].bval = 0x00000000;
		  if (is_signed) {
			val_ptr[1].aval = ~(UINT32_MAX >> (size - 32));
		  } else {
			val_ptr[1].aval = 0xffffffff;
		  }
		  val_ptr[1].bval = 0x00000000;
	    }
	    rtn = IVL_QUEUE_VALUE_OVERFLOWED;
      } else {
	      /* Fill the vector with 0. */
	    for (PLI_INT32 idx = 0; idx < words; idx += 1) {
		  val_ptr[idx].aval = 0x00000000;
		  val_ptr[idx].bval = 0x00000000;
	    }
	      /* Add the time to the vector. */
	    switch (words) {
	      default:
		  val_ptr[1].aval = (c_time >> 32) & 0xffffffff;
		  // fallthrough
	      case 1:
		  val_ptr[0].aval = c_time & 0xffffffff;
	    }
	    rtn = IVL_QUEUE_OK;
      }

	/* Put the vector to the variable. */
      val.format = vpiVectorVal;
      val.value.vector = val_ptr;
      vpi_put_value(var, &val, 0, vpiNoDelay);
      free(val_ptr);

      return rtn;
}

/*
 * Check that the given $q_initialize() call has valid arguments.
 */
static PLI_INT32 sys_q_initialize_compiletf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
      vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
      vpiHandle argv = vpi_iterate(vpiArgument, callh);
      vpiHandle arg;

	/* Check that there are arguments. */
      if (argv == 0) {
	    vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
	               (int)vpi_get(vpiLineNo, callh));
	    vpi_printf("%s requires four arguments.\n", name);
	    vpip_set_return_value(1);
	    vpi_control(vpiFinish, 1);
	    return 0;
      }

	/* Check that the first three arguments (the id, type and maximum
	 * length) are numeric. */
      if (check_numeric_args(argv, 3, callh, name)) return 0;

	/* The fourth argument (the status) must be a variable. */
      arg = vpi_scan(argv);
      if (! arg) {
	    vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
	               (int)vpi_get(vpiLineNo, callh));
	    vpi_printf("%s requires a fourth (variable) argument.\n", name);
	    vpip_set_return_value(1);
	    vpi_control(vpiFinish, 1);
	    return 0;
      }
	/* Check that the status argument is a 32 bit variable. */
      check_var_arg_32(arg, callh, name, "fourth");

      /* Make sure there are no extra arguments. */
      check_for_extra_args(argv, callh, name, "four arguments", 0);

      return 0;
}

/*
 * The runtime code for $q_initialize().
 */
static PLI_INT32 sys_q_initialize_calltf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
      vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
      vpiHandle argv = vpi_iterate(vpiArgument, callh);
      vpiHandle status;
      PLI_INT32 id, type, length;
      s_vpi_value val;
      unsigned invalid_id, invalid_type, invalid_length;

      (void)name; /* Parameter is not used. */

	/* Get the id. */
      invalid_id = get_valid_32(vpi_scan(argv), &id);

	/* Get the queue type. */
      invalid_type = get_valid_32(vpi_scan(argv), &type);

	/* Get the queue maximum length. */
      invalid_length = get_valid_32(vpi_scan(argv), &length);

	/* Get the status variable. */
      status = vpi_scan(argv);

	/* We are done with the argument iterator so free it. */
      vpi_free_object(argv);

	/* If the id is invalid then return. */
      if (invalid_id) {
	    val.format = vpiIntVal;
	    val.value.integer = IVL_QUEUE_UNDEFINED_ID;
	    vpi_put_value(status, &val, 0, vpiNoDelay);
	    return 0;
      }

	/* Verify that the type is valid. */
      if (invalid_type || ((type != IVL_QUEUE_FIFO) &&
                           (type != IVL_QUEUE_LIFO))) {
	    val.format = vpiIntVal;
	    val.value.integer = IVL_QUEUE_UNSUPPORTED_TYPE;
	    vpi_put_value(status, &val, 0, vpiNoDelay);
	    return 0;
      }

	/* Verify that the queue length is greater than zero. */
      if (invalid_length || (length <= 0)) {
	    val.format = vpiIntVal;
	    val.value.integer = IVL_QUEUE_INVALID_LENGTH;
	    vpi_put_value(status, &val, 0, vpiNoDelay);
	    return 0;
      }

	/* Check that this is not a duplicate queue id. */
      if (get_id_index(id) >= 0) {
	    val.format = vpiIntVal;
	    val.value.integer = IVL_QUEUE_DUPLICATE_ID;
	    vpi_put_value(status, &val, 0, vpiNoDelay);
	    return 0;
      }

	/* Create the queue and fail if we do not have enough memory. */
      if (create_queue(id, type, length)) {
	    val.format = vpiIntVal;
	    val.value.integer = IVL_QUEUE_OUT_OF_MEMORY;
	    vpi_put_value(status, &val, 0, vpiNoDelay);
	    return 0;
      }

	/* The queue was initialized correctly so return OK. */
      val.format = vpiIntVal;
      val.value.integer = IVL_QUEUE_OK;
      vpi_put_value(status, &val, 0, vpiNoDelay);
      return 0;
}

/*
 * Check that the given $q_add() call has valid arguments.
 */
static PLI_INT32 sys_q_add_compiletf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
      vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
      vpiHandle argv = vpi_iterate(vpiArgument, callh);
      vpiHandle arg;

	/* Check that there are arguments. */
      if (argv == 0) {
	    vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
	               (int)vpi_get(vpiLineNo, callh));
	    vpi_printf("%s requires four arguments.\n", name);
	    vpip_set_return_value(1);
	    vpi_control(vpiFinish, 1);
	    return 0;
      }

	/* Check that the first three arguments (the id, job and information)
	 * are numeric. */
      if (check_numeric_args(argv, 3, callh, name)) return 0;

	/* The fourth argument (the status) must be a variable. */
      arg = vpi_scan(argv);
      if (! arg) {
	    vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
	               (int)vpi_get(vpiLineNo, callh));
	    vpi_printf("%s requires a fourth (variable) argument.\n", name);
	    vpip_set_return_value(1);
	    vpi_control(vpiFinish, 1);
	    return 0;
      }
	/* Check that the status argument is a 32 bit variable. */
      check_var_arg_32(arg, callh, name, "fourth");

      /* Make sure there are no extra arguments. */
      check_for_extra_args(argv, callh, name, "four arguments", 0);

      return 0;
}

/*
 * The runtime code for $q_add().
 */
static PLI_INT32 sys_q_add_calltf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
      vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
      vpiHandle argv = vpi_iterate(vpiArgument, callh);
      vpiHandle status;
      PLI_INT32 id;
      int64_t idx;
      s_vpi_vecval job, inform;
      s_vpi_value val;
      unsigned invalid_id;

      (void)name; /* Parameter is not used. */

	/* Get the id. */
      invalid_id = get_valid_32(vpi_scan(argv), &id);

	/* Get the job. */
      get_four_state(vpi_scan(argv), &job);

	/* Get the value. */
      get_four_state(vpi_scan(argv), &inform);

	/* Get the status variable. */
      status = vpi_scan(argv);

	/* We are done with the argument iterator so free it. */
      vpi_free_object(argv);

	/* Verify that the id is valid. */
      idx = get_id_index(id);
      if (invalid_id || (idx < 0)) {
	    val.format = vpiIntVal;
	    val.value.integer = IVL_QUEUE_UNDEFINED_ID;
	    vpi_put_value(status, &val, 0, vpiNoDelay);
	    return 0;
      }

	/* Add the data to the queue if it is not already full. */
      if (add_to_queue(idx, &job, &inform)) {
	    val.format = vpiIntVal;
	    val.value.integer = IVL_QUEUE_FULL;
	    vpi_put_value(status, &val, 0, vpiNoDelay);
	    return 0;
      }

	/* The data was added to the queue so return OK. */
      val.format = vpiIntVal;
      val.value.integer = IVL_QUEUE_OK;
      vpi_put_value(status, &val, 0, vpiNoDelay);
      return 0;
}

/*
 * Check that the given $q_remove() call has valid arguments.
 */
static PLI_INT32 sys_q_remove_compiletf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
      vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
      vpiHandle argv = vpi_iterate(vpiArgument, callh);
      vpiHandle arg;

	/* Check that there are arguments. */
      if (argv == 0) {
	    vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
	               (int)vpi_get(vpiLineNo, callh));
	    vpi_printf("%s requires four arguments.\n", name);
	    vpip_set_return_value(1);
	    vpi_control(vpiFinish, 1);
	    return 0;
      }

	/* The first argument (the id) must be numeric. */
      if (! is_32_or_smaller_obj(vpi_scan(argv))) {
	    vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
	               (int)vpi_get(vpiLineNo, callh));
	    vpi_printf("%s's first argument must be numeric (<= 32 bits).\n",
	               name);
	    vpip_set_return_value(1);
	    vpi_control(vpiFinish, 1);
      }

	/* The second argument (the job id) must be a variable. */
      arg = vpi_scan(argv);
      if (! arg) {
	    vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
	               (int)vpi_get(vpiLineNo, callh));
	    vpi_printf("%s requires a second (variable) argument.\n", name);
	    vpip_set_return_value(1);
	    vpi_control(vpiFinish, 1);
	    return 0;
      }
	/* Check that the job id argument is a 32 bit variable. */
      check_var_arg_32(arg, callh, name, "second");

	/* The third argument (the information id) must be a variable. */
      arg = vpi_scan(argv);
      if (! arg) {
	    vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
	               (int)vpi_get(vpiLineNo, callh));
	    vpi_printf("%s requires a third (variable) argument.\n", name);
	    vpip_set_return_value(1);
	    vpi_control(vpiFinish, 1);
	    return 0;
      }
	/* Check that the information id argument is a 32 bit variable. */
      check_var_arg_32(arg, callh, name, "third");

	/* The fourth argument (the status) must be a variable. */
      arg = vpi_scan(argv);
      if (! arg) {
	    vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
	               (int)vpi_get(vpiLineNo, callh));
	    vpi_printf("%s requires a fourth (variable) argument.\n", name);
	    vpip_set_return_value(1);
	    vpi_control(vpiFinish, 1);
	    return 0;
      }
	/* Check that the status argument is a 32 bit variable. */
      check_var_arg_32(arg, callh, name, "fourth");

      /* Make sure there are no extra arguments. */
      check_for_extra_args(argv, callh, name, "four arguments", 0);

      return 0;
}

/*
 * The runtime code for $q_remove().
 */
static PLI_INT32 sys_q_remove_calltf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
      vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
      vpiHandle argv = vpi_iterate(vpiArgument, callh);
      vpiHandle job, inform, status;
      PLI_INT32 id, idx;
      s_vpi_vecval job_val, inform_val;
      s_vpi_value val;
      unsigned invalid_id;

      (void)name; /* Parameter is not used. */

	/* Get the id. */
      invalid_id = get_valid_32(vpi_scan(argv), &id);

	/* Get the job variable. */
      job = vpi_scan(argv);

	/* Get the inform variable. */
      inform = vpi_scan(argv);

	/* Get the status variable. */
      status = vpi_scan(argv);

	/* We are done with the argument iterator so free it. */
      vpi_free_object(argv);

	/* Verify that the id is valid. */
      idx = get_id_index(id);
      if (invalid_id || (idx < 0)) {
	    fill_variable_with_x(job);
	    fill_variable_with_x(inform);
	    val.format = vpiIntVal;
	    val.value.integer = IVL_QUEUE_UNDEFINED_ID;
	    vpi_put_value(status, &val, 0, vpiNoDelay);
	    return 0;
      }

	/* Remove the data from the queue if it is not already empty. */
      if (remove_from_queue(idx, &job_val, &inform_val)) {
	    fill_variable_with_x(job);
	    fill_variable_with_x(inform);
	    val.format = vpiIntVal;
	    val.value.integer = IVL_QUEUE_EMPTY;
	    vpi_put_value(status, &val, 0, vpiNoDelay);
	    return 0;
      }

      val.format = vpiVectorVal;
      val.value.vector = &job_val;
      vpi_put_value(job, &val, 0, vpiNoDelay);
      val.format = vpiVectorVal;
      val.value.vector = &inform_val;
      vpi_put_value(inform, &val, 0, vpiNoDelay);

	/* The data was added to the queue so return OK. */
      val.format = vpiIntVal;
      val.value.integer = IVL_QUEUE_OK;
      vpi_put_value(status, &val, 0, vpiNoDelay);
      return 0;
}

/*
 * Check that the given $q_full() call has valid arguments.
 */
static PLI_INT32 sys_q_full_compiletf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
      vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
      vpiHandle argv = vpi_iterate(vpiArgument, callh);
      vpiHandle arg;

	/* Check that there are arguments. */
      if (argv == 0) {
	    vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
	               (int)vpi_get(vpiLineNo, callh));
	    vpi_printf("%s requires two arguments.\n", name);
	    vpip_set_return_value(1);
	    vpi_control(vpiFinish, 1);
	    return 0;
      }

	/* The first argument (the id) must be numeric. */
      if (! is_32_or_smaller_obj(vpi_scan(argv))) {
	    vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
	               (int)vpi_get(vpiLineNo, callh));
	    vpi_printf("%s's first argument must be numeric (<= 32 bits).\n",
	               name);
	    vpip_set_return_value(1);
	    vpi_control(vpiFinish, 1);
      }

	/* The second argument (the status) must be a variable. */
      arg = vpi_scan(argv);
      if (! arg) {
	    vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
	               (int)vpi_get(vpiLineNo, callh));
	    vpi_printf("%s requires a second (variable) argument.\n", name);
	    vpip_set_return_value(1);
	    vpi_control(vpiFinish, 1);
	    return 0;
      }
	/* Check that the status argument is a 32 bit variable. */
      check_var_arg_32(arg, callh, name, "second");

      /* Make sure there are no extra arguments. */
      check_for_extra_args(argv, callh, name, "two arguments", 0);

      return 0;
}

/*
 * The runtime code for $q_full().
 */
static PLI_INT32 sys_q_full_calltf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
      vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
      vpiHandle argv = vpi_iterate(vpiArgument, callh);
      vpiHandle status;
      PLI_INT32 id, idx;
      s_vpi_value val;
      unsigned invalid_id;

      (void)name; /* Parameter is not used. */

	/* Get the id. */
      invalid_id = get_valid_32(vpi_scan(argv), &id);

	/* Get the status variable. */
      status = vpi_scan(argv);

	/* We are done with the argument iterator so free it. */
      vpi_free_object(argv);

	/* Verify that the id is valid. */
      idx = get_id_index(id);
      if (invalid_id || (idx < 0)) {
	    val.format = vpiIntVal;
	    val.value.integer = IVL_QUEUE_UNDEFINED_ID;
	    vpi_put_value(status, &val, 0, vpiNoDelay);
	    fill_variable_with_x(callh);
	    return 0;
      }

	/* Get the queue state and return it. */
      val.format = vpiIntVal;
      if (is_queue_full(idx)) val.value.integer = 1;
      else val.value.integer = 0;
      vpi_put_value(callh, &val, 0, vpiNoDelay);

	/* The queue state was passed back so return OK. */
      val.format = vpiIntVal;
      val.value.integer = IVL_QUEUE_OK;
      vpi_put_value(status, &val, 0, vpiNoDelay);
      return 0;
}

/*
 * Check that the given $q_exam() call has valid arguments.
 */
static PLI_INT32 sys_q_exam_compiletf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
      vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
      vpiHandle argv = vpi_iterate(vpiArgument, callh);
      vpiHandle arg;

	/* Check that there are arguments. */
      if (argv == 0) {
	    vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
	               (int)vpi_get(vpiLineNo, callh));
	    vpi_printf("%s requires four arguments.\n", name);
	    vpip_set_return_value(1);
	    vpi_control(vpiFinish, 1);
	    return 0;
      }

	/* Check that the first two arguments (the id and code) are numeric. */
      if (check_numeric_args(argv, 2, callh, name)) return 0;

	/* The third argument (the value) must be a variable. */
      arg = vpi_scan(argv);
      if (! arg) {
	    vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
	               (int)vpi_get(vpiLineNo, callh));
	    vpi_printf("%s requires a third (variable) argument.\n", name);
	    vpip_set_return_value(1);
	    vpi_control(vpiFinish, 1);
	    return 0;
      }
	/* Check that the value argument is a variable with at least
	 * 32 bits. */
      check_var_arg_large(arg, callh, name, "third");

	/* The fourth argument (the status) must be a variable. */
      arg = vpi_scan(argv);
      if (! arg) {
	    vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
	               (int)vpi_get(vpiLineNo, callh));
	    vpi_printf("%s requires a fourth (variable) argument.\n", name);
	    vpip_set_return_value(1);
	    vpi_control(vpiFinish, 1);
	    return 0;
      }
	/* Check that the status argument is a 32 bit variable. */
      check_var_arg_32(arg, callh, name, "fourth");

      /* Make sure there are no extra arguments. */
      check_for_extra_args(argv, callh, name, "two arguments", 0);

      return 0;
}

/*
 * The runtime code for $q_exam().
 */
static PLI_INT32 sys_q_exam_calltf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
      vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
      vpiHandle argv = vpi_iterate(vpiArgument, callh);
      vpiHandle value, status;
      PLI_INT32 id, code, idx, rtn;
      s_vpi_value val;
      unsigned invalid_id, invalid_code;

      (void)name; /* Parameter is not used. */

	/* Get the id. */
      invalid_id = get_valid_32(vpi_scan(argv), &id);

	/* Get the code. */
      invalid_code = get_valid_32(vpi_scan(argv), &code);

	/* Get the value variable. */
      value = vpi_scan(argv);

	/* Get the status variable. */
      status = vpi_scan(argv);

	/* We are done with the argument iterator so free it. */
      vpi_free_object(argv);

	/* Verify that the id is valid. */
      idx = get_id_index(id);
      if (invalid_id || (idx < 0)) {
	    fill_variable_with_x(value);
	    val.format = vpiIntVal;
	    val.value.integer = IVL_QUEUE_UNDEFINED_ID;
	    vpi_put_value(status, &val, 0, vpiNoDelay);
	    return 0;
      }

	/* Verify that the code is valid. */
      if (invalid_code || (code <= 0) || (code > 6)) {
	    fill_variable_with_x(value);
	    val.format = vpiIntVal;
	    val.value.integer = IVL_QUEUE_UNDEFINED_STAT_CODE;
	    vpi_put_value(status, &val, 0, vpiNoDelay);
	    return 0;
      }

      rtn = IVL_QUEUE_OK;

	/* Calculate the requested queue information. */
      switch (code) {
	  /* The current queue length. */
	case IVL_QUEUE_LENGTH:
	    val.format = vpiIntVal;
	    val.value.integer = get_current_queue_length(idx);
	    vpi_put_value(value, &val, 0, vpiNoDelay);
	    break;
	  /* The mean inter-arrival time. */
	case IVL_QUEUE_MEAN:
	    if (have_interarrival_statistic(idx) == 0) {
		  fill_variable_with_x(value);
		  rtn = IVL_QUEUE_NO_STATISTICS;
	    } else {
		  uint64_t ia_time = get_mean_interarrival_time(idx);
		  rtn = fill_variable_with_scaled_time(value, ia_time);
	    }
	    break;
	  /* The maximum queue length. */
	case IVL_QUEUE_MAX_LENGTH:
	    val.format = vpiIntVal;
	    val.value.integer = get_maximum_queue_length(idx);
	    vpi_put_value(value, &val, 0, vpiNoDelay);
	    break;
	  /* The shortest queue wait time ever. */
	case IVL_QUEUE_SHORTEST:
	    if (have_shortest_wait_statistic(idx) == 0) {
		  fill_variable_with_x(value);
		  rtn = IVL_QUEUE_NO_STATISTICS;
	    } else {
		  uint64_t sw_time = get_shortest_wait_time(idx);
		  rtn = fill_variable_with_scaled_time(value, sw_time);
	    }
	    break;
	  /* The longest wait time for elements still in the queue. */
	case IVL_QUEUE_LONGEST:
	    if (get_current_queue_length(idx) == 0) {
		  fill_variable_with_x(value);
		  rtn = IVL_QUEUE_NO_STATISTICS;
	    } else {
		  uint64_t lq_time = get_longest_queue_time(idx);
		  rtn = fill_variable_with_scaled_time(value, lq_time);
	    }
	    break;
	  /* The average queue wait time. */
	case IVL_QUEUE_AVERAGE:
	    if (have_average_wait_statistic(idx) == 0) {
		  fill_variable_with_x(value);
		  rtn = IVL_QUEUE_NO_STATISTICS;
	    } else {
		  uint64_t aw_time = get_average_wait_time(idx);
		  rtn = fill_variable_with_scaled_time(value, aw_time);
	    }
	    break;
	default:
	    assert(0);
      }

	/* The queue information was passed back so now return the status. */
      val.format = vpiIntVal;
      val.value.integer = rtn;
      vpi_put_value(status, &val, 0, vpiNoDelay);
      return 0;
}

/*
 * Routine to register the system tasks/functions provided in this file.
 */
void sys_queue_register(void)
{
      s_vpi_systf_data tf_data;
      s_cb_data cb;
      vpiHandle res;

      tf_data.type = vpiSysTask;
      tf_data.tfname = "$q_initialize";
      tf_data.calltf = sys_q_initialize_calltf;
      tf_data.compiletf = sys_q_initialize_compiletf;
      tf_data.sizetf = 0;
      tf_data.user_data = "$q_initialize";
      res = vpi_register_systf(&tf_data);
      vpip_make_systf_system_defined(res);

      tf_data.type = vpiSysTask;
      tf_data.tfname = "$q_add";
      tf_data.calltf = sys_q_add_calltf;
      tf_data.compiletf = sys_q_add_compiletf;
      tf_data.sizetf = 0;
      tf_data.user_data = "$q_add";
      res = vpi_register_systf(&tf_data);
      vpip_make_systf_system_defined(res);

      tf_data.type = vpiSysTask;
      tf_data.tfname = "$q_remove";
      tf_data.calltf = sys_q_remove_calltf;
      tf_data.compiletf = sys_q_remove_compiletf;
      tf_data.sizetf = 0;
      tf_data.user_data = "$q_remove";
      res = vpi_register_systf(&tf_data);
      vpip_make_systf_system_defined(res);

      tf_data.type = vpiSysFunc;
      tf_data.sysfunctype = vpiSysFuncInt;
      tf_data.tfname = "$q_full";
      tf_data.calltf = sys_q_full_calltf;
      tf_data.compiletf = sys_q_full_compiletf;
      tf_data.sizetf = 0;  /* Not needed for a vpiSysFuncInt. */
      tf_data.user_data = "$q_full";
      res = vpi_register_systf(&tf_data);
      vpip_make_systf_system_defined(res);

      tf_data.type = vpiSysTask;
      tf_data.tfname = "$q_exam";
      tf_data.calltf = sys_q_exam_calltf;
      tf_data.compiletf = sys_q_exam_compiletf;
      tf_data.sizetf = 0;
      tf_data.user_data = "$q_exam";
      res = vpi_register_systf(&tf_data);
      vpip_make_systf_system_defined(res);

	/* Create a callback to clear all the queue memory when the
	 * simulator finishes. */
      cb.time = NULL;
      cb.reason = cbEndOfSimulation;
      cb.cb_rtn = cleanup_queue;
      cb.user_data = 0x0;
      cb.obj = 0x0;

      vpi_register_cb(&cb);
}