1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
|
/*
* Copyright (C) 2011-2021 Cary R. (cygcary@yahoo.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "sys_priv.h"
#include <assert.h>
#include <inttypes.h>
#include <stdlib.h>
#include "ivl_alloc.h"
/*
* The two queue types.
*/
#define IVL_QUEUE_FIFO 1
#define IVL_QUEUE_LIFO 2
/*
* The statistical codes that can be passed to $q_exam().
*/
#define IVL_QUEUE_LENGTH 1
#define IVL_QUEUE_MEAN 2
#define IVL_QUEUE_MAX_LENGTH 3
#define IVL_QUEUE_SHORTEST 4
#define IVL_QUEUE_LONGEST 5
#define IVL_QUEUE_AVERAGE 6
/*
* All the values that can be returned by the queue tasks/function.
*/
#define IVL_QUEUE_OK 0
#define IVL_QUEUE_FULL 1
#define IVL_QUEUE_UNDEFINED_ID 2
#define IVL_QUEUE_EMPTY 3
#define IVL_QUEUE_UNSUPPORTED_TYPE 4
#define IVL_QUEUE_INVALID_LENGTH 5
#define IVL_QUEUE_DUPLICATE_ID 6
#define IVL_QUEUE_OUT_OF_MEMORY 7
/* Icarus specific status codes. */
#define IVL_QUEUE_UNDEFINED_STAT_CODE 8
#define IVL_QUEUE_VALUE_OVERFLOWED 9
#define IVL_QUEUE_NO_STATISTICS 10
/*
* Routine to add the given time to the the total time (high/low).
*/
static void add_to_wait_time(uint64_t *high, uint64_t *low, uint64_t c_time)
{
uint64_t carry = 0U;
if ((UINT64_MAX - *low) < c_time) carry = 1U;
*low += c_time;
assert((carry == 0U) || (*high < UINT64_MAX));
*high += carry;
}
/*
* Routine to divide the given total time (high/low) by the number of
* items to get the average.
*/
static uint64_t calc_average_wait_time(uint64_t high, uint64_t low, uint64_t total)
{
int bit = 64;
uint64_t result = 0U;
assert(total != 0U);
if (high == 0U) return (low/total);
/* This is true by design, but since we can only return 64 bits
* make sure nothing went wrong. */
assert(high < total);
/* It's a big value so calculate the average the long way. */
do {
unsigned carry = 0U;
/* Copy bits from low to high until we have a bit to place
* in the result or there are no bits left. */
while ((bit >= 0) && (high < total) && !carry) {
/* If the MSB is set then we will have a carry. */
if (high > (UINT64_MAX >> 1)) carry = 1U;
high <<= 1;
high |= (low & 0x8000000000000000) != 0;
low <<= 1;
bit -= 1;
}
/* If this is a valid bit, set the appropriate bit in the
* result and subtract the total from the current value. */
if (bit >= 0) {
result |= UINT64_C(1) << bit;
high = high - total;
}
/* Loop until there are no bits left. */
} while (bit > 0);
return result;
}
/*
* The data structure used for an individual queue element. It hold four
* state result for the jobs and inform fields along with the time that
* the element was added in base time units.
*/
typedef struct t_ivl_queue_elem {
uint64_t time;
s_vpi_vecval job;
s_vpi_vecval inform;
} s_ivl_queue_elem, *p_ivl_queue_elem;
/*
* This structure is used to represent a specific queue. The time
* information is in base simulation units.
*/
typedef struct t_ivl_queue_base {
uint64_t shortest_wait_time;
uint64_t first_add_time;
uint64_t latest_add_time;
uint64_t wait_time_high;
uint64_t wait_time_low;
uint64_t number_of_adds;
p_ivl_queue_elem queue;
PLI_INT32 id;
PLI_INT32 length;
PLI_INT32 type;
PLI_INT32 head;
PLI_INT32 elems;
PLI_INT32 max_len;
PLI_INT32 have_shortest_statistic;
} s_ivl_queue_base, *p_ivl_queue_base;
/*
* For now we keep the queues in a vector since there are likely not too many
* of them. We may need something more efficient later.
*/
static p_ivl_queue_base base = NULL;
static int64_t base_len = 0;
/*
* This routine is called at the end of simulation to free the queue memory.
*/
static PLI_INT32 cleanup_queue(p_cb_data cause)
{
PLI_INT32 idx;
(void) cause; /* Unused argument. */
for (idx = 0; idx < base_len; idx += 1) free(base[idx].queue);
free(base);
base = NULL;
base_len = 0;
return 0;
}
/*
* Add a new queue to the list, return 1 if there is not enough memory,
* otherwise return 0.
*/
static unsigned create_queue(PLI_INT32 id, PLI_INT32 type, PLI_INT32 length)
{
p_ivl_queue_base new_base;
p_ivl_queue_elem queue;
/* Allocate space for the new queue base. */
base_len += 1;
new_base = (p_ivl_queue_base) realloc(base,
base_len*sizeof(s_ivl_queue_base));
/* If we ran out of memory then fix the length and return a fail. */
if (new_base == NULL) {
base_len -= 1;
return 1;
}
base = new_base;
/* Allocate space for the queue elements. */
queue = (p_ivl_queue_elem) malloc(length*sizeof(s_ivl_queue_elem));
/* If we ran out of memory then fix the length and return a fail. */
if (queue == NULL) {
base_len -= 1;
return 1;
}
/* The memory was allocated so configure it. */
base[base_len-1].queue = queue;
base[base_len-1].id = id;
base[base_len-1].length = length;
base[base_len-1].type = type;
base[base_len-1].head = 0;
base[base_len-1].elems = 0;
base[base_len-1].max_len = 0;
base[base_len-1].shortest_wait_time = UINT64_MAX;
base[base_len-1].first_add_time = 0U;
base[base_len-1].latest_add_time = 0U;
base[base_len-1].wait_time_high = 0U;
base[base_len-1].wait_time_low = 0U;
base[base_len-1].number_of_adds = 0U;
base[base_len-1].have_shortest_statistic = 0;
return 0;
}
/*
* Check to see if the given queue is full.
*/
static unsigned is_queue_full(int64_t idx)
{
if (base[idx].elems >= base[idx].length) return 1;
return 0;
}
/*
* Add the job and inform to the queue. Return 1 if the queue is full,
* otherwise return 0.
*/
static unsigned add_to_queue(int64_t idx, p_vpi_vecval job,
p_vpi_vecval inform)
{
PLI_INT32 length = base[idx].length;
PLI_INT32 type = base[idx].type;
PLI_INT32 head = base[idx].head;
PLI_INT32 elems = base[idx].elems;
PLI_INT32 loc;
s_vpi_time cur_time;
uint64_t c_time;
assert(elems <= length);
/* If the queue is full we can't add anything. */
if (elems == length) return 1;
/* Increment the number of element since one will be added.*/
base[idx].elems += 1;
/* Save the job and inform to the queue. */
if (type == IVL_QUEUE_LIFO) {
assert(head == 0); /* For a LIFO head must always be zero. */
loc = elems;
} else {
assert(type == IVL_QUEUE_FIFO);
loc = head + elems;
if (loc >= length) loc -= length;
}
base[idx].queue[loc].job.aval = job->aval;
base[idx].queue[loc].job.bval = job->bval;
base[idx].queue[loc].inform.aval = inform->aval;
base[idx].queue[loc].inform.bval = inform->bval;
/* Save the current time with this entry for the statistics. */
cur_time.type = vpiSimTime;
vpi_get_time(NULL, &cur_time);
c_time = cur_time.high;
c_time <<= 32;
c_time |= cur_time.low;
base[idx].queue[loc].time = c_time;
/* Increment the maximum length if needed. */
if (base[idx].max_len == elems) base[idx].max_len += 1;
/* Update the inter-arrival statistics. */
assert(base[idx].number_of_adds < UINT64_MAX);
base[idx].number_of_adds += 1;
if (base[idx].number_of_adds == 1) base[idx].first_add_time = c_time;
base[idx].latest_add_time = c_time;
return 0;
}
/*
* Get the job and inform values from the queue. Return 1 if the queue is
* empty, otherwise return 0.
*/
static unsigned remove_from_queue(int64_t idx, p_vpi_vecval job,
p_vpi_vecval inform)
{
PLI_INT32 type = base[idx].type;
PLI_INT32 head = base[idx].head;
PLI_INT32 elems = base[idx].elems - 1;
PLI_INT32 loc;
s_vpi_time cur_time;
uint64_t c_time;
assert(elems >= -1);
/* If the queue is empty we can't remove anything. */
if (elems < 0) return 1;
/* Decrement the number of element in the queue structure since one
* will be removed.*/
base[idx].elems -= 1;
/* Remove the job and inform from the queue. */
if (type == IVL_QUEUE_LIFO) {
assert(head == 0); /* For a LIFO head must always be zero. */
loc = elems;
} else {
assert(type == IVL_QUEUE_FIFO);
loc = head;
if (head + 1 == base[idx].length) base[idx].head = 0;
else base[idx].head += 1;
}
job->aval = base[idx].queue[loc].job.aval;
job->bval = base[idx].queue[loc].job.bval;
inform->aval = base[idx].queue[loc].inform.aval;
inform->bval = base[idx].queue[loc].inform.bval;
/* Get the current simulation time. */
cur_time.type = vpiSimTime;
vpi_get_time(NULL, &cur_time);
c_time = cur_time.high;
c_time <<= 32;
c_time |= cur_time.low;
/* Set the shortest wait time if needed. */
assert(c_time >= base[idx].queue[loc].time);
c_time -= base[idx].queue[loc].time;
if (c_time < base[idx].shortest_wait_time) {
base[idx].shortest_wait_time = c_time;
}
base[idx].have_shortest_statistic = 1;
/* Add the current element wait time to the total wait time. */
add_to_wait_time(&(base[idx].wait_time_high), &(base[idx].wait_time_low),
c_time);
return 0;
}
/*
* Return the current queue length.
*/
static PLI_INT32 get_current_queue_length(int64_t idx)
{
return base[idx].elems;
}
/*
* Return the maximum queue length.
*/
static PLI_INT32 get_maximum_queue_length(int64_t idx)
{
return base[idx].max_len;
}
/*
* Return the longest wait time in the queue in base simulation units.
* Make sure to check that there are elements in the queue before calling
* this routine. The caller will need to scale the time as appropriate.
*/
static uint64_t get_longest_queue_time(int64_t idx)
{
s_vpi_time cur_time;
uint64_t c_time;
/* Get the current simulation time. */
cur_time.type = vpiSimTime;
vpi_get_time(NULL, &cur_time);
c_time = cur_time.high;
c_time <<= 32;
c_time |= cur_time.low;
/* Subtract the element with the longest time (the head) from the
* current time. */
assert(c_time >= base[idx].queue[base[idx].head].time);
c_time -= base[idx].queue[base[idx].head].time;
return c_time;
}
/*
* Check to see if there are inter-arrival time statistics.
*/
static unsigned have_interarrival_statistic(int64_t idx)
{
return (base[idx].number_of_adds >= 2U);
}
/*
* Return the mean inter-arrival time for the queue. This is just the
* latest add time minus the first add time divided be the number of time
* deltas (the number of adds - 1).
*/
static uint64_t get_mean_interarrival_time(int64_t idx)
{
return ((base[idx].latest_add_time - base[idx].first_add_time) /
(base[idx].number_of_adds - 1U));
}
/*
* Check to see if there are shortest wait time statistics.
*/
static unsigned have_shortest_wait_statistic(int64_t idx)
{
return (base[idx].have_shortest_statistic != 0);
}
/*
* Return the shortest amount of time an element has waited in the queue.
*/
static uint64_t get_shortest_wait_time(int64_t idx)
{
return base[idx].shortest_wait_time;
}
/*
* Check to see if we have an average wait time statistics.
*/
static unsigned have_average_wait_statistic(int64_t idx)
{
return (base[idx].number_of_adds >= 1U);
}
/*
* Return the average wait time in the queue.
*/
static uint64_t get_average_wait_time(int64_t idx)
{
PLI_INT32 length = base[idx].length;
PLI_INT32 loc = base[idx].head;
PLI_INT32 elems = base[idx].elems;
PLI_INT32 count;
/* Initialize the high and low time with the current total time. */
uint64_t high = base[idx].wait_time_high;
uint64_t low = base[idx].wait_time_low;
s_vpi_time cur_time;
uint64_t c_time;
/* Get the current simulation time. */
cur_time.type = vpiSimTime;
vpi_get_time(NULL, &cur_time);
c_time = cur_time.high;
c_time <<= 32;
c_time |= cur_time.low;
/* For each element still in the queue, add its wait time to the
* total wait time. */
for (count = 0; count < elems; count += 1) {
uint64_t add_time = base[idx].queue[loc].time;
assert(c_time >= add_time);
add_to_wait_time(&high, &low, c_time-add_time);
/* Move to the next element. */
loc += 1;
if (loc == length) loc = 0;
}
/* Return the average wait time. */
return calc_average_wait_time(high, low, base[idx].number_of_adds);
}
/*
* Check to see if the given id already exists. Return the index for the
* queue if it exists, otherwise return -1.
*/
static int64_t get_id_index(PLI_INT32 id)
{
int64_t idx;
for (idx = 0; idx < base_len; idx += 1) {
if (id == base[idx].id) return idx;
}
return -1;
}
/*
* Check to see if the given value is bit based and has 32 or fewer bits.
*/
static unsigned is_32_or_smaller_obj(vpiHandle obj)
{
PLI_INT32 const_type;
unsigned rtn = 0;
assert(obj);
switch(vpi_get(vpiType, obj)) {
case vpiConstant:
case vpiParameter:
const_type = vpi_get(vpiConstType, obj);
if ((const_type != vpiRealConst) &&
(const_type != vpiStringConst)) rtn = 1;
break;
/* These can have valid 32 bit or smaller numeric values. */
case vpiIntegerVar:
case vpiBitVar:
case vpiByteVar:
case vpiShortIntVar:
case vpiIntVar:
case vpiMemoryWord:
case vpiNet:
case vpiPartSelect:
case vpiReg:
rtn = 1;
break;
}
/* The object must be 32 bits or smaller. */
if (vpi_get(vpiSize, obj) > 32) rtn = 0;
return rtn;
}
/*
* Check to see if the argument is a variable that is exactly 32 bits in size.
*/
static void check_var_arg_32(vpiHandle arg, vpiHandle callh,
const char *name, const char *desc)
{
assert(arg);
switch (vpi_get(vpiType, arg)) {
case vpiMemoryWord:
case vpiPartSelect:
case vpiBitVar:
case vpiReg: // Check that we have exactly 32 bits.
if (vpi_get(vpiSize, arg) != 32) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s's %s (variable) argument must be 32 bits.\n",
name, desc);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
}
case vpiIntegerVar:
case vpiIntVar:
break;
default:
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s's %s argument must be a 32 bit variable.\n",
name, desc);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
}
}
/*
* Check to see if the argument is a variable of at least 32 bits.
*/
static void check_var_arg_large(vpiHandle arg, vpiHandle callh,
const char *name, const char *desc)
{
assert(arg);
switch (vpi_get(vpiType, arg)) {
case vpiMemoryWord:
case vpiPartSelect:
case vpiBitVar:
case vpiReg: // Check that we have at least 32 bits.
if (vpi_get(vpiSize, arg) < 32) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s's %s (variable) argument must have at least "
"32 bits.\n", name, desc);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
}
case vpiIntegerVar:
case vpiIntVar:
case vpiLongIntVar:
case vpiTimeVar:
break;
default:
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s's %s argument must be a variable.\n", name, desc);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
}
}
/*
* Check that the given number of arguments are numeric.
*/
static unsigned check_numeric_args(vpiHandle argv, unsigned count,
vpiHandle callh, const char *name)
{
unsigned idx;
/* Check that the first count arguments are numeric. Currently
* only three are needed/supported. */
for (idx = 0; idx < count; idx += 1) {
const char *loc = NULL;
vpiHandle arg = vpi_scan(argv);
/* Get the name for this argument. */
switch (idx) {
case 0: loc = "first"; break;
case 1: loc = "second"; break;
case 2: loc = "third"; break;
default: assert(0);
}
/* Check that there actually is an argument. */
if (! arg) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s requires a %s (<= 32 bit numeric) argument.\n",
name, loc);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
return 1;
}
/* Check that it is no more than 32 bits. */
if (! is_32_or_smaller_obj(arg)) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s's %s argument must be numeric (<= 32 bits).\n",
name, loc);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
}
}
return 0;
}
/*
* Check to see if the given argument is valid (does not have any X/Z bits).
* Return zero if it is valid and a positive value if it is invalid.
*/
static unsigned get_valid_32(vpiHandle arg, PLI_INT32 *value)
{
PLI_INT32 size, mask;
s_vpi_value val;
size = vpi_get(vpiSize, arg);
/* The compiletf routine should have already verified that this is
* <= 32 bits. */
assert((size <= 32) && (size > 0));
/* Create a mask so that we only check the appropriate bits. */
mask = UINT32_MAX >> (32 - size);
/* Get the value and return the possible integer value in the value
* variable. Return the b-value bits to indicate if the value is
* undefined (has X/Z bit). */
val.format = vpiVectorVal;
vpi_get_value(arg, &val);
*value = val.value.vector->aval & mask;
/* If the argument is signed and less than 32 bit we need to sign
* extend the value. */
if (vpi_get(vpiSigned, arg) && (size < 32)) {
if ((*value) & (1 << (size - 1))) *value |= ~mask;
}
return (val.value.vector->bval & mask);
}
static void get_four_state(vpiHandle arg, p_vpi_vecval vec)
{
PLI_INT32 size, mask;
s_vpi_value val;
size = vpi_get(vpiSize, arg);
/* The compiletf routine should have already verified that this is
* <= 32 bits. */
assert((size <= 32) && (size > 0));
/* Create a mask so that we only use the appropriate bits. */
mask = UINT32_MAX >> (32 - size);
/* Get the bits for the argument and save them in the return value. */
val.format = vpiVectorVal;
vpi_get_value(arg, &val);
vec->aval = val.value.vector->aval & mask;
vec->bval = val.value.vector->bval & mask;
/* If the argument is signed and less than 32 bit we need to sign
* extend the value. */
if (vpi_get(vpiSigned, arg) && (size < 32)) {
if (vec->aval & (1 << (size - 1))) vec->aval |= ~mask;
if (vec->bval & (1 << (size - 1))) vec->bval |= ~mask;
}
}
/*
* Fill the passed variable with x.
*/
static void fill_variable_with_x(vpiHandle var)
{
s_vpi_value val;
PLI_INT32 words = ((vpi_get(vpiSize, var) - 1) / 32) + 1;
PLI_INT32 idx;
p_vpi_vecval val_ptr = (p_vpi_vecval) malloc(words*sizeof(s_vpi_vecval));
assert(val_ptr);
/* Fill the vector with X. */
for (idx = 0; idx < words; idx += 1) {
val_ptr[idx].aval = 0xffffffff;
val_ptr[idx].bval = 0xffffffff;
}
/* Put the vector to the variable. */
val.format = vpiVectorVal;
val.value.vector = val_ptr;
vpi_put_value(var, &val, 0, vpiNoDelay);
free(val_ptr);
}
/*
* Fill the passed variable with the passed value if it fits. If it doesn't
* fit then set all bits to one and return that the value is too big instead
* of the normal OK. The value is a time and needs to be scaled to the
* calling module's timescale.
*/
static PLI_INT32 fill_variable_with_scaled_time(vpiHandle var, uint64_t c_time)
{
s_vpi_value val;
PLI_INT32 size = vpi_get(vpiSize, var);
PLI_INT32 is_signed = vpi_get(vpiSigned, var);
PLI_INT32 words = ((size - 1) / 32) + 1;
uint64_t max_val = 0;
uint64_t scale = 1;
uint64_t frac;
PLI_INT32 rtn, units, prec;
p_vpi_vecval val_ptr = (p_vpi_vecval) malloc(words*sizeof(s_vpi_vecval));
assert(val_ptr);
assert(size >= 32);
assert(words > 0);
/* Scale the variable to match the calling module's timescale. */
prec = vpi_get(vpiTimePrecision, 0);
units = vpi_get(vpiTimeUnit, vpi_handle(vpiModule, var));
assert(units >= prec);
while (units > prec) {
scale *= 10;
units -= 1;
}
frac = c_time % scale;
c_time /= scale;
if ((scale > 1) && (frac >= scale/2)) c_time += 1;
/* Find the maximum value + 1 that can be put into the variable. */
if (size < 64) {
max_val = 1;
max_val <<= (size - is_signed);
}
/* If the time is too big to fit then return the maximum positive
* value and that the value overflowed. Otherwise, return the time
* and OK. */
if (max_val && (c_time >= max_val)) {
/* For a single word only the MSB is cleared if signed. */
if (words == 1) {
if (is_signed) {
val_ptr[0].aval = 0x7fffffff;
} else {
val_ptr[0].aval = 0xffffffff;
}
val_ptr[0].bval = 0x00000000;
/* For two words the lower word is filled with 1 and the top
* word has a size dependent fill if signed. */
} else {
assert(words == 2);
val_ptr[0].aval = 0xffffffff;
val_ptr[0].bval = 0x00000000;
if (is_signed) {
val_ptr[1].aval = ~(UINT32_MAX >> (size - 32));
} else {
val_ptr[1].aval = 0xffffffff;
}
val_ptr[1].bval = 0x00000000;
}
rtn = IVL_QUEUE_VALUE_OVERFLOWED;
} else {
/* Fill the vector with 0. */
for (PLI_INT32 idx = 0; idx < words; idx += 1) {
val_ptr[idx].aval = 0x00000000;
val_ptr[idx].bval = 0x00000000;
}
/* Add the time to the vector. */
switch (words) {
default:
val_ptr[1].aval = (c_time >> 32) & 0xffffffff;
// fallthrough
case 1:
val_ptr[0].aval = c_time & 0xffffffff;
}
rtn = IVL_QUEUE_OK;
}
/* Put the vector to the variable. */
val.format = vpiVectorVal;
val.value.vector = val_ptr;
vpi_put_value(var, &val, 0, vpiNoDelay);
free(val_ptr);
return rtn;
}
/*
* Check that the given $q_initialize() call has valid arguments.
*/
static PLI_INT32 sys_q_initialize_compiletf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
vpiHandle argv = vpi_iterate(vpiArgument, callh);
vpiHandle arg;
/* Check that there are arguments. */
if (argv == 0) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s requires four arguments.\n", name);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
return 0;
}
/* Check that the first three arguments (the id, type and maximum
* length) are numeric. */
if (check_numeric_args(argv, 3, callh, name)) return 0;
/* The fourth argument (the status) must be a variable. */
arg = vpi_scan(argv);
if (! arg) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s requires a fourth (variable) argument.\n", name);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
return 0;
}
/* Check that the status argument is a 32 bit variable. */
check_var_arg_32(arg, callh, name, "fourth");
/* Make sure there are no extra arguments. */
check_for_extra_args(argv, callh, name, "four arguments", 0);
return 0;
}
/*
* The runtime code for $q_initialize().
*/
static PLI_INT32 sys_q_initialize_calltf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
vpiHandle argv = vpi_iterate(vpiArgument, callh);
vpiHandle status;
PLI_INT32 id, type, length;
s_vpi_value val;
unsigned invalid_id, invalid_type, invalid_length;
(void)name; /* Parameter is not used. */
/* Get the id. */
invalid_id = get_valid_32(vpi_scan(argv), &id);
/* Get the queue type. */
invalid_type = get_valid_32(vpi_scan(argv), &type);
/* Get the queue maximum length. */
invalid_length = get_valid_32(vpi_scan(argv), &length);
/* Get the status variable. */
status = vpi_scan(argv);
/* We are done with the argument iterator so free it. */
vpi_free_object(argv);
/* If the id is invalid then return. */
if (invalid_id) {
val.format = vpiIntVal;
val.value.integer = IVL_QUEUE_UNDEFINED_ID;
vpi_put_value(status, &val, 0, vpiNoDelay);
return 0;
}
/* Verify that the type is valid. */
if (invalid_type || ((type != IVL_QUEUE_FIFO) &&
(type != IVL_QUEUE_LIFO))) {
val.format = vpiIntVal;
val.value.integer = IVL_QUEUE_UNSUPPORTED_TYPE;
vpi_put_value(status, &val, 0, vpiNoDelay);
return 0;
}
/* Verify that the queue length is greater than zero. */
if (invalid_length || (length <= 0)) {
val.format = vpiIntVal;
val.value.integer = IVL_QUEUE_INVALID_LENGTH;
vpi_put_value(status, &val, 0, vpiNoDelay);
return 0;
}
/* Check that this is not a duplicate queue id. */
if (get_id_index(id) >= 0) {
val.format = vpiIntVal;
val.value.integer = IVL_QUEUE_DUPLICATE_ID;
vpi_put_value(status, &val, 0, vpiNoDelay);
return 0;
}
/* Create the queue and fail if we do not have enough memory. */
if (create_queue(id, type, length)) {
val.format = vpiIntVal;
val.value.integer = IVL_QUEUE_OUT_OF_MEMORY;
vpi_put_value(status, &val, 0, vpiNoDelay);
return 0;
}
/* The queue was initialized correctly so return OK. */
val.format = vpiIntVal;
val.value.integer = IVL_QUEUE_OK;
vpi_put_value(status, &val, 0, vpiNoDelay);
return 0;
}
/*
* Check that the given $q_add() call has valid arguments.
*/
static PLI_INT32 sys_q_add_compiletf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
vpiHandle argv = vpi_iterate(vpiArgument, callh);
vpiHandle arg;
/* Check that there are arguments. */
if (argv == 0) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s requires four arguments.\n", name);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
return 0;
}
/* Check that the first three arguments (the id, job and information)
* are numeric. */
if (check_numeric_args(argv, 3, callh, name)) return 0;
/* The fourth argument (the status) must be a variable. */
arg = vpi_scan(argv);
if (! arg) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s requires a fourth (variable) argument.\n", name);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
return 0;
}
/* Check that the status argument is a 32 bit variable. */
check_var_arg_32(arg, callh, name, "fourth");
/* Make sure there are no extra arguments. */
check_for_extra_args(argv, callh, name, "four arguments", 0);
return 0;
}
/*
* The runtime code for $q_add().
*/
static PLI_INT32 sys_q_add_calltf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
vpiHandle argv = vpi_iterate(vpiArgument, callh);
vpiHandle status;
PLI_INT32 id;
int64_t idx;
s_vpi_vecval job, inform;
s_vpi_value val;
unsigned invalid_id;
(void)name; /* Parameter is not used. */
/* Get the id. */
invalid_id = get_valid_32(vpi_scan(argv), &id);
/* Get the job. */
get_four_state(vpi_scan(argv), &job);
/* Get the value. */
get_four_state(vpi_scan(argv), &inform);
/* Get the status variable. */
status = vpi_scan(argv);
/* We are done with the argument iterator so free it. */
vpi_free_object(argv);
/* Verify that the id is valid. */
idx = get_id_index(id);
if (invalid_id || (idx < 0)) {
val.format = vpiIntVal;
val.value.integer = IVL_QUEUE_UNDEFINED_ID;
vpi_put_value(status, &val, 0, vpiNoDelay);
return 0;
}
/* Add the data to the queue if it is not already full. */
if (add_to_queue(idx, &job, &inform)) {
val.format = vpiIntVal;
val.value.integer = IVL_QUEUE_FULL;
vpi_put_value(status, &val, 0, vpiNoDelay);
return 0;
}
/* The data was added to the queue so return OK. */
val.format = vpiIntVal;
val.value.integer = IVL_QUEUE_OK;
vpi_put_value(status, &val, 0, vpiNoDelay);
return 0;
}
/*
* Check that the given $q_remove() call has valid arguments.
*/
static PLI_INT32 sys_q_remove_compiletf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
vpiHandle argv = vpi_iterate(vpiArgument, callh);
vpiHandle arg;
/* Check that there are arguments. */
if (argv == 0) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s requires four arguments.\n", name);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
return 0;
}
/* The first argument (the id) must be numeric. */
if (! is_32_or_smaller_obj(vpi_scan(argv))) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s's first argument must be numeric (<= 32 bits).\n",
name);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
}
/* The second argument (the job id) must be a variable. */
arg = vpi_scan(argv);
if (! arg) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s requires a second (variable) argument.\n", name);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
return 0;
}
/* Check that the job id argument is a 32 bit variable. */
check_var_arg_32(arg, callh, name, "second");
/* The third argument (the information id) must be a variable. */
arg = vpi_scan(argv);
if (! arg) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s requires a third (variable) argument.\n", name);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
return 0;
}
/* Check that the information id argument is a 32 bit variable. */
check_var_arg_32(arg, callh, name, "third");
/* The fourth argument (the status) must be a variable. */
arg = vpi_scan(argv);
if (! arg) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s requires a fourth (variable) argument.\n", name);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
return 0;
}
/* Check that the status argument is a 32 bit variable. */
check_var_arg_32(arg, callh, name, "fourth");
/* Make sure there are no extra arguments. */
check_for_extra_args(argv, callh, name, "four arguments", 0);
return 0;
}
/*
* The runtime code for $q_remove().
*/
static PLI_INT32 sys_q_remove_calltf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
vpiHandle argv = vpi_iterate(vpiArgument, callh);
vpiHandle job, inform, status;
PLI_INT32 id, idx;
s_vpi_vecval job_val, inform_val;
s_vpi_value val;
unsigned invalid_id;
(void)name; /* Parameter is not used. */
/* Get the id. */
invalid_id = get_valid_32(vpi_scan(argv), &id);
/* Get the job variable. */
job = vpi_scan(argv);
/* Get the inform variable. */
inform = vpi_scan(argv);
/* Get the status variable. */
status = vpi_scan(argv);
/* We are done with the argument iterator so free it. */
vpi_free_object(argv);
/* Verify that the id is valid. */
idx = get_id_index(id);
if (invalid_id || (idx < 0)) {
fill_variable_with_x(job);
fill_variable_with_x(inform);
val.format = vpiIntVal;
val.value.integer = IVL_QUEUE_UNDEFINED_ID;
vpi_put_value(status, &val, 0, vpiNoDelay);
return 0;
}
/* Remove the data from the queue if it is not already empty. */
if (remove_from_queue(idx, &job_val, &inform_val)) {
fill_variable_with_x(job);
fill_variable_with_x(inform);
val.format = vpiIntVal;
val.value.integer = IVL_QUEUE_EMPTY;
vpi_put_value(status, &val, 0, vpiNoDelay);
return 0;
}
val.format = vpiVectorVal;
val.value.vector = &job_val;
vpi_put_value(job, &val, 0, vpiNoDelay);
val.format = vpiVectorVal;
val.value.vector = &inform_val;
vpi_put_value(inform, &val, 0, vpiNoDelay);
/* The data was added to the queue so return OK. */
val.format = vpiIntVal;
val.value.integer = IVL_QUEUE_OK;
vpi_put_value(status, &val, 0, vpiNoDelay);
return 0;
}
/*
* Check that the given $q_full() call has valid arguments.
*/
static PLI_INT32 sys_q_full_compiletf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
vpiHandle argv = vpi_iterate(vpiArgument, callh);
vpiHandle arg;
/* Check that there are arguments. */
if (argv == 0) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s requires two arguments.\n", name);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
return 0;
}
/* The first argument (the id) must be numeric. */
if (! is_32_or_smaller_obj(vpi_scan(argv))) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s's first argument must be numeric (<= 32 bits).\n",
name);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
}
/* The second argument (the status) must be a variable. */
arg = vpi_scan(argv);
if (! arg) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s requires a second (variable) argument.\n", name);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
return 0;
}
/* Check that the status argument is a 32 bit variable. */
check_var_arg_32(arg, callh, name, "second");
/* Make sure there are no extra arguments. */
check_for_extra_args(argv, callh, name, "two arguments", 0);
return 0;
}
/*
* The runtime code for $q_full().
*/
static PLI_INT32 sys_q_full_calltf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
vpiHandle argv = vpi_iterate(vpiArgument, callh);
vpiHandle status;
PLI_INT32 id, idx;
s_vpi_value val;
unsigned invalid_id;
(void)name; /* Parameter is not used. */
/* Get the id. */
invalid_id = get_valid_32(vpi_scan(argv), &id);
/* Get the status variable. */
status = vpi_scan(argv);
/* We are done with the argument iterator so free it. */
vpi_free_object(argv);
/* Verify that the id is valid. */
idx = get_id_index(id);
if (invalid_id || (idx < 0)) {
val.format = vpiIntVal;
val.value.integer = IVL_QUEUE_UNDEFINED_ID;
vpi_put_value(status, &val, 0, vpiNoDelay);
fill_variable_with_x(callh);
return 0;
}
/* Get the queue state and return it. */
val.format = vpiIntVal;
if (is_queue_full(idx)) val.value.integer = 1;
else val.value.integer = 0;
vpi_put_value(callh, &val, 0, vpiNoDelay);
/* The queue state was passed back so return OK. */
val.format = vpiIntVal;
val.value.integer = IVL_QUEUE_OK;
vpi_put_value(status, &val, 0, vpiNoDelay);
return 0;
}
/*
* Check that the given $q_exam() call has valid arguments.
*/
static PLI_INT32 sys_q_exam_compiletf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
vpiHandle argv = vpi_iterate(vpiArgument, callh);
vpiHandle arg;
/* Check that there are arguments. */
if (argv == 0) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s requires four arguments.\n", name);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
return 0;
}
/* Check that the first two arguments (the id and code) are numeric. */
if (check_numeric_args(argv, 2, callh, name)) return 0;
/* The third argument (the value) must be a variable. */
arg = vpi_scan(argv);
if (! arg) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s requires a third (variable) argument.\n", name);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
return 0;
}
/* Check that the value argument is a variable with at least
* 32 bits. */
check_var_arg_large(arg, callh, name, "third");
/* The fourth argument (the status) must be a variable. */
arg = vpi_scan(argv);
if (! arg) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s requires a fourth (variable) argument.\n", name);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
return 0;
}
/* Check that the status argument is a 32 bit variable. */
check_var_arg_32(arg, callh, name, "fourth");
/* Make sure there are no extra arguments. */
check_for_extra_args(argv, callh, name, "two arguments", 0);
return 0;
}
/*
* The runtime code for $q_exam().
*/
static PLI_INT32 sys_q_exam_calltf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
vpiHandle argv = vpi_iterate(vpiArgument, callh);
vpiHandle value, status;
PLI_INT32 id, code, idx, rtn;
s_vpi_value val;
unsigned invalid_id, invalid_code;
(void)name; /* Parameter is not used. */
/* Get the id. */
invalid_id = get_valid_32(vpi_scan(argv), &id);
/* Get the code. */
invalid_code = get_valid_32(vpi_scan(argv), &code);
/* Get the value variable. */
value = vpi_scan(argv);
/* Get the status variable. */
status = vpi_scan(argv);
/* We are done with the argument iterator so free it. */
vpi_free_object(argv);
/* Verify that the id is valid. */
idx = get_id_index(id);
if (invalid_id || (idx < 0)) {
fill_variable_with_x(value);
val.format = vpiIntVal;
val.value.integer = IVL_QUEUE_UNDEFINED_ID;
vpi_put_value(status, &val, 0, vpiNoDelay);
return 0;
}
/* Verify that the code is valid. */
if (invalid_code || (code <= 0) || (code > 6)) {
fill_variable_with_x(value);
val.format = vpiIntVal;
val.value.integer = IVL_QUEUE_UNDEFINED_STAT_CODE;
vpi_put_value(status, &val, 0, vpiNoDelay);
return 0;
}
rtn = IVL_QUEUE_OK;
/* Calculate the requested queue information. */
switch (code) {
/* The current queue length. */
case IVL_QUEUE_LENGTH:
val.format = vpiIntVal;
val.value.integer = get_current_queue_length(idx);
vpi_put_value(value, &val, 0, vpiNoDelay);
break;
/* The mean inter-arrival time. */
case IVL_QUEUE_MEAN:
if (have_interarrival_statistic(idx) == 0) {
fill_variable_with_x(value);
rtn = IVL_QUEUE_NO_STATISTICS;
} else {
uint64_t ia_time = get_mean_interarrival_time(idx);
rtn = fill_variable_with_scaled_time(value, ia_time);
}
break;
/* The maximum queue length. */
case IVL_QUEUE_MAX_LENGTH:
val.format = vpiIntVal;
val.value.integer = get_maximum_queue_length(idx);
vpi_put_value(value, &val, 0, vpiNoDelay);
break;
/* The shortest queue wait time ever. */
case IVL_QUEUE_SHORTEST:
if (have_shortest_wait_statistic(idx) == 0) {
fill_variable_with_x(value);
rtn = IVL_QUEUE_NO_STATISTICS;
} else {
uint64_t sw_time = get_shortest_wait_time(idx);
rtn = fill_variable_with_scaled_time(value, sw_time);
}
break;
/* The longest wait time for elements still in the queue. */
case IVL_QUEUE_LONGEST:
if (get_current_queue_length(idx) == 0) {
fill_variable_with_x(value);
rtn = IVL_QUEUE_NO_STATISTICS;
} else {
uint64_t lq_time = get_longest_queue_time(idx);
rtn = fill_variable_with_scaled_time(value, lq_time);
}
break;
/* The average queue wait time. */
case IVL_QUEUE_AVERAGE:
if (have_average_wait_statistic(idx) == 0) {
fill_variable_with_x(value);
rtn = IVL_QUEUE_NO_STATISTICS;
} else {
uint64_t aw_time = get_average_wait_time(idx);
rtn = fill_variable_with_scaled_time(value, aw_time);
}
break;
default:
assert(0);
}
/* The queue information was passed back so now return the status. */
val.format = vpiIntVal;
val.value.integer = rtn;
vpi_put_value(status, &val, 0, vpiNoDelay);
return 0;
}
/*
* Routine to register the system tasks/functions provided in this file.
*/
void sys_queue_register(void)
{
s_vpi_systf_data tf_data;
s_cb_data cb;
vpiHandle res;
tf_data.type = vpiSysTask;
tf_data.tfname = "$q_initialize";
tf_data.calltf = sys_q_initialize_calltf;
tf_data.compiletf = sys_q_initialize_compiletf;
tf_data.sizetf = 0;
tf_data.user_data = "$q_initialize";
res = vpi_register_systf(&tf_data);
vpip_make_systf_system_defined(res);
tf_data.type = vpiSysTask;
tf_data.tfname = "$q_add";
tf_data.calltf = sys_q_add_calltf;
tf_data.compiletf = sys_q_add_compiletf;
tf_data.sizetf = 0;
tf_data.user_data = "$q_add";
res = vpi_register_systf(&tf_data);
vpip_make_systf_system_defined(res);
tf_data.type = vpiSysTask;
tf_data.tfname = "$q_remove";
tf_data.calltf = sys_q_remove_calltf;
tf_data.compiletf = sys_q_remove_compiletf;
tf_data.sizetf = 0;
tf_data.user_data = "$q_remove";
res = vpi_register_systf(&tf_data);
vpip_make_systf_system_defined(res);
tf_data.type = vpiSysFunc;
tf_data.sysfunctype = vpiSysFuncInt;
tf_data.tfname = "$q_full";
tf_data.calltf = sys_q_full_calltf;
tf_data.compiletf = sys_q_full_compiletf;
tf_data.sizetf = 0; /* Not needed for a vpiSysFuncInt. */
tf_data.user_data = "$q_full";
res = vpi_register_systf(&tf_data);
vpip_make_systf_system_defined(res);
tf_data.type = vpiSysTask;
tf_data.tfname = "$q_exam";
tf_data.calltf = sys_q_exam_calltf;
tf_data.compiletf = sys_q_exam_compiletf;
tf_data.sizetf = 0;
tf_data.user_data = "$q_exam";
res = vpi_register_systf(&tf_data);
vpip_make_systf_system_defined(res);
/* Create a callback to clear all the queue memory when the
* simulator finishes. */
cb.time = NULL;
cb.reason = cbEndOfSimulation;
cb.cb_rtn = cleanup_queue;
cb.user_data = 0x0;
cb.obj = 0x0;
vpi_register_cb(&cb);
}
|