File: ff.scm

package info (click to toggle)
jacal 1b7-2
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 808 kB
  • ctags: 884
  • sloc: lisp: 5,842; makefile: 316; sh: 104
file content (579 lines) | stat: -rw-r--r-- 19,046 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
;; "ff.scm" Polynomial factorization.		-*-scheme-*-
;; Copyright 1994, 1995 Mike Thomas
;; Copyright 1995, 1997, 1998, 1999, 2001, 2002 Aubrey Jaffer
;;
;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2 of the License, or (at
;; your option) any later version.
;; 
;; This program is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;; General Public License for more details.
;; 
;; You should have received a copy of the GNU General Public License
;; along with this program; if not, write to the Free Software
;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.


;;; AUTHOR
;;;	  Mike Thomas
;;;	  46 Harold Street
;;;	  STAFFORD  QLD	 4053
;;;	  AUSTRALIA
;;;
;;;	  Phone: Intl + 61 7 356 8494
;;;	  Email: mjt@octavia.anu.edu.au

;;; SOURCES
;;; These algorithms are drawn from:
;;;
;;; (GCL)
;;; Algorithms for Computer Algebra
;;;  by Keith O. Geddes, Stephen R. Czapor, George Labahn
;;;  (October 1992) Kluwer Academic Pub; ISBN: 0-7923-9259-0
;;;
;;; Computer Algebra: Systems and Algorithms for Algebraic Computation
;;;  by Y. Siret (Editor), E. Tournier, J. H. Davenport, F. Tournier
;;;  2nd edition (June 1993) Academic Press; ISBN: 0-122-04232-8
;;;
;;; The Art of Computer Programming : Seminumerical Algorithms (Vol 2)
;;;  by Donald Ervin Knuth
;;;  2nd Ed (1981) Addison-Wesley Pub Co; ISBN: 0-201-03822-6
;;; A new edition of this book is availble:
;;;  3rd Ed (November 1997) Addison-Wesley Pub Co; ISBN: 0-201-89684-2

;;; DEVELOPMENT LANGUAGE
;;; SCM 4e1, 4e2 compiled with DICE v 2.07.54

;;; DEVELOPMENT SYSTEM
;;; Amiga 1200, 2Mb Chip RAM, 4Mb Fast RAM, 50MHz 68030 CPU No FPU,
;;; Workbench 3.0 (until a power supply problem stuffed it that is.)

;;; DEPENDENCIES
;;; You need R4RS Scheme, SLIB and JACAL (latest versions).
;;; Multiargument *, +

;;; REPRESENTATIONS
;;; The modular homomorphism sym:sym maps the integers to a symmetric
;;; representation, following the numerous examples in GCL.  This
;;; mapping does not seem to correspond with GCL's own definition of Z
;;; mod n using a simple remainder algorithm.

;;; The univariate polynomials expected and returned by the Scheme
;;; procedures are JACAL's list representation, not numbers by
;;; themselves.  There is no attempt to cover sparse polynomials yet.

;;; An ideal is a list of lists, each one specifying a variable and
;;; it's value eg '((y 1) (z 2) (p -1)).

;;; DESIGN PHILOSOPHY

;;; 1. Fun;

;;; 2. Correct operation for univariate and multivariate polynomials
;;;    over the rationals (Q), then maybe over algebraic number fields;

;;; 3. refine the algorithms for speed after they work correctly;

;;; 4. make the system workable even for smaller computers, based on the
;;;    crude and discriminatory assumption that people who want to crack
;;;    large problems can afford to buy or write larger systems;

;;; 5. and ideally, I want the system to handle investigation of the
;;;    stability of systems of differential equations which requires
;;;    algebraic solution of eigensystems, and for an attempt on the
;;;    Risch integration algorithm.

;;; I have therefore initially used Linear Hensel Lifting and the small
;;; prime Berlekamp Algorithm.  I make no attempt yet, among other
;;; possibilities, to optimise the factorisation process dynamically by
;;; checking several primes or restarting the algorithm on testing for
;;; true factors after the Berlekamp process.  Later, perhaps.

;;; NAMING
;;;	     u: univariate polynomials, should be JACAL's univ:
;;;	    ff: polynomials over finite integer fields using the
;;;		symmetric modular representation
;;;	   sym: symmetric representation of (modular) integers
;;;	  poly: Jacal polynomial types
;;;	   hen: Hensel lifting procedures

;;; ABBREVIATIONS
;;;	     Q:	The Rational numbers
;;;	     Z:	The integers

;;; ARGUMENT CODING CONVENTIONS
;;;	    ff: the modulus argument is the last in the argument list

;;; KNOWN BUGS

;;; -- factor((2*z+y-x)*(y^3*z-a*x^2)*(b*z^2+y));
;;;    factor((a*a*b*z+d)*(2*a*b*b*z+c)*((u+a)*z+1));
;;;    Hang my presently memory challenged computer during poly:sff
;;;    probably because of lack of room

;;; -- Parfrac worketh not.  Wherefore?  Because I trieth too hard to
;;;    be clevereth.  This one can wait.

;;; -- The result is not always sorted or normalised.


;;; KNOWN MINOR PROBLEMS (FROM MY POINT OF VIEW)

;;; -- Output format sometimes gets misaligned.

;;; -- Speed is not great.  See DESIGN PHILOSOPHY above.

;;; -- Factorization over Q needs to return monic polynomials if it is
;;;    to produce complete unique unit normal factorisations.
;;;    Factorisation over Z and Q would also need to factorise numeric
;;;    content in this case.

(require 'array)
(require 'array-for-each)
(require 'fluid-let)
(require 'common-list-functions)
(require 'modular)

(define sym:invert (lambda (m a) (modular:invert (symmetric:modulus m) a)))
(define sym:sym (lambda (m a) (modular:normalize (symmetric:modulus m) a)))

(define (modulus->array-prototype p . fill)
  (apply (cond ((not (number? p)) vector)
	       ((negative? p)
		(let ((len (integer-length (- p))))
		  (cond ((<= len  8) A:fixZ8b)
			((<= len 16) A:fixZ16b)
			((<= len 32) A:fixZ32b)
			(else vector))))
	       ((positive? p)
		(let ((len (integer-length (+ -1 p))))
		  (cond ((<= len  8) A:fixN8b)
			((<= len 16) A:fixN16b)
			((<= len 32) A:fixN32b)
			(else vector))))
	       (else vector))
	 fill))

(define (sym:array-prototype p . fill)
  (apply modulus->array-prototype (quotient p -2) fill))

;;; Reduce univariate p mod n and remove leading zero coefficients
(define (ff:unorm n p)
  (cons (car p)
	(cons (sym:sym n (cadr p))
	      (map-no-end-0s (lambda (x) (sym:sym n x)) (cddr p)))))

;;; Degree of (ff:unorm n p)
(define (ff:degree n p)
  (- (length (ff:unorm n p)) 2))

(define (ff:lc n p)
  (sym:sym n (univ:lc p)))

(define (ff:monic? n p)
  (and (not (univ:const? p)) (eqv? 1 (ff:lc n p))))

;;; Printer for diagnostic information
(define (ff:print . args)
  (define result #f)
  (for-each (lambda (x) (set! result x) (display-diag x) (display #\space)) args)
  (newline-diag)
  result)

;;;================================================================
;;; Standard Euclidean algorithm for polynomial gcd over Z mod n
(define ff:euclid-gcd
  (lambda (modulus x y)
    (set! x (ff:unorm modulus x))
    (set! y (ff:unorm modulus y))
    (fluid-let ((*modulus* (symmetric:modulus modulus)))
      (cond
       ((univ:zero? x) (univ:make-monic y))
       ((univ:zero? y) (univ:make-monic x))
       (else
	(let ((ans (univ:fgcd x y)))
	  (if (number? ans) (list (car x) ans) ans)))))))

;;; ===================== Truncating Division =====================
(define ff:p/p->qr
  ;;(debug:check ff:p/p->qr-mjt
  (lambda (modulus x y)
    (set! x (ff:unorm modulus x))
    (set! y (ff:unorm modulus y))
    (if (< (length x) (length y))
	(list (list (car x) 0) (ff:unorm modulus x))
	(fluid-let ((*modulus* (symmetric:modulus modulus)))
	  (map (lambda (ans)
		 (if (number? ans) (list (car x) ans) ans))
	       (univ:fdiv x y)))))
  ;;'ff:p/p->qr-mjt
  ;;'univ:fdiv)
  )
(define (ff:p/p p a b)
  (let ((u (ff:unorm p a))
	(v (ff:unorm p b)))
    (let ((m (univ:deg u))
	  (n (univ:deg v)))
      (cond
       ((univ:zero? v)
	(slib:error 'ff:p/p "Division by 0 is undefined."))
       (else
	(car (ff:p/p->qr p u v)))))))

;;; ===================== Top-Level Factoring =====================
(define (u:sff a)
  (define ppoly (poly:primpart a))
  (poly:sort-factors
   (yuniv:square-free-factorization ppoly (car ppoly))))

(define (ff:diff n p v)
  (if (equal? (car p) v)
      (do ((i (- (length p) 1) (+ -1 i))
	   (r '() (cons (sym:sym n (* (+ -1 i) (list-ref p i))) r)))
	  ((< i 2) (cons v r)))
      (list v 0)))

(define (ff:gfroot n p var)
  (let ((d (ff:degree n p)))
    (if (zero? (sym:sym n d))
	(let* ((u (quotient d n))
	       (v (make-vector (+ 1 u) 0)))
	  (vector-set! v u 1)
	  (vector-set! v 0 1)
	  (cons var (vector->list v)))
	(slib:error 'ff:gfroot "polynomial has no root." p))))

(define (ff:sff p a)
  (let* ((v (car a))
	 (b (ff:diff p a v))
	 (output '()))
    (cond ((univ:zero? b)
	   (set! a (ff:gfroot p a v))
	   (set! output (append output (list (list (ff:sff p a) p)))))
	  (else
	   (let* ((c (ff:euclid-gcd p a b))
		  (w (ff:p/p p a c))
		  (y 0)
		  (z 0))
	     (let loop ((i 1))
	       (cond ((not (univ:one? w v))
		      (set! y (ff:euclid-gcd p w c))
		      (set! z (ff:p/p p w y))
		      (if (not (univ:one? z v))
			  (set! output (append output (list (list z i)))))
		      (set! w y)
		      (set! c (ff:p/p p c y))
		      (loop (+ 1 i)))))
	     (cond ((not (univ:one? c v))
		    (set! c (ff:gfroot p c v))
		    (set! output (append output
					 (list (list (ff:sff p c) p)))))))))
    output))

(define (ff:q-matrix p a)
  (define n #f)
  (set! a (ff:unorm p a))
  (set! n (univ:deg a))
  (let ((n-1 (+ -1 n))
	(q (make-array (A:fixZ32b 0) n n))
	(r (make-array (A:fixZ32b 0) n))
	(r1 (make-array (A:fixZ32b 0) n))
	(b (list->vector a))
	(u (* (+ -1 n) p)))
    (array-set! q 1 0 0)
    (array-set! r 1 0)
    (array-set! r1 1 0)
    (let loop ((i 1))
      (cond ((> i u) q)
	    (else
	     (array-set! r (* (vector-ref b 1) (- 0 (array-ref r1 n-1))) 0)
	     (let loop1 ((j 1))
	       (cond ((<= j n-1)
		      (array-set!
		       r (sym:sym p (- (array-ref r1 (+ -1 j))
				       (sym:sym p (* (vector-ref b (+ 1 j))
						     (array-ref r1 n-1)))))
		       j)
		      (loop1 (+ 1 j)))))
	     (array-map! r1 identity r)
	     (if (zero? (modular:normalize p i))
		 (array-map! (make-shared-array
			      q (lambda (j) (list (quotient i p) j)) n)
			     identity r))
	     ;;(ff:print i "  r = " r "  q = " q)
	     (loop (+ 1 i)))))))

;;; Converts a list of vectors to a vector of polynomials.
(define (basis->polys basis var)
  (list->vector
   (map (lambda (vr)
	  (do ((idx (+ -1 (car (array-dimensions vr))) (+ -1 idx))
	       (lst '() (if (and (null? lst) (eqv? 0 (array-ref vr idx)))
			    '()
			    (cons (array-ref vr idx) lst))))
	      ((<= idx 0)
	       (cons var (cons (array-ref vr 0) lst)))))
	basis)))

;;; MJT: Knuth's null-space-basis, slower but works.
;;;
;;; AJ: ff:null-space-basis does its calculations in symmetric modular
;;; form.  But Knuth's example is vanilla mod 13.  ff:null-space-basis
;;; should be reworked using *modulus*.
;;;
;;; The Art of Computer Programming : Seminumerical Algorithms (Vol 2)
;;;  by Donald Ervin Knuth
;;;  2nd Ed (1981) Addison-Wesley Pub Co; ISBN: 0-201-03822-6
;;; 4.6.2 Algorithm N (null-space-algorithm)
;;;
;;; P is prime modulus of coeffient field.
;;; Q-I is an N by N matrix of elements of Z mod P.
;;; Returns a list of {N - rank(Q-I)} basis vectors.
(define (ff:null-space-basis p Q-I)
  (define n (car (array-dimensions Q-I)))
  (define prot (sym:array-prototype p))
  (let ((m (make-array prot n n))
	(c (make-vector n -1))
	(ivec (array-indexes (make-array (A:fixN16b 1) n)))
	(basis '()))
    (array-map! ivec car ivec)
    (array:copy! m Q-I)
    (do ((k 0 (+ 1 k)))
	((>= k n) (reverse basis))
      (let ((j (do ((b 0 (+ 1 b)))
		   ((or (>= b n)
			(and (negative? (vector-ref c b))
			     (not (zero? (array-ref m k b))))) b))))
	(if (< j n)
	    (let ((muinv (* -1 (sym:invert p (array-ref m k j))))
		  (mcolj (make-shared-array m (lambda (a) (list a j)) n)))
	      (array-map! mcolj (lambda (x) (sym:sym p (* x muinv))) mcolj)
	      (vector-set! c j k)
	      (do ((i 0 (+ 1 i)))
		  ((>= i n))
		(if (not (= i j))
		    (let ((mcoli (make-shared-array
				  m (lambda (a) (list a i)) n))
			  (mki (array-ref m k i)))
		      (array-map! mcoli
				  (lambda (x y z)
				    (if (>= z k)
					(sym:sym p (+ x (* mki y)))
					x))
				  mcoli mcolj ivec)))))
	    (let ((vr (make-array prot n))
		  (cl (vector->list c)))
	      (array-map! vr
			  (lambda (i)
			    (let ((cl1 (memv i cl)))
			      (cond ((= i k) 1)
				    (cl1 (array-ref m k (- n (length cl1))))
				    (else 0))))
			  ivec)
	      (set! basis (cons vr basis))))))))

;;; -- > (u:factorz p7)
;     ERROR: vector-ref: Argument out of range 2
;     ;Evaluation took 1934 mSec (601 in gc) 19181 cells work, 6439 bytes other
;     > p7
;     ;Evaluation took 1 mSec (0 in gc) 2 cells work, 31 bytes other
;     (x 1 -3 -1 -3 1 -3 1)
;     > (math)
;     type qed; to return to scheme, type help; for help.
;     e5 : factoruz(1-3*x-x^2-3*x^3+x^4-3*x^5 +x^6);
;     poly = (#(x x #f () #f ()) 1 -3 -1 -3 1 -3 1)
;     e1 = (#(x x #f () #f ()) 1 -3 -1 -3 1 -3 1)
;     Arithmetic Error; Last expression lost.
;;; This problem is caused by berlekamp expecting to find factors when
;;; there are none (ie the polynomial is irreducible).	This problem
;;; comes from the ff:null-space-basis-gcl-bug procedure below.	 This
;;; is the only occurrence of this problem I am aware of.
;;; Fixed by using Knuth's null space basis algorithm above.
;;; Unfortunately, this one is faster.
(define (ff:null-space-basis-gcl-bug p Q-I var)
  (let* ((n (car (array-dimensions Q-I)))
	 (m (make-array '#(#f) n n)))
    (ff:print " Q-I = " Q-I)
    (array:copy! m Q-I)
    (do ((k 0 (+ 1 k)))
	((>= k n))
      (let ((i (do ((b k (+ 1 b)))
		   ((or (>= b n) (not (zero? (array-ref m k b)))) b))))
	(if (< i n)
	    (let* ((u	  (array-ref m k i))
		   (uinv  (sym:invert p u))
		   (mcoli (make-shared-array m (lambda (a) (list a i)) n))
		   (mcolk (make-shared-array m (lambda (a) (list a k)) n))
		   (temp  (make-array '#(#f) n)))
	      (array-map! mcoli (lambda (x) (sym:sym p (* x uinv))) mcoli)
	      (array-map! temp	identity mcoli)
	      (array-map! mcoli identity mcolk)
	      (array-map! mcolk identity temp)
	      (do ((j 0 (+ 1 j)))
		  ((>= j n))
		(if (not (= j k))
		    (let ((mcolj (make-shared-array
				  m (lambda (a) (list a j)) n))
			  (mkj (array-ref m k j)))
		      (array-map! mcolj
				  (lambda (x y)
				    (sym:sym p (- x (sym:sym p (* mkj y)))))
				  mcolj mcolk))))
;;;(ff:print " m = " m)
	      ))))
    (let ((mdiag (make-shared-array m (lambda (a) (list a a)) n)))
      (array-map! mdiag (lambda (x) (sym:sym p (+ -1 x))) mdiag))
;;;    (ff:print "  After subtraction of 1 along the diagonal,	m = " m)
;;;	 (array-map! m (lambda (x) (sym:sym p (* -1 x))) m)
;;;    (ff:print "  After multiplication of -1 along the diagonal,  m = " m)
    (let (;;(i 0)
	  (ret '()))
      (let loop1 ((j 0))
	(if (< j n)
	    (let ((zerow (make-vector n 0)))
	      (let loop2 ()
		(if (< j n)
		    (let ((mrow (make-shared-array
				 m (lambda (a) (list j a)) n)))
		      (cond ((array-equal? mrow zerow)
			     (set! j (+ 1 j)) (loop2))))))
	      (if (< j n)
		  (let ((v (make-vector n 0))
			(mrowj (make-shared-array
				m (lambda (a) (list j a)) n)))
		    ;;(set! i (+ 1 i))
;;;			 (ff:print " mrowj = " mrowj)
		    (array:copy! v mrowj)
;;;			 (ff:print " v = " v)
		    (set! ret (cons v ret))
		    (loop1 (+ 1 j)))))))
;;;	  (ff:print " ret = " ret)
      (map (lambda (x) (ff:unorm p (cons var (vector->list x))))
	   (reverse ret)))))

;;; return an ordered list of elements of Z mod n (symmetric)
(define (ff:generate-field n)
  (define b (quotient (+ -1 n) 2))
  (do ((idx (+ -1 n) (+ -1 idx))
       (lst '() (cons (- idx b) lst)))
      ((negative? idx) lst)))

;;; Return a sorted list of factors of a mod p, where a is square free
;;; and p is a prime number.
(define (ff:berlekamp p a)
  (let* ((q	(ff:q-matrix p a))
	 (n	(car (array-dimensions q)))
	 (var	(car a))
	 (qdiag (make-shared-array q (lambda (a) (list a a)) n)))
    (array-map! qdiag (lambda (x) (sym:sym p (+ -1 x))) qdiag)
    (fluid-let ((*modulus* (symmetric:modulus p)))
      (let* ((vs (basis->polys (ff:null-space-basis p q) var))
	     (factors (list a))
	     (ffp (ff:generate-field p))
	     (k (vector-length vs)))
	(do ((r 1 (+ 1 r)))
	    ((not (< (length factors) k))
	     (poly:sort-factors factors))
	  (do ((us factors (if start factors (cdr us)))
	       (start #f #f))
	      ((not (and (< (length factors) k) (not (null? us)))))
	    (let ((u (car us)))
	      (let loop3 ((ss ffp))
		(cond ((and (not (null? ss)) (< (length factors) k))
		       ;;(print '!)
		       (let ((g (ff:euclid-gcd ;poly:gcd
				 p
				 (poly:- (vector-ref vs r) (car ss)) ;(list var )
				 u)))
			 (cond ((and (not (equal? g u))
				     (not (univ:one? g var)))
				(set! factors (delete u factors))
				(set! u (ff:p/p p u g))
				(set! factors
				      (delete '()
					      (append factors
						      (list u)
						      (list g))))
				(set! start #t))
			       (else (loop3 (cdr ss)))))))))))))))

;;; Partial fraction expansion of a rational univariate polynomial
;;; The denominator, dr, must be square free.
(define (u:partial-fraction-expand nr dr)
  (let* ((drfs1 (u:factorq dr))
	 (drfs (remove-exponents drfs1 '()))
	 (p 3)
	 (k 5)
	 (ss   (hen:diophantine drfs (list (car (car drfs)) 1) p k)))
    (let ((res (map (lambda (x y) (make-rat (poly:* nr x) y)) ss drfs)))
      (ff:print res)
      res)))

(define (remove-exponents fs fs1)
  (cond
    ((null? fs) fs1)
    ((number? (caar fs))
      (ff:print "n " (caar fs))
      (remove-exponents (cdr fs) (fs1)))
    (else
      (ff:print "e " (caar fs))
      (remove-exponents (cdr fs) (append (caar fs) fs1)))))

(define (ff:check-arg e)
  (cond ((not (poly:univariate? e))
	 (bltn:error 'not-a-univariate-polynomial e))))

(define (ff:check-prime n)
  (cond ((not (prime? n))
	 (bltn:error 'not-a-prime-number n))))

(defbltn 'sff
  (lambda (poly)
    (let ((e (licit->polxpr poly)))
      (if (not (eqv? 1 (unitcan (univ:cont e))))
	(bltn:error 'not-a-primitive-polynomial poly)
	(u:sff e)))))

(defbltn 'usff
  (lambda (poly)
    (let ((e (licit->polxpr poly)))
      (ff:check-arg e)
      (cond
       ((not (equal? e (u:primz e)))	   ;this test should be replaced
	(bltn:error 'not-a-primitive-polynomial poly))
       (else (u:sff e))))))

(defbltn 'ffsff
  (lambda (poly pn . k1)
    (let ((p (licit->polxpr poly))
	  (n (licit->polxpr pn))
	  (k (licit->polxpr (if (null? k1) 1 (car k1)))))
      (ff:check-arg p)
      (ff:check-prime n)
      (cond
       ((not (ff:monic? n p))
	(bltn:error 'not-monic-mod-n p))
       ((not (> k 0))
	(bltn:error 'not-greater-than-zero k))
       (else (ff:sff (expt n k) p))))))

(defbltn 'berl
  (lambda (poly pn)
    (let ((p (licit->polxpr poly))
	  (n (licit->polxpr pn)))
      (ff:check-arg p)
      (ff:check-prime n)
      (cond
       ((not (ff:monic? n p))
	(bltn:error 'not-monic-mod-n p))
       ((not (= (univ:deg p) (ff:degree n p)))
	(bltn:error 'not-same-degree-when-reduced-mod-n (ff:norm p n)))
       (else (ff:berlekamp n p))))))

(defbltn 'parfrac
  (lambda (poly)
    (let ((e1 (expr:normalize poly)))
      (u:partial-fraction-expand (num e1) (denom e1)))))