1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
|
;; "ff.scm" Polynomial factorization. -*-scheme-*-
;; Copyright 1994, 1995 Mike Thomas
;; Copyright 1995, 1997, 1998, 1999, 2001, 2002 Aubrey Jaffer
;;
;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2 of the License, or (at
;; your option) any later version.
;;
;; This program is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with this program; if not, write to the Free Software
;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
;;; AUTHOR
;;; Mike Thomas
;;; 46 Harold Street
;;; STAFFORD QLD 4053
;;; AUSTRALIA
;;;
;;; Phone: Intl + 61 7 356 8494
;;; Email: mjt@octavia.anu.edu.au
;;; SOURCES
;;; These algorithms are drawn from:
;;;
;;; (GCL)
;;; Algorithms for Computer Algebra
;;; by Keith O. Geddes, Stephen R. Czapor, George Labahn
;;; (October 1992) Kluwer Academic Pub; ISBN: 0-7923-9259-0
;;;
;;; Computer Algebra: Systems and Algorithms for Algebraic Computation
;;; by Y. Siret (Editor), E. Tournier, J. H. Davenport, F. Tournier
;;; 2nd edition (June 1993) Academic Press; ISBN: 0-122-04232-8
;;;
;;; The Art of Computer Programming : Seminumerical Algorithms (Vol 2)
;;; by Donald Ervin Knuth
;;; 2nd Ed (1981) Addison-Wesley Pub Co; ISBN: 0-201-03822-6
;;; A new edition of this book is availble:
;;; 3rd Ed (November 1997) Addison-Wesley Pub Co; ISBN: 0-201-89684-2
;;; DEVELOPMENT LANGUAGE
;;; SCM 4e1, 4e2 compiled with DICE v 2.07.54
;;; DEVELOPMENT SYSTEM
;;; Amiga 1200, 2Mb Chip RAM, 4Mb Fast RAM, 50MHz 68030 CPU No FPU,
;;; Workbench 3.0 (until a power supply problem stuffed it that is.)
;;; DEPENDENCIES
;;; You need R4RS Scheme, SLIB and JACAL (latest versions).
;;; Multiargument *, +
;;; REPRESENTATIONS
;;; The modular homomorphism sym:sym maps the integers to a symmetric
;;; representation, following the numerous examples in GCL. This
;;; mapping does not seem to correspond with GCL's own definition of Z
;;; mod n using a simple remainder algorithm.
;;; The univariate polynomials expected and returned by the Scheme
;;; procedures are JACAL's list representation, not numbers by
;;; themselves. There is no attempt to cover sparse polynomials yet.
;;; An ideal is a list of lists, each one specifying a variable and
;;; it's value eg '((y 1) (z 2) (p -1)).
;;; DESIGN PHILOSOPHY
;;; 1. Fun;
;;; 2. Correct operation for univariate and multivariate polynomials
;;; over the rationals (Q), then maybe over algebraic number fields;
;;; 3. refine the algorithms for speed after they work correctly;
;;; 4. make the system workable even for smaller computers, based on the
;;; crude and discriminatory assumption that people who want to crack
;;; large problems can afford to buy or write larger systems;
;;; 5. and ideally, I want the system to handle investigation of the
;;; stability of systems of differential equations which requires
;;; algebraic solution of eigensystems, and for an attempt on the
;;; Risch integration algorithm.
;;; I have therefore initially used Linear Hensel Lifting and the small
;;; prime Berlekamp Algorithm. I make no attempt yet, among other
;;; possibilities, to optimise the factorisation process dynamically by
;;; checking several primes or restarting the algorithm on testing for
;;; true factors after the Berlekamp process. Later, perhaps.
;;; NAMING
;;; u: univariate polynomials, should be JACAL's univ:
;;; ff: polynomials over finite integer fields using the
;;; symmetric modular representation
;;; sym: symmetric representation of (modular) integers
;;; poly: Jacal polynomial types
;;; hen: Hensel lifting procedures
;;; ABBREVIATIONS
;;; Q: The Rational numbers
;;; Z: The integers
;;; ARGUMENT CODING CONVENTIONS
;;; ff: the modulus argument is the last in the argument list
;;; KNOWN BUGS
;;; -- factor((2*z+y-x)*(y^3*z-a*x^2)*(b*z^2+y));
;;; factor((a*a*b*z+d)*(2*a*b*b*z+c)*((u+a)*z+1));
;;; Hang my presently memory challenged computer during poly:sff
;;; probably because of lack of room
;;; -- Parfrac worketh not. Wherefore? Because I trieth too hard to
;;; be clevereth. This one can wait.
;;; -- The result is not always sorted or normalised.
;;; KNOWN MINOR PROBLEMS (FROM MY POINT OF VIEW)
;;; -- Output format sometimes gets misaligned.
;;; -- Speed is not great. See DESIGN PHILOSOPHY above.
;;; -- Factorization over Q needs to return monic polynomials if it is
;;; to produce complete unique unit normal factorisations.
;;; Factorisation over Z and Q would also need to factorise numeric
;;; content in this case.
(require 'array)
(require 'array-for-each)
(require 'fluid-let)
(require 'common-list-functions)
(require 'modular)
(define sym:invert (lambda (m a) (modular:invert (symmetric:modulus m) a)))
(define sym:sym (lambda (m a) (modular:normalize (symmetric:modulus m) a)))
(define (modulus->array-prototype p . fill)
(apply (cond ((not (number? p)) vector)
((negative? p)
(let ((len (integer-length (- p))))
(cond ((<= len 8) A:fixZ8b)
((<= len 16) A:fixZ16b)
((<= len 32) A:fixZ32b)
(else vector))))
((positive? p)
(let ((len (integer-length (+ -1 p))))
(cond ((<= len 8) A:fixN8b)
((<= len 16) A:fixN16b)
((<= len 32) A:fixN32b)
(else vector))))
(else vector))
fill))
(define (sym:array-prototype p . fill)
(apply modulus->array-prototype (quotient p -2) fill))
;;; Reduce univariate p mod n and remove leading zero coefficients
(define (ff:unorm n p)
(cons (car p)
(cons (sym:sym n (cadr p))
(map-no-end-0s (lambda (x) (sym:sym n x)) (cddr p)))))
;;; Degree of (ff:unorm n p)
(define (ff:degree n p)
(- (length (ff:unorm n p)) 2))
(define (ff:lc n p)
(sym:sym n (univ:lc p)))
(define (ff:monic? n p)
(and (not (univ:const? p)) (eqv? 1 (ff:lc n p))))
;;; Printer for diagnostic information
(define (ff:print . args)
(define result #f)
(for-each (lambda (x) (set! result x) (display-diag x) (display #\space)) args)
(newline-diag)
result)
;;;================================================================
;;; Standard Euclidean algorithm for polynomial gcd over Z mod n
(define ff:euclid-gcd
(lambda (modulus x y)
(set! x (ff:unorm modulus x))
(set! y (ff:unorm modulus y))
(fluid-let ((*modulus* (symmetric:modulus modulus)))
(cond
((univ:zero? x) (univ:make-monic y))
((univ:zero? y) (univ:make-monic x))
(else
(let ((ans (univ:fgcd x y)))
(if (number? ans) (list (car x) ans) ans)))))))
;;; ===================== Truncating Division =====================
(define ff:p/p->qr
;;(debug:check ff:p/p->qr-mjt
(lambda (modulus x y)
(set! x (ff:unorm modulus x))
(set! y (ff:unorm modulus y))
(if (< (length x) (length y))
(list (list (car x) 0) (ff:unorm modulus x))
(fluid-let ((*modulus* (symmetric:modulus modulus)))
(map (lambda (ans)
(if (number? ans) (list (car x) ans) ans))
(univ:fdiv x y)))))
;;'ff:p/p->qr-mjt
;;'univ:fdiv)
)
(define (ff:p/p p a b)
(let ((u (ff:unorm p a))
(v (ff:unorm p b)))
(let ((m (univ:deg u))
(n (univ:deg v)))
(cond
((univ:zero? v)
(slib:error 'ff:p/p "Division by 0 is undefined."))
(else
(car (ff:p/p->qr p u v)))))))
;;; ===================== Top-Level Factoring =====================
(define (u:sff a)
(define ppoly (poly:primpart a))
(poly:sort-factors
(yuniv:square-free-factorization ppoly (car ppoly))))
(define (ff:diff n p v)
(if (equal? (car p) v)
(do ((i (- (length p) 1) (+ -1 i))
(r '() (cons (sym:sym n (* (+ -1 i) (list-ref p i))) r)))
((< i 2) (cons v r)))
(list v 0)))
(define (ff:gfroot n p var)
(let ((d (ff:degree n p)))
(if (zero? (sym:sym n d))
(let* ((u (quotient d n))
(v (make-vector (+ 1 u) 0)))
(vector-set! v u 1)
(vector-set! v 0 1)
(cons var (vector->list v)))
(slib:error 'ff:gfroot "polynomial has no root." p))))
(define (ff:sff p a)
(let* ((v (car a))
(b (ff:diff p a v))
(output '()))
(cond ((univ:zero? b)
(set! a (ff:gfroot p a v))
(set! output (append output (list (list (ff:sff p a) p)))))
(else
(let* ((c (ff:euclid-gcd p a b))
(w (ff:p/p p a c))
(y 0)
(z 0))
(let loop ((i 1))
(cond ((not (univ:one? w v))
(set! y (ff:euclid-gcd p w c))
(set! z (ff:p/p p w y))
(if (not (univ:one? z v))
(set! output (append output (list (list z i)))))
(set! w y)
(set! c (ff:p/p p c y))
(loop (+ 1 i)))))
(cond ((not (univ:one? c v))
(set! c (ff:gfroot p c v))
(set! output (append output
(list (list (ff:sff p c) p)))))))))
output))
(define (ff:q-matrix p a)
(define n #f)
(set! a (ff:unorm p a))
(set! n (univ:deg a))
(let ((n-1 (+ -1 n))
(q (make-array (A:fixZ32b 0) n n))
(r (make-array (A:fixZ32b 0) n))
(r1 (make-array (A:fixZ32b 0) n))
(b (list->vector a))
(u (* (+ -1 n) p)))
(array-set! q 1 0 0)
(array-set! r 1 0)
(array-set! r1 1 0)
(let loop ((i 1))
(cond ((> i u) q)
(else
(array-set! r (* (vector-ref b 1) (- 0 (array-ref r1 n-1))) 0)
(let loop1 ((j 1))
(cond ((<= j n-1)
(array-set!
r (sym:sym p (- (array-ref r1 (+ -1 j))
(sym:sym p (* (vector-ref b (+ 1 j))
(array-ref r1 n-1)))))
j)
(loop1 (+ 1 j)))))
(array-map! r1 identity r)
(if (zero? (modular:normalize p i))
(array-map! (make-shared-array
q (lambda (j) (list (quotient i p) j)) n)
identity r))
;;(ff:print i " r = " r " q = " q)
(loop (+ 1 i)))))))
;;; Converts a list of vectors to a vector of polynomials.
(define (basis->polys basis var)
(list->vector
(map (lambda (vr)
(do ((idx (+ -1 (car (array-dimensions vr))) (+ -1 idx))
(lst '() (if (and (null? lst) (eqv? 0 (array-ref vr idx)))
'()
(cons (array-ref vr idx) lst))))
((<= idx 0)
(cons var (cons (array-ref vr 0) lst)))))
basis)))
;;; MJT: Knuth's null-space-basis, slower but works.
;;;
;;; AJ: ff:null-space-basis does its calculations in symmetric modular
;;; form. But Knuth's example is vanilla mod 13. ff:null-space-basis
;;; should be reworked using *modulus*.
;;;
;;; The Art of Computer Programming : Seminumerical Algorithms (Vol 2)
;;; by Donald Ervin Knuth
;;; 2nd Ed (1981) Addison-Wesley Pub Co; ISBN: 0-201-03822-6
;;; 4.6.2 Algorithm N (null-space-algorithm)
;;;
;;; P is prime modulus of coeffient field.
;;; Q-I is an N by N matrix of elements of Z mod P.
;;; Returns a list of {N - rank(Q-I)} basis vectors.
(define (ff:null-space-basis p Q-I)
(define n (car (array-dimensions Q-I)))
(define prot (sym:array-prototype p))
(let ((m (make-array prot n n))
(c (make-vector n -1))
(ivec (array-indexes (make-array (A:fixN16b 1) n)))
(basis '()))
(array-map! ivec car ivec)
(array:copy! m Q-I)
(do ((k 0 (+ 1 k)))
((>= k n) (reverse basis))
(let ((j (do ((b 0 (+ 1 b)))
((or (>= b n)
(and (negative? (vector-ref c b))
(not (zero? (array-ref m k b))))) b))))
(if (< j n)
(let ((muinv (* -1 (sym:invert p (array-ref m k j))))
(mcolj (make-shared-array m (lambda (a) (list a j)) n)))
(array-map! mcolj (lambda (x) (sym:sym p (* x muinv))) mcolj)
(vector-set! c j k)
(do ((i 0 (+ 1 i)))
((>= i n))
(if (not (= i j))
(let ((mcoli (make-shared-array
m (lambda (a) (list a i)) n))
(mki (array-ref m k i)))
(array-map! mcoli
(lambda (x y z)
(if (>= z k)
(sym:sym p (+ x (* mki y)))
x))
mcoli mcolj ivec)))))
(let ((vr (make-array prot n))
(cl (vector->list c)))
(array-map! vr
(lambda (i)
(let ((cl1 (memv i cl)))
(cond ((= i k) 1)
(cl1 (array-ref m k (- n (length cl1))))
(else 0))))
ivec)
(set! basis (cons vr basis))))))))
;;; -- > (u:factorz p7)
; ERROR: vector-ref: Argument out of range 2
; ;Evaluation took 1934 mSec (601 in gc) 19181 cells work, 6439 bytes other
; > p7
; ;Evaluation took 1 mSec (0 in gc) 2 cells work, 31 bytes other
; (x 1 -3 -1 -3 1 -3 1)
; > (math)
; type qed; to return to scheme, type help; for help.
; e5 : factoruz(1-3*x-x^2-3*x^3+x^4-3*x^5 +x^6);
; poly = (#(x x #f () #f ()) 1 -3 -1 -3 1 -3 1)
; e1 = (#(x x #f () #f ()) 1 -3 -1 -3 1 -3 1)
; Arithmetic Error; Last expression lost.
;;; This problem is caused by berlekamp expecting to find factors when
;;; there are none (ie the polynomial is irreducible). This problem
;;; comes from the ff:null-space-basis-gcl-bug procedure below. This
;;; is the only occurrence of this problem I am aware of.
;;; Fixed by using Knuth's null space basis algorithm above.
;;; Unfortunately, this one is faster.
(define (ff:null-space-basis-gcl-bug p Q-I var)
(let* ((n (car (array-dimensions Q-I)))
(m (make-array '#(#f) n n)))
(ff:print " Q-I = " Q-I)
(array:copy! m Q-I)
(do ((k 0 (+ 1 k)))
((>= k n))
(let ((i (do ((b k (+ 1 b)))
((or (>= b n) (not (zero? (array-ref m k b)))) b))))
(if (< i n)
(let* ((u (array-ref m k i))
(uinv (sym:invert p u))
(mcoli (make-shared-array m (lambda (a) (list a i)) n))
(mcolk (make-shared-array m (lambda (a) (list a k)) n))
(temp (make-array '#(#f) n)))
(array-map! mcoli (lambda (x) (sym:sym p (* x uinv))) mcoli)
(array-map! temp identity mcoli)
(array-map! mcoli identity mcolk)
(array-map! mcolk identity temp)
(do ((j 0 (+ 1 j)))
((>= j n))
(if (not (= j k))
(let ((mcolj (make-shared-array
m (lambda (a) (list a j)) n))
(mkj (array-ref m k j)))
(array-map! mcolj
(lambda (x y)
(sym:sym p (- x (sym:sym p (* mkj y)))))
mcolj mcolk))))
;;;(ff:print " m = " m)
))))
(let ((mdiag (make-shared-array m (lambda (a) (list a a)) n)))
(array-map! mdiag (lambda (x) (sym:sym p (+ -1 x))) mdiag))
;;; (ff:print " After subtraction of 1 along the diagonal, m = " m)
;;; (array-map! m (lambda (x) (sym:sym p (* -1 x))) m)
;;; (ff:print " After multiplication of -1 along the diagonal, m = " m)
(let (;;(i 0)
(ret '()))
(let loop1 ((j 0))
(if (< j n)
(let ((zerow (make-vector n 0)))
(let loop2 ()
(if (< j n)
(let ((mrow (make-shared-array
m (lambda (a) (list j a)) n)))
(cond ((array-equal? mrow zerow)
(set! j (+ 1 j)) (loop2))))))
(if (< j n)
(let ((v (make-vector n 0))
(mrowj (make-shared-array
m (lambda (a) (list j a)) n)))
;;(set! i (+ 1 i))
;;; (ff:print " mrowj = " mrowj)
(array:copy! v mrowj)
;;; (ff:print " v = " v)
(set! ret (cons v ret))
(loop1 (+ 1 j)))))))
;;; (ff:print " ret = " ret)
(map (lambda (x) (ff:unorm p (cons var (vector->list x))))
(reverse ret)))))
;;; return an ordered list of elements of Z mod n (symmetric)
(define (ff:generate-field n)
(define b (quotient (+ -1 n) 2))
(do ((idx (+ -1 n) (+ -1 idx))
(lst '() (cons (- idx b) lst)))
((negative? idx) lst)))
;;; Return a sorted list of factors of a mod p, where a is square free
;;; and p is a prime number.
(define (ff:berlekamp p a)
(let* ((q (ff:q-matrix p a))
(n (car (array-dimensions q)))
(var (car a))
(qdiag (make-shared-array q (lambda (a) (list a a)) n)))
(array-map! qdiag (lambda (x) (sym:sym p (+ -1 x))) qdiag)
(fluid-let ((*modulus* (symmetric:modulus p)))
(let* ((vs (basis->polys (ff:null-space-basis p q) var))
(factors (list a))
(ffp (ff:generate-field p))
(k (vector-length vs)))
(do ((r 1 (+ 1 r)))
((not (< (length factors) k))
(poly:sort-factors factors))
(do ((us factors (if start factors (cdr us)))
(start #f #f))
((not (and (< (length factors) k) (not (null? us)))))
(let ((u (car us)))
(let loop3 ((ss ffp))
(cond ((and (not (null? ss)) (< (length factors) k))
;;(print '!)
(let ((g (ff:euclid-gcd ;poly:gcd
p
(poly:- (vector-ref vs r) (car ss)) ;(list var )
u)))
(cond ((and (not (equal? g u))
(not (univ:one? g var)))
(set! factors (delete u factors))
(set! u (ff:p/p p u g))
(set! factors
(delete '()
(append factors
(list u)
(list g))))
(set! start #t))
(else (loop3 (cdr ss)))))))))))))))
;;; Partial fraction expansion of a rational univariate polynomial
;;; The denominator, dr, must be square free.
(define (u:partial-fraction-expand nr dr)
(let* ((drfs1 (u:factorq dr))
(drfs (remove-exponents drfs1 '()))
(p 3)
(k 5)
(ss (hen:diophantine drfs (list (car (car drfs)) 1) p k)))
(let ((res (map (lambda (x y) (make-rat (poly:* nr x) y)) ss drfs)))
(ff:print res)
res)))
(define (remove-exponents fs fs1)
(cond
((null? fs) fs1)
((number? (caar fs))
(ff:print "n " (caar fs))
(remove-exponents (cdr fs) (fs1)))
(else
(ff:print "e " (caar fs))
(remove-exponents (cdr fs) (append (caar fs) fs1)))))
(define (ff:check-arg e)
(cond ((not (poly:univariate? e))
(bltn:error 'not-a-univariate-polynomial e))))
(define (ff:check-prime n)
(cond ((not (prime? n))
(bltn:error 'not-a-prime-number n))))
(defbltn 'sff
(lambda (poly)
(let ((e (licit->polxpr poly)))
(if (not (eqv? 1 (unitcan (univ:cont e))))
(bltn:error 'not-a-primitive-polynomial poly)
(u:sff e)))))
(defbltn 'usff
(lambda (poly)
(let ((e (licit->polxpr poly)))
(ff:check-arg e)
(cond
((not (equal? e (u:primz e))) ;this test should be replaced
(bltn:error 'not-a-primitive-polynomial poly))
(else (u:sff e))))))
(defbltn 'ffsff
(lambda (poly pn . k1)
(let ((p (licit->polxpr poly))
(n (licit->polxpr pn))
(k (licit->polxpr (if (null? k1) 1 (car k1)))))
(ff:check-arg p)
(ff:check-prime n)
(cond
((not (ff:monic? n p))
(bltn:error 'not-monic-mod-n p))
((not (> k 0))
(bltn:error 'not-greater-than-zero k))
(else (ff:sff (expt n k) p))))))
(defbltn 'berl
(lambda (poly pn)
(let ((p (licit->polxpr poly))
(n (licit->polxpr pn)))
(ff:check-arg p)
(ff:check-prime n)
(cond
((not (ff:monic? n p))
(bltn:error 'not-monic-mod-n p))
((not (= (univ:deg p) (ff:degree n p)))
(bltn:error 'not-same-degree-when-reduced-mod-n (ff:norm p n)))
(else (ff:berlekamp n p))))))
(defbltn 'parfrac
(lambda (poly)
(let ((e1 (expr:normalize poly)))
(u:partial-fraction-expand (num e1) (denom e1)))))
|