
Rational Function Integration
Aubrey G. Jaffer

e-mail: agj@alum.mit.edu

Abstract

The derivative of any rational function is a rational function. An algorithm and decision
procedure for finding the rational function anti-derivative of a rational function is presented. This
algorithm is then extended to derivatives of rational functions including instances of a radical
involving the integration variable.

1. Rational Function Differentiation

Let

f(x) =
∏
j 6=0

pj(x)j (1)

be a rational function of x where the primitive polynomials pj(x) are square-free and mutually relatively
prime.

The derivative of f(x) is

df

dx
(x) =

∑
j

j pj(x)j−1 p′j(x)
∏
k 6=j

pk(x)k (2)

Lemma 1. Given square-free and relatively prime primitive polynomials pj(x),
∑

j j p
′
j(x)

∏
k 6=j pk(x) has

no factors in common with pj(x).

Assume that the sum has a common factor ph(x) such that:

ph(x)

∣∣∣∣∣∣
∑
j

j p′j(x)
∏
k 6=j

pk(x)

ph(x) divides all terms for j 6= h. Because it divides the whole sum, ph(x) must divide the remaining
term h p′h(x)

∏
k 6=h pk(x). From the given conditions, ph(x) does not divide p′h(x) because ph(x) is square-free;

and ph(x) does not divide pk(x) for k 6= h because they are relatively prime.

1

2. Rational Function Integration

Separating square-and-higher factors from the sum in equation (2):

df

dx
(x) =

∏
j

pj(x)j−1

∑
j

j p′j(x)
∏
k 6=j

pk(x)

 (3)

There are no common factors between the sum and product terms of equation (3) because of the
relatively prime condition of equation (1) and because of Lemma 1. Hence, this equation cannot be reduced
and is canonical.

Split equation (3) into factors by the sign of the exponents, giving:

df

dx
(x) =

∏
j>2 pj(x)j−1∏
j<0 pj(x)1−j

L︷ ︸︸ ︷
p2(x)

∑
j

j p′j(x)
∏
k 6=j

pk(x) (4)

The denominator is
∏

j≤0 pj(x)1−j . Its individual pj(x) can be separated by square-free factorization.
The pj(x) for j > 2 can also be separated by square-free factorization of the numerator. Neither p2(x)
nor

∑
j j p

′
j(x)

∏
k 6=j pk(x) have square factors; so square-free factorization will not separate them. Treating

p2(x) as 1 lets its factor be absorbed into p1(x). Note that pj(x) = 1 for factor exponents j which don’t
occur in the factorization of df/dx. All the pj(x) are now known except p1(x). Once p1(x) is known, f(x)
can be recovered by equation (1). Let polynomial L be the result of dividing the numerator of df/dx by∏

j>2 pj(x)j−1.

L︷ ︸︸ ︷∑
j

j p′j(x)
∏
k 6=j

pk(x) =

M︷ ︸︸ ︷∑
j 6=1

j p′j(x)
∏

16=k 6=j

pk(x) p1(x) + p′1(x)

N︷ ︸︸ ︷∏
k 6=1

pk(x) (5)

Because they don’t involve p1(x), polynomials M and N in equation (5) can be computed from the square-
free factorizations of the numerator and denominator. This allows p1(x) to be constructed by a process
resembling long division. The trick at each step is to construct a monomial q(x) such that M q(x) + q′(x) N
cancels the highest term of dividend R (which is initially L).

Let deg(p) be the degree of x in polynomial p 6= 0 and deg(0) = −1. Let coeff(p, w) be the coefficient
of the xw term of polynomial p for w ≥ 0.

Note that deg(M) = deg(N)− 1 because the derivative of exactly one of the pj(x) occurs instead of pj(x)
in each term of M. And deg(q(x) M) = deg(q′(x) N) because deg(q′(x)) = deg(q(x))− 1.

The polynomial p1(x) can be constructed by the following procedure. Let A, C, and R be rational
expressions. Only the numerators of A and R contain powers of x. Starting from polynomials L, M, and N:

A := 0;

R := L;

Nxd := deg(N);

while ((g := deg(num(R)) - Nxd + 1) >= 0) do

Rxd := deg(num(R));

RxC := coeff(num(R),Rxd);

C := RxC / (coeff(M,Nxd-1) + g*coeff(N,Nxd)) / denom(R);

A := A + C * x^g;

R := R - C * (M*x^g + N*diff(x^g,x));

if (deg(num(R)) > Rxd) then fail;

if (0 = R) then return (A);

At the end of this process, if R = 0, then p1(x) is the numerator of A and f(x) =
∏

j pj(x)j divided by
the denominator of A. Otherwise the anti-derivative is not a rational function.

Just as this algorithm works with p2(x) absorbed into p1(x), it works with all of the pj(x) for j > 1
absorbed into p1(x). This removes the need to factor the numerator and provides the opportunity to enhance
the algorithm to handle algebraic field extensions.

2

3. Algebraic field extension

Let y be a variable representing one of the solutions of its defining equation (reduction rule) represented by
a polynomial Y = 0. For example Y would be y3 − x for a cube root of x.

As discussed by Caviness and Fateman[1], multiple field extensions involving the same variable can be
combined into a single field extension. For the purposes of integration, combine the field extensions involving
the variable of integration x into a single variable y with its defining equation Y.

In order to normalize polynomials with regard to Y, each polynomial P containing y is replaced by
prem(P, Y), the remainder of pseudo-division of P by Y, as described by Knuth Volume 2[2].

While that process normalizes polynomials, it doesn’t fully normalize ratios of polynomials, for instance:

1/y2 = 1/(3
√
x)2 = 3

√
x/x = y/x

After the polynomials are normalized, if the denominator still contains the field extension y, it is
possible to move y to the numerator by multiplying both numerator and denominator by the y-conjugate of
the denominator, then normalizing both numerator and denominator by Y. The conjugate of a polynomial P
with respect to Y can be computed by the following procedure where deg(q) is the degree of y in polynomial q
and pquo(Y, P) and prem(Y, P) are the quotient and remainder of pseudo-division of Y by P:

conj(P):

if (deg(P) < deg(Y)) then

Q := pquo(Y,P);

R := prem(Y,P);

else

Q := 1;

R := 0;

if (deg(R) = 0)

then return (Q);

else return (Q * conj(R));

With a single algebraic field extension y which is a function of x, and the denominator free of y, and all
the numerator factors in p1(x, y), the previous development can be reformulated:

f(x, y) =
∏
j≤1

pj(x, y)j (6)

The derivative of f(x, y) with respect to x is

df

dx
(x, y) =

∑
j≤1

j pj(x, y)j−1 p′j(x, y)
∏
k 6=j

pk(x, y)k (7)

Separating into numerator and denominator:

df

dx
(x, y) =

∑
j j p

′
j(x, y)

∏
k 6=j pk(x, y)∏

j≤0 pj(x, y)1−j
(8)

This time, L is the whole numerator of equation (8). Note that the denominator includes p0(x, y);
p0(x, y) does not contribute to M because its coefficient j is 0. Separating p1(x, y) from the denominator
factors:

L︷ ︸︸ ︷∑
j

j p′j(x, y)
∏
k 6=j

pk(x, y) =

M︷ ︸︸ ︷∑
j≤0

j p′j(x, y)
∏
k 6=j

pk(x, y) p1(x, y) + p′1(x, y)

N︷ ︸︸ ︷∏
k≤0

pk(x, y)

Because they don’t involve p1(x, y), polynomials M and N can be computed from the square-free factor-
ization of the denominator. The trick at each step is to construct a polynomial t such that M t + t′ N cancels
the highest term of dividend R (initial R = L).

3

Let A, C, and R be rational expressions. Let Q and T be polynomials of x containing no algebraic
extensions. Let g = deg(R, x)− deg(N, x) + 1.

When there is no algebraic extension, t = xg. If there is an algebraic extension y, let q be the denominator
of normalized dy/dx, f be the integer quotient g/deg(q, x), and set g to the remainder of g/deg(q, x). Then:

t = qf xg yh

The polynomial p1(x, y) can be constructed by the following procedure. Starting from polynomials L,
M, and N:

A := 0;

R := L;

Q := denom(normalize(diff(y,x)));

Nyd := deg(N,y);

NyC := coeff(N,y,Nyd);

Nxd := deg(NyC,x);

loop

Ryd := deg(num(R),y);

RyC := coeff(num(R),y,Ryd);

Rxd := deg(RyC,x);

h := Ryd - Nyd;

g := (Rxd - Nxd + 1);

if (0 = deg(Q,x))

T := x^g;

else

f := quotient(g,deg(Q,x));

g := remainder(g,deg(Q,x));

T := Q^f * x^g * y^h;

dT := diff(T,x);

B := normalize(N*dT + M*T);

C := coeff(RyC,x,Rxd) * denom(B) / denom(R)

/ coeff(coeff(num(B),y,Ryd),x,Rxd);

A := A + C * T;

R := R - C * B;

if (0 = R) then return (A);

if (deg(num(R),y) > Ryd) then fail;

if (deg(num(R),y) = Ryd and

deg(coeff(num(R),y,deg(num(R),y)),x) >= Rxd) then fail;

The looping continues only as long as the degree of R decreases. If this process succeeds, then p1(x, y)
is the numerator of A and f(x, y) =

∏
j pj(x, y)j divided by the denominator of A.

References

[1] B. F. Caviness and R. J. Fateman. Simplification of radical expressions. In Proceedings of the Third
ACM Symposium on Symbolic and Algebraic Computation, SYMSAC ’76, pages 329–338, New York, NY,
USA, 1976. ACM.

[2] Donald E. Knuth. The Art of Computer Programming, Volume 2 (2nd Ed.): Seminumerical Algorithms.
Addison-Wesley Longman Publishing Co., Inc., USA, 1982.

4

