1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
|
\sethebrew
\bchapter{ -\L{UNIX}}{Distributed Calculatiuon in UNIX}
\begin{table}
\begin{center}
\begin{tabular}{|l|c|r|} \hline
\R{} & \R{ } & \R{} \\ \hline
\R{2 } & \L{apples} & .1 \\
\R{4 } & \L{oranges} & .2 \\
\R{5.2 } & \L{bananas} & .3 \\
\R{3 } & \L{mango} & .4 \\ \hline
\end{tabular}
\end{center}
\bcaptiont{ }{Third Table}
\label{table1}
\end{table}
,
$C_0(r)$ - $C_1(r)$.
\bsection{ }{Definitions}
, ,
$\cal D$
- )
~\ref{table1}(,
. ,
.
$P \in {\cal S}$ )
$R(t, r)$(
$\cal D$ $P$.
. ,
$t_1 = t_2 = t_0$
.
$s$
$C(s) = R(t_0, s)$ .
\\
$\{(t_0, s_1), (t_0, s_2)\}$ -
$\{(t_0, s_3), (t_0, s_4)\}$,
\[
\begin{array}{r}
R(t_0, s_1) = R(t_0, s_2) = P_1,~ R(t_0, s_3) = R(t_0, s_4) = P_2 \\
s_1 < s_3 < s_4 < s_2
\end{array}
\]
- $\bar{s_i}$ $s_i$,
\L{i = 1, 2, 3, 4}.
\[
\bar{s_1} = s_1 - \varepsilon_1,~
\bar{s_2} = s_2 + \varepsilon_2,~
\bar{s_3} = s_3 + \varepsilon_3,~
\bar{s_4} = s_4 - \varepsilon_4
\]
$\bar{s_i} = s_i \pm \varepsilon_i$,
) ~\ref{table1}(
$\varepsilon_i$ -
$R(t, s)$.
$C(s) = R(t_0, s)$
$R(t, s)$, \L{\\}
$t_0 \equiv$ -
$s \in [0, 1]$.
|