1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
#include "sha256.h"
/**
* SHA256 Hashing
* @addr: pointers to the data area
* @len: Lengths of the data block
* @res: Buffer for the digest
* Returns: 0 on success, -1 of failure
*/
int sha256(const unsigned char *addr, const size_t len,
unsigned char *res)
{
struct sha256_state ctx;
sha256_init(&ctx);
if (sha256_process(&ctx, addr, len) || sha256_done(&ctx, res))
return -1;
return 0;
}
/** ===== start - public domain SHA256 implementation ===== */
/** This is based on SHA256 implementation in LibTomCrypt that was released into
* public domain by Tom St Denis.
*/
/** the K array */
static const unsigned long K[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
/** Various logical functions */
#define RORc(x, y) \
(((((unsigned long) (x) & 0xFFFFFFFFUL) >> (unsigned long) ((y) & 31)) | \
((unsigned long) (x) << (unsigned long) (32 - ((y) & 31)))) & 0xFFFFFFFFUL)
#define Ch(x, y, z) (z ^ (x & (y ^ z)))
#define Maj(x, y, z) (((x | y) & z) | (x & y))
#define S(x, n) RORc((x), (n))
#define R(x, n) (((x)&0xFFFFFFFFUL)>>(n))
#define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
#define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
#define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
#define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
#ifndef MIN
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
#endif
/* compress 512-bits */
static int sha256_compress(struct sha256_state *md, const unsigned char *buf)
{
__u32 S[8], W[64], t0, t1;
__u32 t;
int i;
/* copy state into S */
for (i = 0; i < 8; i++)
S[i] = md->state[i];
/* copy the state into 512-bits into W[0..15] */
for (i = 0; i < 16; i++)
W[i] = LOAD32B(buf + (4 * i));
/* fill W[16..63] */
for (i = 16; i < 64; i++)
W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
/* Compress */
#define RND(a, b, c, d, e, f, g, h, i) \
t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
t1 = Sigma0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
for (i = 0; i < 64; ++i) {
RND(S[0], S[1], S[2], S[3], S[4], S[5], S[6], S[7], i);
t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4];
S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t;
}
/* feedback */
for (i = 0; i < 8; i++)
md->state[i] = md->state[i] + S[i];
return 0;
}
/* Initialize the hash state */
void sha256_init(struct sha256_state *md)
{
md->curlen = 0;
md->length = 0;
md->state[0] = 0x6A09E667UL;
md->state[1] = 0xBB67AE85UL;
md->state[2] = 0x3C6EF372UL;
md->state[3] = 0xA54FF53AUL;
md->state[4] = 0x510E527FUL;
md->state[5] = 0x9B05688CUL;
md->state[6] = 0x1F83D9ABUL;
md->state[7] = 0x5BE0CD19UL;
}
/**
* Process a block of memory though the hash
* @param md The hash state
* @param in The data to hash
* @param inlen The length of the data (octets)
* @return CRYPT_OK if successful
*/
int sha256_process(struct sha256_state *md, const unsigned char *in,
unsigned long inlen)
{
unsigned long n;
if (md->curlen >= sizeof(md->buf))
return -1;
while (inlen > 0) {
if (md->curlen == 0 && inlen >= SHA256_BLOCK_SIZE) {
if (sha256_compress(md, (unsigned char *) in) < 0)
return -1;
md->length += SHA256_BLOCK_SIZE * 8;
in += SHA256_BLOCK_SIZE;
inlen -= SHA256_BLOCK_SIZE;
} else {
n = MIN(inlen, (SHA256_BLOCK_SIZE - md->curlen));
memcpy(md->buf + md->curlen, in, n);
md->curlen += n;
in += n;
inlen -= n;
if (md->curlen == SHA256_BLOCK_SIZE) {
if (sha256_compress(md, md->buf) < 0)
return -1;
md->length += 8 * SHA256_BLOCK_SIZE;
md->curlen = 0;
}
}
}
return 0;
}
/**
* Terminate the hash to get the digest
* @param md The hash state
* @param out [out] The destination of the hash (32 bytes)
* @return CRYPT_OK if successful
*/
int sha256_done(struct sha256_state *md, unsigned char *out)
{
int i;
if (md->curlen >= sizeof(md->buf))
return -1;
/* increase the length of the message */
md->length += md->curlen * 8;
/* append the '1' bit */
md->buf[md->curlen++] = (unsigned char) 0x80;
/* if the length is currently above 56 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (md->curlen > 56) {
while (md->curlen < SHA256_BLOCK_SIZE)
md->buf[md->curlen++] = (unsigned char) 0;
sha256_compress(md, md->buf);
md->curlen = 0;
}
/* pad up to 56 bytes of zeroes */
while (md->curlen < 56)
md->buf[md->curlen++] = (unsigned char) 0;
/* store length */
STORE64B(md->buf + 56, md->length);
sha256_compress(md, md->buf);
/* copy output */
for (i = 0; i < 8; i++)
STORE32B(out + (4 * i), md->state[i]);
return 0;
}
/* ===== end - public domain SHA256 implementation ===== */
|