1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
;; JACAL: Symbolic Mathematics System. -*-scheme-*-
;; Copyright 1989, 1990, 1991, 1992, 1993, 1997 Aubrey Jaffer.
;;
;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2 of the License, or (at
;; your option) any later version.
;;
;; This program is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with this program; if not, write to the Free Software
;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
(require 'common-list-functions)
;;(proclaim '(optimize (speed 3) (compilation-speed 0)))
(define (vsubst new old e)
(cond ((eq? new old) e)
((number? e) e)
((bunch? e) (map (lambda (e) (vsubst new old e)) e))
((var:> new (car e)) (univ:norm0 new (cdr (poly:promote old e))))
(else (poly:resultant (make-var-eqn new old) e old))))
(define (make-var-eqn new old)
(if (var:> old new)
(list old (list new 0 -1) 1)
(list new (list old 0 -1) 1)))
(define (swapvars x y p)
(vsubst x _$
(vsubst y x
(vsubst _$ y p))))
;;; Makes an expression whose value is the variable VAR in the equation
;;; E or (if E is an expression) E=0
(define (suchthat var e)
(set! e (poly:subst0 $ (licit->poleqn e)))
(extize (normalize (vsubst $ var e))))
;; canonicalizers
(define (normalize x)
(cond ((and math:phases (not (novalue? x)))
(display-diag 'normalizing:)
(newline-diag)
(math:write x *output-grammar*)))
(let ((ans (normalize1 x)))
(cond ((and math:phases (not (novalue? x)))
(display-diag 'yielding:)
(newline-diag)
(math:write ans *output-grammar*)))
ans))
(define (normalize1 x)
(cond ((bunch? x) (map normalize x))
((symbol? x) (eval-error 'normalize-symbol?- x))
((eqn? x)
(poly->eqn (unitcan (poly:square-and-num-cont-free
(alg:simplify (eqn->poly x))))))
(else (expr:normalize x))))
(define (expr:normalize p)
(if (expl? p) (set! p (expl->impl p)))
(expr:norm-or-unitcan
(poly:square-free-var
(alg:simplify (if (rat? p) (alg:clear-denoms p) p))
$)))
(define (extize p)
(cond ((bunch? p) (eval-error 'cannot-suchthat-a-vector p))
((eqn? p) p)
((expl? p) p)
((rat? p) p)
(else
(set! newextstr (chap:next-string newextstr))
(let ((v (defext (string->var
(if (clambda? p) (string-append "@" newextstr)
newextstr))
p)))
(set! var-news (cons v var-news))
(var->expl v)))))
;(trace normalize normalize1 extize unitcan
; expr:norm-or-unitcan expr:normalize
; alg:simplify alg:clear-denoms
; poly:square-free-var poly:square-and-num-cont-free)
;; differentials
(define (total-diffn p vars)
(if (null? vars) 0
(poly:+ (poly:* (var->expl (var:differential (car vars)))
(poly:diff p (car vars)))
(total-diffn p (cdr vars)))))
(define (chain-rule v vd)
(if (extrule v)
(total-chain-exts (total-diffn (extrule v) (poly:vars (extrule v)))
(var:funcs (extrule v)))
(let ((functor (sexp->math (car (var:sexp v)))))
(do ((pos 1 (+ 1 pos))
(al (cdr (func-arglist v)) (cdr al))
(sum 0 (app* $1*$2+$3
(apply deferop
(deferop _partial functor pos)
(cdr (func-arglist v)))
(total-differential (car al))
sum)))
((null? al) (vsubst vd $ sum))))))
(define (total-chain-exts drule es)
(if (null? es) drule
(let ((ed (var:differential (car es))))
(total-chain-exts
(poly:resultant drule (chain-rule (car es) ed) ed)
(if (extrule (car es))
(union (cdr es) (alg:exts (extrule (car es))))
(cdr es))))))
(define (total-differential a)
(cond
((bunch? a) (map total-differential a))
((eqn? a) (poly->eqn
(total-diffn (eqn->poly a) (poly:vars (eqn->poly a)))))
(else (let ((aes (chainables a)))
(if (and (null? aes) (expl? a))
(total-diffn a (poly:vars a))
(let ((pa (licit->poleqn a)))
(total-chain-exts
(vsubst $ d$ (poly:resultant
pa (total-diffn pa (poly:vars pa)) $))
aes)))))))
(define (diff a var)
(cond
((bunch? a) (map (lambda (x) (diff x var)) a))
((eqn? a) (poly->eqn (diff (eqn->poly a) var)))
(else (let* ((td (total-differential a))
(vd (var->expl (var:differential var)))
(td1 (app* $1/$2 td vd))
(dpvs '()))
(poly:for-each-var
(lambda (v)
(if (and (not (eq? (car vd) v))
(var:differential? v))
(set! dpvs (adjoin v dpvs))))
td)
(reduce-init (lambda (e x) (poly:coeff e x 0))
(poly:square-free-var td1 $) dpvs)))))
(define (expls:diff a var)
(cond
((bunch? a) (map (lambda (x) (expl:diff x var)) a))
((eqn? a) (poly->eqn (expl:diff (eqn->poly a) var)))
(else (let ((aes (alg:exts a)))
(if (and (null? aes) (expl? a)
(every (lambda (x) (null? (var:depends x))) (poly:vars a)))
(poly:diff a var)
(math:error 'polydiff 'not-a-polynomial? a))))))
;(trace total-differential total-chain-exts chain-rule total-diffn
; diff expls:diff)
;;;; FINITE DIFFERENCES
;;; shift needs to go through extensions; which will create new
;;; extensions (yucc). It is clear what to do for radicals, but other
;;; extensions will be hard to link up. For instance y: {x|x^5+a+b+9+x}
;;; needs to yield the same number whether a or b is substituted first.
(define (shift p var)
(vsubst var
$2
(poly:resultant (list $2 (list var -1 -1) 1)
p
var)))
(define (unsum p var)
(app* $1-$2 p (shift p (expl->var var))))
(define (poly:fdiffn p vars)
(if (null? vars) 0
(poly:+ (poly:* (var->expl (var:finite-differential (car vars)))
(unsum p (car vars)))
(poly:fdiffn p (cdr vars)))))
(define (total-finite-differential e)
(if (bunch? e)
(map total-finite-differential e)
(poly:fdiffn e (alg:vars e))))
;;;logical operations on licits
;(define (impl:not p)
; (poly:+ (poly:* (licit->poleqn p)
; (var->expl (sexp->var (new-symbol "~")))) -1))
;(define (impl:and p . qs)
; (cond ((bunch? p) (impl:and (append p qs)))))
(define (expl:t? e) (equal? e expl:t))
(define (ncexpt a pow)
(cond ((not (or (integer? pow) (expl:t? pow)))
(deferop _^^ a pow))
((eqns? a) (math:error 'expt-of-equation?:- a))
((not (bunch? a)) (fcexpt a pow))
((expl:t? pow) (transpose a))
(else (mtrx:expt a pow))))
;;;; Routines for square-free factoring
(define (poly:diff-coefs el n)
(if (null? el)
el
(cons (poly:* n (car el))
(poly:diff-coefs (cdr el) (+ 1 n)))))
(define (poly:diff p var)
(cond ((number? p) 0)
((eq? (car p) var) (univ:norm0 var (poly:diff-coefs (cddr p) 1)))
((var:> var (car p)) 0)
(else (univ:norm0 (car p) (map-no-end-0s
(lambda (x) (poly:diff x var))
(cdr p))))))
(define (poly:diff-all p)
(let ((ans 0))
(do ((vars (poly:vars p) (cdr vars)))
((null? vars) ans)
(set! ans (poly:+ (poly:diff p (car vars)) ans)))))
;;; Copyright 1989, 1990, 1991, 1992, 1993 Aubrey Jaffer.
|